next up previous print clean
Next: The virtual-residual preconditioning algorithm Up: VIRTUAL-RESIDUAL PRECONDITIONING Previous: VIRTUAL-RESIDUAL PRECONDITIONING

The classic underdetermined least-squares problem

We begin with the construction of theoretical data  
 \begin{displaymath}
\bold d \quad =\quad\bold F \bold m\end{displaymath} (31)
We assume that there are fewer data points than model points and that the matrix $\bold F \bold F'$ is invertible. From the theoretical data we estimate a model $\bold m_0$ with  
 \begin{displaymath}
\bold m_0 \quad =\quad\bold F' (\bold F \bold F')^{-1} \bold d\end{displaymath} (32)
To verify the validity of the estimate, insert the estimate (32) into the data modeling equation (31) and notice that the estimate $\bold m_0$ predicts the correct data.

Now we will show that of all possible models $\bold m$ that predict the correct data, $\bold m_0$ has the least energy. (I'd like to thank Sergey Fomel for this clear and simple proof that does not use Lagrange multipliers.) First split (32) into an intermediate result $\bold d_0$ and final result:
\begin{eqnarray}
\bold d_0 &=& (\bold F \bold F')^{-1} \bold d
 \\  \bold m_0 &=& \bold F' \bold d_0\end{eqnarray} (33)
(34)
Consider another model ($\bold x$ not equal to zero)
\begin{displaymath}
\bold m \quad =\quad\bold m_0 + \bold x\end{displaymath} (35)
which fits the theoretical data. Since $\bold d=\bold F\bold m_0$,we see that $\bold x$ is a null space vector.
\begin{displaymath}
\bold F \bold x \quad =\quad\bold 0\end{displaymath} (36)
First we see that $\bold m_0$ is orthogonal to $\bold x$ because  
 \begin{displaymath}
\bold m_0' \bold x \quad =\quad
 (\bold F' \bold d_0)' \bold...
 ... \bold F \bold x \quad =\quad
 \bold d_0' \bold 0 \quad =\quad0\end{displaymath} (37)
Therefore,
\begin{displaymath}
\bold m' \bold m \quad =\quad
\bold m_0' \bold m_0 + \bold x...
 ...\bold m_0 + \bold x'\bold x \quad\ge\quad \bold m_0' \bold m_0 \end{displaymath} (38)
so adding null space to $\bold m_0$ can only increase its energy. In summary, the solution $\bold m_0 = \bold F' (\bold F \bold F')^{-1} \bold d$has less energy than any other model that satisfies the data.

Not only does the theoretical solution $\bold m_0 = \bold F' (\bold F \bold F')^{-1} \bold d$have minimum energy, but the result of iterative descent will too, provided that we begin iterations from $\bold m_0=0$ or any $\bold m_0$with no null-space component. In (37) we see that the orthogonality $\bold m_0'\bold x=0$does not arise because $\bold d_0$ has any particular value. It arises because $\bold m_0$ is of the form $\bold F'\bold d_0$.Gradient methods contribute $\Delta\bold m =\bold F' \bold r$which is of the required form.


next up previous print clean
Next: The virtual-residual preconditioning algorithm Up: VIRTUAL-RESIDUAL PRECONDITIONING Previous: VIRTUAL-RESIDUAL PRECONDITIONING
Stanford Exploration Project
2/27/1998