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SUMMARY

We propose a 3-D integral dip-moveout (DMO) approach based on
constructing the DMO operator in the slant-stack domain. The kine-
matics of the operator is first computed in the ray parameter domain
and described as three parametric functions for the zero-offset trace
locationx0-, y0-, and zero-offset traveltimet0. 3-D slant-stack trans-
form is used to merge the three functions into one that defines the same
operator in the slant-stack domain. Each input sample is smeared as a
sinc function onto the output panel in the slant-stack domain, along the
DMO operator trajectory. Then, an accurate and efficient inverse 3-D
slant-stack transform reconstructs the data in the conventional time-
space domain. Two significant advantages arise from this implemen-
tation. First, it can kinematically and dynamically handle triplications
associated withv(z) media; second, this integral implementation has
no constraint on the sampling or geometry of the input data.

INTRODUCTION

Seismic surveys geared to acquiring 3-D data commonly include irreg-
ular distribution of common midpoint (CMP) locations. These irregu-
larities in the survey arise from the need for accommodating complex
topography and other hazards that exist in the survey area. As a result,
Kirchhoff-type algorithms are more popular in processing 3-D seis-
mic data than those faster Fourier approaches, since the integral DMO
can handle the irregularly sampled data (Deregowski, 1987). How-
ever, triplications in the dip-moveout (DMO) operator, an important
phenomenon associated withv(z) media as well as anisotropic media,
are difficult to handle using the conventional integral methods. Such
limitation exists mainly because a large portion of the energy along the
operator can not be accurately predicted by a ray-theoretical construc-
tion of the operator in the time-space domain.

Hale and Artley (1993) introduced a 2-D method for approximately
handlingv(z) model by squeezing the impulse response of the constant-
velocity DMO operator. Artley and Hale (1994) proposed an exact 2-D
v(z) DMO in the frequency-wavenumber domain, which can solve the
problem of triplication by constructing the 2-D parametric DMO oper-
ator in the ray parameter domain. Extensions of the parametric DMO
operator construction to 3-D or anisotropic media can be found at Art-
ley et al. (1993) and Alkhalifah (1997). Several other methods for
precise DMO correction have also been published in the SEG abstract
(Meinardus and Schleicher, 1991; Witte, 1991; Perkins and French,
1990). Alkhalifah and deHoop (1996) demonstrated that an integral
DMO operator in the� � p domain for anisotropic media can solve
the problem of triplication, as well as, sampling irregularities.
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Figure 1: 3-D DMO operator trajectory in the time-space domain. (a)
Constant velocity. (b) v(z) velocity.

It is well-known that the 3-Dv(z) DMO operator in the time-space
domain is saddle-shaped if we do not take into account of the tripli-

cations, as shown in Figure 1. In order to handle the triplications ac-
curately, we propose a 3-D integral DMO approach in the slant-stack
domain. This approach starts with constructing the parametric 3-D
DMO operator using ray tracing, which is composed of three func-
tions. The three functions are merged into a single function using
3-D slant-stack transform. Each input sample is smeared onto the a
panel in the slant-stack domain. Then, an accurate and efficient in-
verse slant-stack transform is applied to transform the data back to the
conventional time-space domain. We plan to extend a 2-D slant-stack
transform method developed by Kostov (1990) to 3-D.

We first derive the equations used for constructing the parametric 3-D
DMO operator in the ray parameter domain. Then we discuss how
to implement the DMO correction in the slant-stack domain. Finally,
some numerical results are presented to demonstrate how the proposed
operator handles triplications in the slant-stack domain.

CONSTRUCTING PARAMETRIC 3-D DMO OPERATOR

3-D DMO operator in the time-space domain is constructed by solving
a system of nonlinear equations. As shown in Figure 2, the source

is assumed to be located at the origin. First, all the three rays
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Figure 2: Schematic view of the sourceS, geophoneG, and reflection
point R for 3-D v(z) DMO. The dash lines represent the raypaths in
the earth.
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, i.e.,

x(ps; ts) = x(p0; t0) + x0; (1)

x(pg ; tg) + xg = x(p0; t0) + x0; (2)

y(ps; ts) = y(p0; t0) + y0; (3)

and
y(pg ; tg) + yg = y(p0; t0) + y0; (4)

wherepi stands for the ray parameter vector,ti represents the one-
way traveltime from the surface to the reflection point. Second, all the
three rays terminate atR with the same time-depth, resulting in

�(ps; ts) = �(p0; t0); (5)

and
�(pg ; tg) = �(p0; t0): (6)

Third, all the three rays observe Snell’s law at the reflection point
R. Consequently, the ray parameters are constrained by the following
equations,

px
0
(cos �(ps; ts) + cos �(pg ; tg)) = (pxs + pxg) cos �(p0; t0);

(7)
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and

px
0
(cos �(ps; ts) + cos �(pg ; tg)) = (pxs + pxg ) cos �(p0; t0):

(8)
Finally, the total traveltime is the sum of the source and the geophone’s
one-way traveltimes,

ts + tg = tsg : (9)

There are totally nine unknowns,ps = (pxs ; p
y
s), pg = (pxg ; p

y
g),

x0, y0, t0, ts, tg . By subtracting (2) from (1) and (4) from (3), two
independent equations

x(ps; ts) = x(pg ; tg) + xg; (10)

and
y(ps; ts) = y(pg ; tg) + yg: (11)

are left. If we substitute equation (9) into (5), we get

�(ps; tsg � tg) = �(p0; t0): (12)

As a result, the number of independent equations reduces to six. Newton-
Raphson method (Press et al., 1986) is used to solve the system of six
nonlinear equations, 10, 11, 6, 12, 7, and 8, generating the parametric
3-D DMO operator in the ray parameter domain, as follows(

t0 = f1(tn; px; py;h)
x0 = f2(tn; px; py;h)
y0 = f3(tn; px; py;h)

(13)

where tn is the NMO-corrected traveltime,(px; py) is the ray pa-
rameter vector,h is the half-offset,t0 is the zero-offset traveltime,
and(x0; y0) is the surface location of the zero-offset trace. Figures
3, 4, and 5 show the three parametric functions from a linearv(z)
model. The corresponding parameters are half-offset h=1 (km), NMO-
corrected traveltimetn=1 (sec), and the velocity modelv(z)=1:5 + z
(km/s). Ray parameterspx andpy vary from 0 to 0.667(s=km).
The flat regions in Figures 3, 4, and 5 are set to be constant to guar-
antee the stability of Newton-Raphson method. Althought0 andx0
are well-defined as a function of the ray parameters, they do not vary
monotonously in thepx direction. In contrast,y0 varies monotonously
in bothpx andpy direction. Therefore, if the three maps are merged
into one in(t0 ; x0; y0) domain, the triplications are inevitable in the
inline direction (at the largepx).

3-D DMO IN THE SLANT-STACK DOMAIN

Since all the three parametric functions are defined in the ray parame-
ter domain, it is natural to merge them into one single function given
by

�(tn ; px; py;h) = t0 + x0px + y0py: (14)

Figure 6 shows a quarter of the operator trajectory in the 3-D slant-
stack domain. This new expression has a simpler behavior in thepx
direction than the conventional time-space expression in the inline di-
rection, since the new expression is simply a linear combination of
the three parametric functions. It will be shown in the next section
that the operator triplication in the inline direction of the time-space
domain becomes an inflection point in the slant-stack domain. Fur-
thermore, even though the parametric DMO operator has triplication
information, it is not convenient for application, because the operator
is not defined on a regular grid in the (x0,y0) domain. Meanwhile, the
ray theoretical construction of the operator does not include the true
dynamics of the triplication. Direct use of the parametric DMO opera-
tor in a conventional Kirchhoff approach will result in severe artifacts.
By transforming the operator to the slant-stack domain, our method
avoids triplications, and as a result, the dynamic description of the op-
erator becomes trivial. The methodology of applying the operator in
the slant-stack domain consists of three main steps:

1. Smear each input sample into the slant-stack domain accord-
ing to the operator trajectory.

2. Inverse transform the data back to the conventional time-space
domain.

3. Kirchhoff summation of the inverse transformed data.

Since the operators are applied independently for each input sample,
the proposed DMO algorithm is an integral approach that can handle
irregularly sampled data. The key step of this algorithm is an accu-
rate and efficient inverse slant-stack transform. We plan to extend a
2-D slant stack transform method by Kostov (1990) to 3-D. The ef-
ficiency of his method results from the observation that the matrix of
normal equations has a Toeplitz structure, even for data that are irregu-
larly sampled or non-uniformly weighted in offset, while the accuracy
originates from its finite-aperture feature which can reduce the artifact
caused by infinite aperture.

NUMERICAL RESULTS

Results from two differentv(z) models are presented in this section.
The first one is a linearv(z) model,v(z) = 1:5 + z (km/s); while
the second example has a high velocity layer embedded in a general
v(z) model, as shown in Figure 7. Figure 8 shows the inline compo-
nent of the 3-Dv(z) DMO operator from the linearv(z) model. Two
triplications in the time-space domain have been transformed into two
inflection points in the slant-stack domain. A similar phenomenon
occurs in anisotropic media between the phase and group velocities
(Alkhalifah and deHoop, 1996). Figure 9 shows the crossline compo-
nent from the 3-D DMO operator of the linearv(z) model. Since the
operator is well-known to be saddle-shaped, the crossline component
is concaved downward. Consistent withy0 ’s monotonous trajectory
in the ray parameter domain (Figure 5), the crossline component has
no triplications and its counterpart is also free of inflection points in
the slant-stack domain. Figure 10 shows the inline component of the
3-D DMO operator for the secondv(z) model. A little more complex-
ity of the velocity model gives rise to many more triplications in the
time-space domain. It is very difficult to use such an operator in the
conventional integral DMO, making it necessary to build the operator
in the slant-stack domain. As shown in the right plot of Figure 10, all
the triplications are transformed to inflection points without exception.

CONCLUSIONS

We developed a new 3-D integral DMO method in the slant-stack do-
main. Our tests show that the new expression has some significant
advantages over the conventional time-space expression. First, the op-
erator triplications in the inline direction of the time-space domain are
transformed to be inflection points in the slant-stack domain. Sec-
ond, the dynamic description of the operator becomes trivial in the
slant-stack domain, which can reduce the artifacts caused by tripli-
cations. The inverse slant-stack transform step, though maybe time-
consuming, is necessary to handle the inherent triplications associated
with DMO operators inv(z) media. In spite of using the slant-stack
domain, the new approach has not compromised the main features of
the conventional integral DMO. Therefore, it is capable of handling
irregularly sampled data.
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Figure 3: Parametric 3-D DMO operator,t0=f1(tn; px; py;h).
Although t0 is well-defined in (px,py) domain, it does not vary
monotonously in thepx direction. The flat range is set to be constant
to guarantee the stability of Newton-Raphson method.
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Figure 4: Parametric 3-D DMO operator,x0=f2(tn; px; py;h), using
the same parameter as Figure 3.
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Figure 5: Parametric 3-D DMO operator,y0=f3(tn; px; py;h), using
the same parameter as Figure 3.
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Figure 6: 3-D DMO operator�(tn; px; py;h) in the slant-stack do-
main using the same parameter as Figure 3.

Figure 7:Left : Linear velocity model.Right: v(z) model with a high
velocity disturbance. The dash line stands for the interval velocity and
the solid line for the RMS velocity.
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Figure 8: 3-D DMO operator trajectory in the inline direction.Left : (t0; x0) domain (y0=0). Right: (�; px) domain (py=0). A represents the

triplication in the time-space domain.A
0

points to the inflection point in the slant-stack domain. This figure corresponds to the linearv(z) model.

Figure 9: 3-D DMO operator trajectory in the crossline direction.Left : (t0; y0) domain (x0=0). Right: (�; px) domain (py=0). This figure
corresponds to the linearv(z) model.

Figure 10: 3-D DMO operator trajectory in the inline direction.Left : (t0 ; x0) domain (y0=0). Right: (�; px) domain (py=0). A, B, andC refer

to the tripilcations in the time-space domain.A
0

,B
0

, andC
0

point to the inflection points in the slant-stack domain. This figure is from the second
example.


