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SUMMARY

Accurate and efficient traveltime calculation is an important topic in
seismic imaging. We present a fast-marching eikonal solver on the
tetragonal coordinates (3-D) and trigonal coordinates (2-D),tetrago-
nal (trigonal) fast-marching eikonal solver(TFMES), which can sig-
nificantly reduce the first-order approximation error without greatly
increasing the computational complexity. In the trigonal coordinates,
there are six equally-spaced points surrounding one specific point and
the number is twelve in the tetragonal coordinates, whereas the num-
bers of points are four and six respectively in the Cartesian coordi-
nates. This means that the local traveltime updating space is more
densely sampled in the tetragonal (or trigonal) coordinates, which is
the main reason that TFMES is more accurate than its counterpart in
the Cartesian coordinates. Compared with the fast-marching eikonal
solver in the polar coordinates, TFMES is more convenient since it
needs only to transform the velocity model from the Cartesian to the
tetragonal coordinates for one time. Potentially, TFMES can han-
dle the complex velocity model better than the polar fast-marching
solver. We also show that TFMES can be completely derived from
Fermat’s principle. This variational formulation implies that the fast-
marching method can be extended for traveltime computation on other
nonorthogonal or unstructured grids.

INTRODUCTION

Traveltime map generation is a computationally expensive step in 3-
D Kirchhoff depth imaging. Most approaches proposed are either
based on ray tracing equations or on eikonal equation (Červen´y, 1987;
Beydoun and Keho, 1987; Vidale, 1990; van Trier and Symes, 1991).
Popovici and Sethian (1997) proposed a fast-marching finite-difference
eikonal solver in the Cartesian coordinates, which is very efficient and
stable. The efficiency is based on the heap-sorting algorithm. A simi-
lar idea has been used previously by Cao and Greenhalgh (1994) in a
slightly different context. The remarkable stability of the method re-
sults from a specifically chosen order of finite-difference evaluation,
which resembles the method used by Qin et al. (1992).

Alkhalifah and Fomel (1997) implemented the fast-marching algo-
rithm in the polar coordinates, which is more accurate than its im-
plementation in the Cartesian coordinates. However, the polar imple-
mentation requires velocity to be transformed from the Cartesian to the
polar coordinates for each source location, which makes it inefficient.
The spatial variation of grid size in the polar coordinates also makes it
more difficult to handle strong velocity variation.

We present a new scheme based on the tetragonal eikonal equation.
Because of the specialty of the tetragonal coordinates we have chosen,
this new algorithm is more accurate than the Cartesian implementa-
tion. Meanwhile, it is free of the problems associated with the polar
implementation.

We first derive the tetragonal eikonal equation and explain why it is
more accurate than the Cartesian fast-marching eikonal solver. Then
we show how to derive the same approach from Fermat’s principle
using a variational formulation, which is important for extending the
fast-marching method to unstructured grids. We present 2-D and 3-D
results, from simple to complex models, to support our explanation.

TETRAGONAL EIKONAL EQUATION

In the 3-D Cartesian coordinates, the eikonal equation is expressed as�
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wheret stands for traveltime ands for slowness. The 2-D counterpart

is given by omitting one term from the above equation.
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The Cartesian expressions have no crossing terms because of the or-
thogonality. If we define a tetragonal coordinate which has a transform
relation (3) with the Cartesian coordinates (Figure 1)8<
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and then substitute equation (3) into (1) and (2), we can get the fol-
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Figure 1: The tetragonal coordinates used in this paper. It reduces to
the trigonal coordinates by omitting axisu.

lowing eikonal equation in the tetragonal (3-D) and trigonal (2-D) co-
ordinates.
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The fast-marching algorithm is an upwind first-order discretization of
the above eikonal equation. In the next section, we show that it reduces
to solving a quadratic equation. The key feature of this algorithm is a
carefully selected order of traveltime evaluation. In the Cartesian co-
ordinates, each point with known traveltime can update four equally-
spaced neighboring points in 2-D and six in 3-D, as shown in Figures
3 and 4. In the trigonal and tetragonal coordinates, these two numbers
are six and twelve respectively, as shown in Figures 5 and 6. Since the
fast-marching eikonal solver is based on the plane wave assumption,
more equally-spaced neighboring points mean a better approximation
to the assumption. Therefore, TFMES should be more accurate than
its Cartesian counterpart.

Alkhalifah and Fomel (1997) have shown that the fast-marching algo-
rithm in the polar coordinates is also more accurate than the Cartesian
implementation. The reason is that the circle (2-D) or sphere (3-D)
axis in the polar coordinates closely matches the wavefront when the
media are relatively smooth. However, the polar implementation needs
to transform the velocity model from the Cartesian to the polar coor-
dinates for each single source, which makes it inconvenient. The grid
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size in the polar coordinates becomes larger and larger with the in-
crease of radius. Therefore, some of the detailed velocity variation
can be missed easily. Free of these problems, TFMES is more flexible
and efficient than the polar implementation.

VARIATIONAL FORMULATION OF THE FAST-MARCHING
ALGORITHM

The fast-marching algorithm consists of two parts: minimum travel-
time selection and a local traveltime updating scheme. The selection
scheme is essentially based on Fermat’s principle. The local traveltime
updating scheme can also be derived from the same principle using a
local linear interpolation, which provides the first-order accuracy. For
simplicity, let us focus on the 2-D case. Consider a line segment with
the end pointsA andB, as shown in Figure 2. LettA andtB denote
the traveltimes from a fixed distant source to pointsA andB, respec-
tively. Define a parameter� such that� = 0 atA, � = 1 atB, and�
changes continuously on the line segment betweenA andB. Then for
each point of the segment, we can approximate the traveltime by the
linear interpolation formula
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Figure 2: A geometrical scheme for the traveltime updating procedure
in two dimensions.

t(�) = (1� �)tA + �tB : (6)

Now let us consider an arbitrary pointC in the vicinity ofAB. If we
know that the ray from the source toC passes through some point� of
the segmentAB, then the total traveltime atC is approximately

tC = t(�) + sC

p
jABj2(� � �0)2 + �2

0
; (7)

wheresC is the local slowness,�0 corresponds to the projection ofC
to the lineAB (normalized by the lengthjABj), and�0 is the length
of the normal fromC to �0.

Fermat’s principle states that the actual ray toC corresponds to a local
minimum of the traveltime with respect to raypath perturbations. Ac-
cording to our parameterization, it is sufficient to find a local extreme
of tC with respect to the parameter�. Equating the� derivative to
zero, we arrive at the equation

tB � tA +
sC jABj

2 (� � �0)p
jABj2(� � �0)2 + �2

0

= 0 ; (8)

which contains (as a quadratic equation) the explicit solution for�:

� = �0 �
�0 (tA � tB)

jABj
p

s2
C
jABj2 � (tA � tB)2

: (9)

Finally, substituting the value of� from (9) into equation (7) and se-
lecting the appropriate branch of the square root, we obtain the formula

c tC = �0

p
s2
C
c2 � (tA � tB)2 + a tA cos� + b tB cos� ;

(10)

wherec = jABj, a = jBCj, b = jACj, angle� corresponds todBAC, and angle� corresponds todABC in the triangleABC (Fig-
ure 2).

The above general procedure can be greatly simplified when applied to
some regular grids, such as the rectangular grid or the tetragonal grid.
This expression is even valid for unstructured grids. As pointed out by
Fomel (1997), unstructured grids have some attractive computational
advantages over regular ones. Moreover, the derivation provides a gen-
eral principle, which can be applied to derive analogous algorithms for
other eikonal-type (Hamilton-Jacobi) equations and their correspond-
ing variational principles.

NUMERICAL RESULTS

We implement TFMES in both 2-D and 3-D cases. 3-D Constant ve-
locity medium is used as a benchmark to verify the accuracy of the
new algorithm. In order to make a fair comparison, we use the same
sampling interval in both the Cartesian and the tetragonal coordinates.
As shown in Figure 7, the Cartesian implementation tends to over-
estimate the traveltime in the diagonal direction, while the tetragonal
result matches the analytical result very accurately. More complex
Marmousi and SEG/EAGE saltdome models are used to test its sta-
bility when handling complex models. Figure 8 is the test of 2-D
Marmousi model. The source is located on the surface at coordinates
(x=4100m, z=0m). In most areas, the two results match each other.
When passing through the complex structure in the middle, they be-
gin to deviate from each other. The trigonal result is not as smooth as
the Cartesian result. This is because the trigonal result has six neigh-
boring points instead of four points as in the Cartesian coordinates,
which makes it more capable of simulating complicate wavefronts.
The Cartesian implementation over-estimates the traveltime compared
with the trigonal result, which is similar to the conclusion reached by
Alkhalifah and Fomel (1997). Figures 9 and 10 show two traveltime
slices from the SEG/EAGE saltdome model. The source is located at
coordinates (x=7200m, y=7320m, z=1680m). Figure 9 was obtained
with a constant depth z=1560m, while Figure 10 is extracted in the
diagonal direction. In general, the Cartesian implementation tends to
over-estimate the traveltime in more areas than the tetragonal imple-
mentation.

CONCLUSION

In this paper, we extend the fast-marching eikonal solver from the
Cartesian coordinates to the tetragonal coordinates. Compared with
the Cartesian implementation, the tetragonal (trigonal) fast-marching
eikonal solver can reduce the first-order approximation error. It is also
more efficient than the polar implementation. Following the plane
wave assumption, we derive the same algorithm using Fermat’s prin-
ciple, which implies that it is possible to extend the algorithm to un-
structured grids (triangle in 2-D; tetrahedron in 3-D model).
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Figure 3: 2-D updating scheme in the Cartesian coordinates. Trav-
eltime at point(i; j) is known and four equally-spaced neighboring
points’ traveltimes are candidates for updating.
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Figure 4: 3-D updating scheme in the Cartesian coordinates. Trav-
eltime at point(i; j; k) is known and six equally-spaced neighboring
points’ traveltimes are candidates for updating.
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Figure 5: 2-D updating scheme in the trigonal coordinates. Traveltime
at point (i; j) is known and six equally-spaced neighboring points’
traveltimes are candidates for updating.
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Figure 6: 3-D updating scheme in the tetragonal coordinates. Travel-
time at point(i; j; k) is known and twelve equal-spaced neighboring
points’ traveltimes are candidates for updating.

Figure 7: Left : Cartesian.Right: tetragonal. Traveltime slice from
a 3-D constant velocity model. The source is located at the upper-left
corner and the spatial sampling interval is 1 km in all the three direc-
tions. The dash line represents the analytical solution. The solid line
on the left stands for the Cartesian implementation and the solid line on
the right for the tetragonal case. The Cartesian result has large errors
in the diagonal direction. The tetragonal result matches the analytical
result very accurately.
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Figure 8: Traveltime slice of 2-D Marmousi model. Solid line stands
for the tetragonal result and dash line for the Cartesian result. The
Cartesian implementation tends to over-estimate the traveltime.

Figure 9: Traveltime slice of the 3-D SEG/EAGE saltdome model for
a constant depthz = 1560m. The solid line represents the tetragonal
result and the dash line stands for the Cartesian result. For the most
part, the Cartesian result tends to over-estimate the traveltime.

Figure 10: Traveltime slices of 3-D SEG/EAGE saltdome model in the
diagonal direction.


