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SUMMARY
Decreased CMP fold, such as that found in multi-source acquisition
geometries, can hinder processing steps which benefit from well sam-
pled CMP gathers, such as radon transforms. In two steps of lin-
ear least squares, multiscale prediction-error filters can estimate lo-
cal dips from the recorded data and then use the dip information
to fill in unrecorded shot or receiver gathers. In this paper I use
multiscale, volumetric prediction-error filters to interpolate sparse,
multiple-contaminated data. The increase in fold improves multiple-
suppression results.

INTRODUCTION

In multi-source acquisition, the normal spatial undersampling of CMP
gathers is exacerbated by the fact that at each inline source location,
only one of the (typically) two sources is fired. This allows acquisition
(which is expensive) to go more quickly, but reduces sampling at a
given midpoint to every fourth offset, which may cause problems for
later processing steps, such as radon multiple suppression (Marfurt et
al., 1996).

In this paper I subsample a multiple-contaminated 2-D marine syn-
thetic survey to simulate a single inline from a multi-source survey.
The degraded sampling hampers radon multiple attenuation. In a se-
quence of two steps of linear least squares, I estimate a set of local
multiscale prediction-error filters and re-estimate the removed traces.
This is similar to a time-domain implementation of Spitz’s algorithm
(1991), with the benefit of control over the effective filter length in time
(Abma and Claerbout, 1995). Infilling the removed data improves the
separation of multiple and primary energy in radon transform space.

ESTIMATING MISSING DATA

Multi-Scale Filters
Missing data is estimated in two steps of linear least squares (Claer-
bout, 1992). The first step is estimation of prediction-error filters.
Prediction-error filters are good at estimating lines or planes of con-
stant dip, but not curves. Individual filters are estimated on small
patches so events appear as dipping planes of approximately constant
dip.

The shape of a 3-D prediction-error filter with five points on the time
axis, and three and two points respectively on two space axes is shown
in figure 3. The dark shaded box is constrained to hold the value1, the
light boxes are adjustable coefficients. The filter forms a half volume,
which can be oriented in different ways. To find the values of the
adjustable coefficients, specify that the convolution of the filter with
the known data gives the minimum power. This means solving the
regression0 � Ya, wherea is a vector containing the filter andY is
convolution with the recorded data. Constraining one filter coefficient
to 1 (the shaded box in Figure 3) prevents the trivial answera = 0.

The data are sorted so the recorded traces and the traces to be inter-
polated are arranged in the input cube in a checkerboard pattern. In
the case of missing shots (or dual-source marine geometry), this cor-
responds to a cube with time, receiver location, and offset coordinates.
For comparison with the filter shapes, the input cube is represented by
Figure 1, with the shaded squares corresponding to empty trace bins.
The checkerboard arrangement has the intuitively pleasing quality that
every missing trace is surrounded on four sides by a recorded trace.
It also poses the problem that there is no densely sampled patch for
estimating a filter such as the one in Figure 3. Any regression equa-
tions that have zeroes in them should be dropped. For the filter shown
in Figure 3, this eliminates all the regression equations. To make the
filter estimation work, we scale all the axes by two. This gives the
expanded filter shown in Figure 2. Convolved across a checkerboard
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Figure 1: Representation of input data cube. Recorded traces are dark,
traces to be interpolated are light.

of present and missing data, this filter alternately hits exclusively filled
and exclusively empty bins. Because all the axes are scaled equally,
the expanded and compressed filters are self-similar and have the same
dip information (Claerbout, 1992).

After the filter has been estimated it is used to fill in the empty trace
bins. This is the second step of least squares. We want the recorded
and estimated data to have the same dips. Since the dip information is
now carried in the prediction-error filter, this is once again specifying
that the convolution of the filter and data should give the minimum
output, except that now the filter is known and the data is unknown.
We constrain the data by specifying that the originally recorded data
cannot change. To separate the known and unknown data we have a
known data selectorK and an unknown data selectorU, with U +
K = I. These multiply by1 or 0 depending on whether the data
was originally recorded or not. WithA signaling convolution with
the prediction-error filter andy the vector of data, the regression is
0 � A(U + K)y, orAUy � �AJy. To fill the missing bins,
the filter must touch both filled and empty bins together, so it gets
compressed to look like Figure 3.

Example
The data in this test is intended to represent a single inline from a dual-
source, multi-streamer data set, where each individual source’s shot
interval is twice the receiver interval. One source is typically fired for
each receiver interval that the boat travels, with the sources alternating.
A given CMP gather in this case contains only every fourth recorded
offset. The data are reinterpolated to the original sampling, where the
intervals are equal, doubling the data.

Results sorted into an example CMP gather and windowed are shown
in Figures 4. The left side shows the original data, the center shows
the output after throwing out every other offset and interpolating with
local volume prediction error filters, and the right side shows the resid-
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Figure 2: Representation of expanded prediction-error filter. Dark
square is constrained to be a 1. Light squares are coefficients adjusted
to minimize output power when convolved with grid of Figure 1.
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Figure 3: Representation of prediction-error filter. Coefficients are
same as Figure 2. This filter is applied to grid of Figure 1 to find
missing traces.

ual clipped for comparison. Figure 4 is a window from the near offset
traces. Here the data have noticeable curvature, and so they are dif-
ficult to predict and there is some energy in the residual. Happily,
energetic events are reconstructed with good fidelity. At farther off-
sets (not shown), where events tend to become much more linear, the
residual vanishes completely.

Because the motivation for resampling in this case is multiple sup-
pression, Figure 5 shows portions of parabolic radon transforms for
these same data. In these figures the left shows the radon transform of
the original data, the center shows the transform of the decimated data,
and the right shows the transform of the reinterpolated data. The center
panel shows that the primaries in the decimated data are poorly repre-
sented in the radon transform, especially in the complex area around
2:5 to 3:7 seconds. The decimated data also shows more artifact en-
ergy in the multiple region of the transform. The original and interpo-
lated data produce better radon transforms.

CMP gathers after radon demultiple are shown in Figure 6. The left
panel shows a portion of a CMP gather with alternate offsets removed
and radon demultiple applied. The right panel shows the same portion
with the removed offsets reinterpolated, radon demultiple applied, and
the interpolated traces thrown away. The left panel shows less sup-
pression of various multiple events, most notably the steep multiples
labeledA, and also some attenuation of primary energy, such as atB.

Figure 7 shows a subsalt portion of a stacked section. The left panel
shows the result of radon demultiple and stack on the decimated data,
the right panel shows the result of simple stack on the interpolated
data. The reason for the difference in flow is that simply stacking the
data which has been dealiased by interpolation (leaving out the in-
nermost few traces) removes most of the multiple energy, but doing
a similar operation on the decimated data (left panel) gives a terrible
result, because the aliased nature of the multiples causes them to come
through in the stack as a short-period (50ms or so) series of seafloor
multiples that completely obscures the section. At any rate, the right
panel is approximately identical with or without going to the trouble
of radon transform. Strong multiple events (examples atA) are sup-
pressed more or less equivalently in the two sections; arguably some-
what better in the interpolated data. Some important primaries atB
are significantly attenuated in the decimated data, as shown by com-
parison with the interpolated data. Also, throughout the section, most
visible in the neighborhood ofC, aliasing results in layer-like artifacts.
Finally, many interesting arrivals, especially diffractions, in the faulted
area aroundD are strongly attenuated in the decimated data.

CONCLUSIONS

The results are very satisfying. Naturally an unaliased wavefield is
preferable to an aliased wavefield, if the data are interpolated with
good fidelity. The interpolation residual is non-zero but mostly small,
especially at far offsets. The example presented in this abstract is a
2-D survey, the theory is unchanged in 3-D, and fidelity will probably
be better, thanks to the added directions of prediction.
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Figure 4: Near offset window from CMP gather. Left side shows decimated data volume. Center shows output after reinterpolation. Right side
shows residual clipped to match.

Figure 5: Windows from radon transforms. Left side shows radon transform of original CMP gather. Center shows transform of decimated CMP
gather. Right shows transform of reinterpolated data. Note decimated gather (center panel) generated many more aliasing-related artifacts and very
poor representation of primaries.
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Figure 6: Portions of CMP gathers after radon demultiple. Left shows decimated CMP gather. Right side shows reinterpolated CMP gather, with
interpolated traces thrown out after radon demultiple. Note that in the left panel aliased multiples at far offset are not well suppressed (A), and that
some interesting energy in the mostly primary region around3 seconds is attenuated (B).

Figure 7: Subsalt portion of stacked section. The left panel shows decimated data after demultiple and stack, the right panel shows same data after
interpolation and stack. Multiples (A) are arguably better attenuated in the interpolated data. The decimated data shows attenuated primary events
(B), and layer-like artifacts (C).


