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SUMMARY
Traveltime computation is widely used in seismic modeling, imag-
ing and velocity analysis. The two most commonly used methods are
ray tracing and numerical solutions to the eikonal equation. Eikonal
solvers are fast and robust, but are limited to computing only the first
arrival traveltimes. Ray tracing can compute multiple arrivals, but
lacks the robustness of eikonal solvers. Here, we propose a robust
and complete method of traveltime computation. It is based on a sys-
tem of partial differential equations equivalent to the eikonal equation,
but formulated in the ray coordinate system. We use a first-order dis-
cretization scheme that is interpreted very simply in terms of Huygens’
principle. The method has proved to be a robust alternative to con-
ventional ray tracing, while being faster and having a better ability to
penetrate shadow zones.

INTRODUCTION

Though traveltime computation is widely used in seismic modeling
and imaging, attaining sufficient accuracy without compromising speed
and robustness is problematic. Moreover, there is no easy way to ob-
tain the traveltimes corresponding to the multiple arrivals that appear
in complex velocity media.

The tradeoff between speed and accuracy becomes apparent in the
choice between the two most commonly used methods, ray tracing and
numerical solutions to the eikonal equation. Other methods reported
in the literature, for example dynamic programming (Moser, 1991),
wavefront construction (Vinje et al., 1993), etc. are less common in
practice (Audebert et al., 1997).

Eikonal solvers provide a relatively fast and robust method of travel-
time computations (Vidale, 1990; van Trier and Symes, 1991; Popovici
and Sethian, 1997). They also avoid the problem of traveltime interpo-
lation to a regular grid which imaging applications require. However,
the conventional eikonal solvers compute first-arrival traveltimes and
lack the important ability to track multiple arrivals. In complex veloc-
ity structures, the first arrival does not necessarily correspond to the
most energetic wave, and other arrivals can be crucially important for
accurate modeling and imaging (Geoltrain and Brac, 1993; Gray and
May, 1994).

On the other hand, one-point ray tracing can compute multiple arrivals
with great accuracy. Unfortunately, it lacks the robustness of eikonal
solvers. Increasing the accuracy of ray tracing in the regions of com-
plex velocity variations raises the cost of the method and makes it pro-
hibitively expensive for routine large-scale applications. Mathemati-
cally, ray tracing amounts to a numerical solution of the initial value
problem for a system of ordinary differential equations (Červen´y, 1987).
These ray equations describe characteristic lines of the eikonal partial
differential equation.

Here, we propose a different approach to traveltime computation that
is robust, and has the ability to find multiple arrival traveltimes. The
theoretical construction is based on a system of partial differential
equations, equivalent to the eikonal equation, but formulated in the
ray coordinate system. Unlike eikonal solvers, our method produces
the output in ray coordinates. Unlike ray tracing, it is computed by a
numerical solution of partial differential equations. We show that the
first-order discretization scheme has a remarkably simple interpreta-
tion in terms of Huygens’ principle, and propose aHuygens wavefront
tracing (HWT) scheme as a robust alternative to conventional ray trac-
ing. Numerical examples demonstrate the following properties of the
method: stability in media with strong and sharp lateral velocity varia-
tions, better coverage of shadow zones, and increased speed compared
to paraxial ray tracing.

CONTINUOUS THEORY

The 3-D eikonal equation, governing the traveltimes from a fixed source
in isotropic heterogeneous media, has the form
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Herex, y, andz are spatial coordinates,� is the traveltime (eikonal),
andv stands for the velocity field. Constant-traveltime surfaces in the
traveltime field�(x; y; z), constrained by equation (1) and appropri-
ate boundary conditions, correspond to wavefronts of the propagating
wave. Additionally, each point on a wavefront can be parameterized
by two arbitrarily chosen ray parameters
 and�.

For a point source,
 and� can be chosen as the initial ray angles at
the source. Zhang (1993) shows that
 and� as a function of spatial
coordinates satisfy the simple partial differential equations:
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Equations (2) merely expresses the fact that in an isotropic medium,
rays are locally orthogonal to wavefronts.

It is important to note that for complex velocity fields,� , 
, and� as
functions ofx, y, andz become multi-valued. In this case, the multi-
valued character of the ray parameters,
 and� corresponds to the
situation where more than one ray from the source passes through a
particular pointfx; y; zg in the subsurface. This situation presents a
very difficult problem when equations (1) and (2) are solved numeri-
cally. Typically, only the first-arrival branch of the traveltime is picked
in the numerical calculation. The ray tracing method is free from that
limitation because it operates in the ray coordinate system. Ray tracing
computes the traveltime� and the corresponding ray positionsx,y,z
for a fixed pair of ray parameters (
 and�).

Sincex(�; 
; �), y(�; 
; �) andz(�; 
; �) are uniquely defined for
arbitrarily complex velocity fields, we can now make the following
mathematical transformation. Considering equations (1) and (2) as a
system, and applying the general rules of calculus, we can transform
this system by substituting the inverse functionsx(�; 
; �), y(�; 
; �)
andz(�; 
; �) for the original fields� , 
, and�. The resultant expres-
sions take the form
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Comparing equations (3) and (4) with the original system (1-2) shows
that equations (3) and (4) again represent the dependence of ray co-
ordinates and Cartesian coordinates in the form of partial differential
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Figure 1: A geometrical updating scheme for the 2-D HWT in the
physical domain. Three points on the current wavefront (A, B, and
C) are used to compute the position of theD point. The bold lines
represent the 2-D versions of equations (5) and (7). The tangent to
circleB at pointD is parallel to the common tangent of circlesA and
C.

equations. However, the solutions of system (3-4) are better behaved
and have a unique value for every� , 
, and�. We could also com-
pute these values with the conventional ray tracing. However, the ray-
tracing approach is based on a system of ordinary differential equa-
tions, which represents a very different mathematical model.

We use equations (3) and (4) as the basis of our wavefront tracing
algorithm. The next section discusses the discretization of the partial
differential equations and the physical interpretation we have given to
the scheme.

DISCRETIZATION SCHEME AND HUYGENS’ PRINCIPLE

A natural first-order discretization scheme for equation (3) leads to the
difference equation
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where the indexi corresponds to the ray parameter
, k corresponds
to the ray parameter�, j corresponds to the traveltime� , ri;kj =

4� v
i;k
j

, 4� is the increment in time, andvi;k
j

is the velocity at the
fi; k; jg grid point. It is easy to notice that equation (5) simply de-
scribes a sphere with the center atfxi;kj ; y

i;k
j ; z

i;k
j g and the radius

r
i;k
j

. This sphere is, of course, the wavefront of a secondary Huygens
source.

This observation suggests that we apply the Huygens’ principle di-
rectly to find an appropriate discretization for equation (4). Let us
consider a family of Huygens spheres, centered at the points along the
current wavefront (� ). Mathematically, this family is described by an
equation analogous to (5), as follows:

[x� x(
; �)]2+[y � y(
; �)]2+[z � z(
; �)]2 = r2(
; �) : (6)

Here the ray parameters
 and� serve as the parameters that distin-
guish a particular Huygens’ source. According to the Huygens’ prin-
ciple, the next wavefront corresponds to the envelope of the wavefront
family. To find the envelope condition, we can simply differentiate
both sides of equation (6) with respect to the family parameter,
 or�.

To complete the discretization, we can represent the
 and� deriva-
tives by a centered finite-difference approximation. This representa-

Figure 2: A geometrical updating scheme for the 3-D HWT in the
physical domain. Five points on the current wavefront, represented by
the five spheres, not all visible, with radii defined by the velocities at
the corresponding points of the wavefront, are used to compute a point
on the next wavefront. The sphere in the middle represents equation
(5), and the planes represent equations (7) and (8).

tion yields the scheme
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which supplements the previously found scheme (5) for a unique de-
termination of the pointfxij+1; y

i
j+1; z

i
j+1g on the(i; k)-th ray and

the(j + 1)-th wavefront.

Formulae (5), (7), and (8) define the update scheme for the finite dif-
ference algorithm, and Figures (1) and (2) present their geometrical
interpretation.

To fill the � , 
, � volume, the scheme needs to be initialized with one
complete wavefront (around the wave source) and a bundle of bound-
ary rays to account for the exterior of the
 � � domain. This second
part of the initialization can be replaced by local wavefront extrapola-
tion. The solution to the system (5, 7, 8) has an explicit form.
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EXAMPLES

This section presents two examples in which we applied the method
described in the last section. The first application is on a simple Gaus-
sian velocity anomaly in a medium of constant velocity. We used
this model to check the validity, accuracy, and stability of the Huy-
gens wavefront tracing (HWT) method. The second example concerns
the very complex Marmousi model, which is one of the most difficult
benchmarks for ray tracing methods. Throughout the test, we have
compared our results with those obtained with a paraxial ray tracing
(PRT) program (Rekdal and Biondi, 1994) for accuracy, speed, and
stability.

The Gaussian velocity anomaly
Our first example is a Gaussian negative velocity anomaly with a mag-
nitude of 2.0 km/s in a constant velocity medium of 3.0 km/s, pre-
sented in Figure 3. The anomaly is centered at a depth of 1.0km and
has a half-width of 300 m. The source is placed on the surface directly
above the anomaly (at x=6.0 km).

Figure 3: A Gaussian negative velocity anomaly. The background
velocity is 3.0 km/s, and the maximum anomaly at the center is
-2.0 km/s.

We have selected this velocity model to test the way our method ap-
plies to a well known pattern of velocity variation. For such a Gaus-
sian velocity anomaly, the rays should bend inward. The distribution
of rays as obtained with the HWT method is presented in Figure 4.

Figure 4: The rays obtained in the case of the Gaussian negative ve-
locity anomaly. We present the rays obtained with the HWT method
(right). The source is located on the surface at x=6.0 km.

The Marmousi model
In the second example, we have applied the same method to trace rays
in the far more complex Marmousi Model (Versteeg and Grau, 1990)
(Figure 5).

In Figure 6 we present the rays obtained on the unsmoothed (left), and
smoothed (right) Marmousi model, with the HWT method (bottom),
and with the PRT method (top).

Figure 5: The Marmousi model, true velocity.

As expected, the rays traced using the PRT method, which represents a
more exact solution to the eikonal equation for the given velocity field,
have a very rough distribution. Since this erratic result is of no use in
practice, regardless of its accuracy, the only way to get a proper result
is to apply the ray tracing to a smoothed velocity model (Figure 6).

On the other hand, the result obtained with the HWT method looks
a lot better, though some imperfections are still visible. For the case
of the unsmoothed velocity medium, the rays have a much smoother
pattern, which is less dependent on how rough the velocity model is.
This feature is preserved in the case of the smoothed model (Figure 6)
where the distributions of rays displayed by the two methods are much
more similar, though some differences remain (see, for example the
zone around x=6.5km, z=2.0km).

CONCLUSIONS

We have presented a method of ray tracing based on a system of differ-
ential equations, equivalent to the eikonal equation, but formulated in
the ray coordinate system. We used a first order discretization scheme,
interpreted very simply in terms of the Huygens’ principle. The results
obtained so far, enable us to the draw the following conclusions:

1. Stability: The Huygens wavefront tracing method is more
stable in rough velocity media than the paraxial ray tracing
method. The increased stability results from the fact that HWT
derives the points on the new wavefronts from five points on
the preceding wavefront, compared to only one in the usual
PRT, which also means that a certain degree of smoothing is
already embedded in the method. This feature allows us to
use the HWT method in media of very sharp velocity variation
and still obtain results that are reasonable from a geophysical
point of view.

2. Coverage: Being more stable and giving smoother rays than
the PRT method, enables the HWT method to provide a better
coverage of shadow zones. The idea is that since the wave-
front is traced from one ray to the other, it is very easy to
introduce in the code a condition to decrease the shooting an-
gle as soon as the wavefront length exceeds a specified upper
limit.

3. Speed: Both HWT and PRT methods were tested on an SGI
Origin 200. In the 2-D case, the execution time for shooting
90 rays of 130 samples for each ray was 1.31 s for the PRT
method and 0.22 s for the HWT method.

We are working on a 3-D implementation, and our preliminary results
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Figure 6: The rays obtained in the true velocity Marmousi model (left), and the smoothed velocity model (right), using the HWT method (bottom),
and the PRT method (top).

show that the method promises an even larger speed improvement, as
compared to the 3-D ray tracing equivalents.
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