
Multidimensional recursive filters via a helix with application to velocity estimation and 3-D migration
Jon Claerbout, Stanford University

SUMMARY
For many years it has been true that our most powerful signal-analysis
techniques are inone-dimensional space, while our most important
applications are inmulti-dimensional space. The helical coordinate
system makes a giant step towards overcoming this difficulty.

FILTERING ON A HELIX

Figure 1 shows some two-dimensional shapes that are convolved to-
gether. The left panel shows an impulse response function, the center
shows some impulses, and the right shows the superposition of re-
sponses.

Figure 1: Two-dimensional convolution (as done in one dimension).

A surprising, indeed amazing, fact is that Figure 1 was not computed
with a two-dimensional convolution program. It was computed with
a one-dimensional computer program. It could have been done with
anybody’s one-dimensional convolution program, either in the time
domain or in the fourier domain. This magical trick is done with the
helical coordinate system.

A basic idea of filtering, be it in one dimension, two dimensions, or
more, is that you have some filter coefficients and some sampled data;
you pass the filter over the data; at each location you find an output by
crossmultiplying the filter coefficients times the underlying data and
summing the terms.

The helical coordinate system is much simpler than you might imag-
ine. Ordinarily, a plane of data is thought of as a collection of columns,
side by side. Instead, imagine the columns stored end-to-end, and then
coiled around a cylinder. This is the helix. Fortran programmers will
recognize that Fortran’s way of storing 2-D arrays in one-dimensional
memory is exactly what we need for this helical mapping. Seismolo-
gists sometimes use the word “supertrace” to describe a collection of
seismograms stored “end-to-end”.

Figure 2 shows a helical mesh for 2-D data on a cylinder. Darkened
squares depict a 2-D filter shaped like the Laplacian operator. The
input data, the filter, and the output data are all on helical meshes all
of which could be unrolled into linear strips. A compact 2-D filter like
a Laplacian, on a helix is a sparse 1-D filter with long empty gaps.

Since the values output from filtering can be computed in any order,
we can slide the filter coil over the data coil in any direction. The
order that you produce the outputs is irrelevant. You could compute
the results in parallel. We could, however, slide the filter over the data
in the screwing order that a nut passes over a bolt. The screw order
is the same order that would be used if we were to unwind the coils
into one-dimensional strips and convolve them across one another. The
same filter coefficients overlay the same data values if the 2-D coils are
unwound into 1-D strips. The helix idea allows us to obtain the same
convolution output in either of two ways, a one-dimensional way, or a
two-dimensional way. I used the one-dimensional way to compute the
obviously two-dimensional result in Figure 1.

d

a b c

Figure 2: Filtering on a helix. The same filter coefficients overlay
the same data values if the 2-D coils are unwound into 1-D strips.
(drawing by Sergey Fomel)

Convolution creates an outputQt from an inputPt and a filterF�
with Qt = Pt +

P
�>0

F�Pt�� . Deconvolution (polynomial divi-
sion) can undo convolution (polynomial multiplication) by backsolv-
ing, by simply rearranging the termsPt = Qt �

P
�>0

F�Pt�� .
Deconvolution is recursive filtering. Recursive filter outputs cannot
be computed in parallel, but must be computed sequentially as in one
dimension, namely, in the order that the nut screws on the bolt.

Deconvolution (polynomial division) can undo convolution (polyno-
mial multiplication). A magical property of the helix is that we can
consider 1-D convolution to be the same as 2-D convolution. Hence
is a second magical property: We can use 1-Ddeconvolution to undo
convolution, whether that convolution was 1-D or 2-D. Thus, we have
discovered how to undo 2-D convolution. We have discovered that 2-
D deconvolution on a helix is equivalent to 1-D deconvolution. The
helix enables us to do multidimensional deconvolution.

Recursive filtering sometimes solves big problems with astonishing
speed. It can propagate energy rapidly for long distances. Unfortu-
nately, recursive filtering can also be unstable. The most interesting
case, near resonance, is also near instability. There is a large literature
and extensive technology about recursive filtering in one dimension.
The helix allows us to apply that technology to two (and more) di-
mensions. It is a wonderful insight. We could not previously do 2-D
deconvolution because we had no stability theory for it. We cannot
simply use polynomial division to undo the 2-D Laplacian operator
for example, because the output will diverge. Poles and zeros tell us
about 1-D stability but we don’t have them for 2-D polynomials.

In 3-D we simply append one plane after another (like a 3-D Fortran
array). It is easier to code than to explain or visualize a spool or torus
wrapped with string, etc.

Figures 3 and 4 contain this 2-D filter"
0 �1=4
1 �1=4

�1=4 �1=4

#
(1)

Let us experiment using this 2-D filter as a recursive filter. In Figure
3 the input is shown on the left. This input contains two copies of the
filter (1) near the top of the frame and some impulses near the bottom
boundary. The second frame in Figure 3 is the result of deconvolution
by the filter (1). Notice that deconvolution turns the filter itself into an

impulse, while it turns the impulses into comet-like images. The use
of a helix is seen by the comet images wrapping on the vertical axis.

Figure 3: Illustration of 2-D deconvolution. Left is the input. Right is
after deconvolution with the filter (1)

In Figure 4, many inputs are tested. Starting from the left are a low-
pass blob, a Ricker wavelet, the filter (1) itself, and a couple impulses,
one near the bottom boundary. The second frame shows deconvolution
by the filter (1). The third frame compounds the second frame with
an adjoint (reverse time) deconvolution. (Instead of blowing plumes
to the right, it blows them to the left.) The fourth frame convolves
the result with the original filter and its adjoint; and we see we are
back where we started. No errors, no evidence remains of any of the
boundaries where we have wrapped and truncated!

Figure 4: Recursive filtering backwards (leftward on the space axis)
is done by theadjoint of 2-D deconvolution. Here we see that 2-D
deconvolution compounded with its adjoint is exactly inverted by 2-D
convolution and its adjoint.

In seismology we often have occasion to steer summation along beams.
Such an impulse response is shown in Figure 5.

I have long had an interest in filters that would destroy plane waves.
The inverse of such a filter creates plane waves. A filter that creates
two plane waves is illustrated in figure 6.

Time-series analysis is rich with concepts that the helix now allows us
to apply to many dimensions. First is the notion of an impulse func-
tion. Observe that an impulse function on the 2-D surface of the helical
cylinder maps to an impulse function on the 1-D line of the unwound
coil. An autocorrelation function that is an impulse corresponds both
to a white (constant) spectrum in 1-D and to a white (constant) spec-
trum in 2-D. An autocorrelation of a typical two-dimensional data field
will drop off with two-dimensional distance from the zero lag. On the

Figure 5: This filter is my guess at a simple low-order 2-D filter whose
inverse times its inverse adjoint, is approximately a dipping seismic
arrival.

Figure 6: This filter is my guess at a simple low-order 2-D filter whose
inverse contains plane waves of two different dips. One of them is
spatially aliased.

one-dimensional helix, the autocorrelation gets re-energized when the
lag is an integer multiple of the circumference of the helix. A causal
filter in one dimension has a curious shape on the two-dimensional he-
lix. I use the convention that the zero-lag response of the 1-D filter
has the value “1”. In one dimension, the causal filter has zeros before
the “1” and various values after it. Supposing that nonzero filter coeffi-
cients lie within a short distance (two lags) from the “1”, we can extract
from the helix the 1-D causal filter and view it as a two-dimensional
array

h c 0
p d 0
q e 1

s f a
u g b

=

h c �

p d �

q e �

s f a
u g b

+

� � 0
� � 0
� � 1

� � �

� � �

(2)

wherea; b; c; :::; u are adjustable coefficients. Thus we conclude that
the 2-D analog of a 1-D causal filter has its abrupt beginning along the
side of the 2-D filter.

A special causal filter that unites many well established concepts in
time-series analysis is the prediction-error-filter (PEF). A 2-D PEF,
like a 1-D PEF, is a causal filter with adjustable coefficients as in the
array (2), that are adjusted to minimize the filter’s output energy (for
a particular input signal). That the 2-D PEF should have its beginning
along a side (instead of a corner) has always been an abstract and dif-
ficult concept, until I fell upon the helix explanation. The PEF has
magical mathematical properties and stable recursions. Space does
not permit me to list the many properties of one-dimensional signal
analysis that are now, because of the helix, awaiting application to
multidimensional data.

THE HELIX AND FINITE DIFFERENCES

Discretize the(x; y)-plane to anN �M array and pack the array into
a vector ofN�M components. Likewise pack the Laplacian operator
@xx + @yy into a matrix. For a4 � 2 plane, that matrix is shown in
equation (3).

�r
2 =

�4 1 � � 1 � � �

1 �4 1 � � 1 � �

� 1 �4 1 � � 1 �

� � 1 �4 h � � 1

1 � � h �4 1 � �

� 1 � � 1 �4 1 �

� � 1 � � 1 �4 1

� � � 1 � � 1 �4

(3)

The two-dimensional matrix of coefficients for the Laplacian operator
is shown in (3), where, on a cartesian space,h = 0, and in the helix
geometry,h = 1. Notice that the partitioning becomes transparent for
the helix,h = 1. With the partitioning thus invisible, the matrix sim-
ply represents one-dimensional convolution and we have an alternative
analytical approach, Fourier Transform. We often need to solve sets of
simultaneous equations with a matrix similar to (3). A costly method
is to factor the matrix into upper and lower triangular form that can be
“backsolved” which in this case amounts to recursive filtering.

The Fourier approach is roughly equivalent to factoring�r2 into up-
per and lower triangular matrices, but it is much faster owing to the
convolutional nature of the matrix. The (negative of the) Laplacian
operator is regarded as an autocorrelation

r = (�1; 0; � � � ; 0;�1; 4;�1; 0; � � � ; 0;�1) (4)

Using the Kolmogoroff spectral-factorization method, a wavelet is found
which has this autocorrelation. This wavelet is

a = (1:8;�:65;�:04;�:02; � � � ;�:04;�:09;�:2;�:56) (5)

and its autocorrelation is (4). Displaying (4) and (5) on a helix, the
2-D autocorrelation is:

r =

"
�1

�1 4 �1
�1

#
(6)

and the 2-D wavelet with this autocorrelation is

a =

h
1:8 �:65 �:04 � � �

� � � �:09 �:2 �:56

i
(7)

where now I am wrapping the top row around to a second row. In the
representation (7) we see the coefficients diminishing rapidly away
from maximum value 1.791. In a more abstract notation, we might
write

�r
2 = A0A (8)

Where the triangular matrixA is constructed from the rowa as fol-
lows: Each row of the matrixA0 contains the rowa shifted along the
row so that the value 1.791 lies along the main diagonal.

Unfortunately, we see that the factored operatorA has a great number
of nonzero terms, but fortunately they seem to be converging rapidly
so truncation seems reasonable. We can use this feedback operator
to solve Poisson’s equation very rapidly. Polynomial division and its
adjoint gives usp = (q=A)=A0 which means that we have solved the

Figure 7: Deconvolution by a filter whose autocorrelation is the two-
dimensional Laplacian operator. Solves the Poisson equation.

PDEr2p = �q by using polynomial division on a helix. Using the
seven coefficients shown, the cost is fourteen multiplications (because
we need to run both ways) per mesh point. An example is shown in
Figure 7. The center panel of Figure 7 shows the inverse of the helical
derivative.

We are all aware of the factorization ofr2 into a divergence dotted
into a gradient, where the divergence is the adjoint of the gradient. In
two-dimensional physical space, the gradient maps one field totwo
fields. The factorization of�r2 with the helix gives us an operator
that maps one field toonefield. Any fact this basic should be well
known in some arcane field of mathematics or theoretical physics.
Meanwhile, being ignorant of any pre-existant name, I have chosen
the name “helix derivative” or “helical derivative” for the operatorA.
SinceA0A = �r2, the operatorA must be something like a deriva-
tive. To compare the operator@

@y
to the helix derivative by applying

them to a local topographic map. The result shown in Figure 8 is that
A enhances drainage patterns whereas@

@y
enhances mountain ridges.

Figure 8: Topography, helical derivative, slope south.

PRELIMINARY APPLICATIONS

Multidimensional recursive filters should have many applications. In
our lab we have done some preliminary work on four.

Geoestimation: empty bins, hiding acquistition footprint
The basic formulation of a geophysical estimation problem consists
of setting up two goals, one for data fitting, and the other for model
smoothing. We have datad, a map or modelm, a transformationL,
and a roughening filter like the gradient or the helix derivativeA. The
two goals may be written as:

0 � r = Lm� d (9)

0 � p = Am (10)

which defines two residuals, a data residualr, and a model residual
p, which are usually minimized by iterative conjugate-gradient, least-
squares methods. We can invert the matrixA when the Laplacian
�r

2 = A0A is factored with the invertible helix derivative but not
when the Laplacian is factored intodiv � grad. We change the free
variable in the fitting goals fromm top (by inverting (10)) withm =
A�1p and substituting into both goals getting new goals

0 � LA�1p� d (11)

0 � p (12)

I find that iterative solvers converge much more quickly when the free
variable is the roughened map (or preconditioned variable)p rather
than the mapm itself.

Figure 9 (left) shows ocean depth measured by a Seabeam apparatus.
Locations not surveyed are evident as the homogeneous gray area. Us-
ing a process akin to “blind deconvolution” a 2-D prediction error filter
A is found. Then missing data values are estimated and shown on the
right. Preconditioning with the helix speeded this estimation by a fac-
tor of about 30. The figure required a few seconds of calculation for
about105 unknowns.

Figure 9: Filling empty bins with a prediction-error filter.

Wavefield extrapolation and 3-D poststack migration
Elsewhere in this abstract volume, find my paper with James Rickett
entitled, “Implicit 3-D depth migration by wavefield extrapolation with
helical boundary conditions”.

Velocity spreading and smoothing
Another application spreads velocity (or any measurements) from ran-
domly located wells to fill all space. It also solves an empty bin prob-
lem. This problem differs from the ocean-depth problem because the
dip is not a constant function of time and space. It also differs because
nowhere is information given densely enough that we can estimate the
PEF. We assume the dip is estimatable by some other means, such as
by looking at the dip of the reflectivity. From such dip information, we
specify a two-dimensional recursive filter such as that in Figure 5. The

difference from Figure 5 is that the dip is a variable function of time
and space. Early results (not shown) of Bob Clapp are encouraging.

Interval velocity estimation
Geophysical measurements serve to specify RMS velocity reliably in
some locations, but not all, thereby leaving a null space to be speci-
fied according to geological preconceptions. We define:d is a data
vector whose components range over the vertical travel time depth� ,
and whose component values contain the scaled RMS velocity squared
�v2

RMS
=�� . C is the matrix of causal integration, a lower triangular

matrix of ones.u is a vector whose components range over vertical
traveltime depth� , and whose component values contain the interval
velocity squaredv2

interval
. G is a good data selector. It could be stack

power or coherency, or it could be unity where you seek boundaries
of a blocky model and zero inside blocks.A is the multidimensional
PEF charactorizing the covariance of our desired velocity function.
u = u0 + A�1Gp implicitly defines the preconditioning variable
p. The fitting goals for blocky velocity models that are consistant over
the midpoint axis is:

0 � r = CA�1Gp+Cu0 � d

0 � p
(13)

After fitting with p, we derive the squared interval-velocity withu =
u0 +A�1Gp.

(space reserved for illustration, if I get one)

ACKNOWLEDGEMENT AND REFERENCE

I am delighted to acknowledge many inspirational conversations with
Sergey Fomel, who also made the helix illustration, and who coded
the first verification that the helix preconditioning drastically speeds
the Seabeam estimation.

Background material for this article may be found in my free textbooks
found at my web site http://sepwww.stanford.edu/sep/prof/.

