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SUMMARY
Standard tomography schemes suffer from slow convergence and tend
to create isotropic features in velocity that are unreasonable when ap-
plying other criteria such as geologic feasibility. These isotropic fea-
tures are due in large part to using symmetric regularization operators.
By replacing these symmetric operators with operators that tend to
spread information along structural dip we can generate more geolog-
ically reasonable velocity models. We can find the inverse of these
space-varying, anisotropic operators by forming them in helix 1-D
space and performing polynomial division. These inverse operators
can be used as a preconditioner to a standard tomography problem,
significantly improving convergence speed compared to the typical,
regularized inversion problem.

INTRODUCTION

When attempting to do inversion we are constantly confronted with
the problem of slow convergence. Claerbout and Nichols(1994) sug-
gested using a preconditioner to speed up convergence. Unfortunately
it is often difficult to find an appropriate preconditioner and/or the pre-
conditioner is so computationally expensive that it negates the savings
gained by reducing the number of iterations (Claerbout, 1997). Claer-
bout (1998) proposed designing helicon-style operators to provide a
method to find stable inverses, and potentially, appropriate precondi-
tioners (Fomel et al., 1997).

In addition, geophysical problems are often under-determined, requir-
ing some type of regularization. Unfortunately the simplest, and most
common, regularization techniques tend to create isotropic features
when we would often prefer solutions that follow trends. This prob-
lem is especially prevalent in velocity estimation. The result obtained
through many inversion schemes produces a velocity structure that ge-
ologists (whose insights are hard to encode into the regression equa-
tions) find unreasonable. Fortunately, there are often other sources
of information that can be encoded into the regularization operator
that allow the inversion to be guided towards a more appealing result.
Dip information, easily obtainable from stack, migrated section, or re-
gional geologic trends, is just such an information source. We create
regularization operators, and by the helix methodology precondition-
ers, built from this dip information. We use these preconditioners to
quickly produce geologically reasonable velocity models that still fit
the geophysical data.

Here we create small, space-variant, plane-wave annihilators filters
built from dip information. We use the inverse of these filters to form
a preconditioner to steer the inversion. We show this methodology ap-
plied to two different types of problems. In the first example we use
a preconditioner, built from steering filters, to interpolate well-log in-
formation along dip. In the second example we use the preconditioner
in a standard tomography problem and attempt to estimate a synthetic
anticline velocity model.

THEORY/MOTIVATION

Regularization
In general, geophysical problems are under-constrained. To obtain
pleasing results we impose some type of regularization criteria such
as limiting solutions to large singular values (Clapp and Biondi, 1995)
or minimizing different solution norms (Nichols, 1994). A more oper-
ator oriented approach is to minimize the power out of a regularization
operator (A) applied to the model (m), giving us the typical regular-
ized inversion goals:

d � Cm (1)

0 � Am

whereC is the mapping operator from model (m) to data (d). A’s
spectrum will be the inverse ofm, so to produce a smoothm, we
need a roughA (Claerbout, 1997). The regularization operator can
take many forms, in order of increasing complexity:

Laplacian operator (r2) The symmetric nature of the Laplacian leads
to isotropic features in the model.

Steering filters Simple plane wave annihilation filters which tend to
orient the model at some a priori chosen direction. These fil-
ters can be simple two point filters, Figure 1, to larger filters
that sacrifice compactness for more precise dip annihilation.
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Figure 1: An example of steering filter. In this case preference is given
to slopes at 22.5 degrees from horizontal.

Prediction Error Filters (PEF) Like steering filters apply preferen-
tial smoothing directions. Unlike steering filters, are not lim-
ited to a single dip or chosen a priori, rather are estimated
from the data itself (Schwab et al., 1996).

For tomography problems steering filters are the most attractive alter-
native. In tomography the data space (traveltimes) and model space
(velocity) are different, making prediction error filter estimation diffi-
cult. In addition, we usually have a stack, migrated section, or precon-
ceived notions of reflector dip readily available and easily translatable
to steering filters.

Preconditioning
Another important consideration when solving inverse problems is
convergence speed. The size of most geophysical problems make di-
rect matrix inversion methods impractical. For linear problems an at-
tractive alternative is the family of iterative conjugate gradient meth-
ods. Unfortunately, the operators used in seismic reflection problems
are usually computationally expensive, so we must limit the number
of iterations required to obtain a “reasonable” solution. Part of the
reason for slow convergence is that our regularization operator,A,
is ill-conditioned, significantly increasing the number of iterations re-
quired for convergence. One way to reduce the number of iterations
is by reformulating the problem in terms of some new variable (p)
with a preconditioning operator (B), that produces desired shapes in
model space. Ideally we can think ofB as being something close to
A�1 from equation (2). This would allow us to change the traditional
regularized inversion goals (2) to

d � CBp (2)

0 � �p

Where (B) is the preconditioning operator, (p) is the preconditioned
variable and

m = Bp: (3)

In theory this formulation should be significantly faster because the
fitting goal0 � �p is basically free. The problem comes in finding
and applyingB.



Velocity estimation

Helix transform
So how to we obtainB? We have three general requirements:

� it produces relatively smooth (by some criteria) results;

� it spreads information quickly;

� and it is computationally inexpensive.

By defining the operators via the helix method (Claerbout, 1998) we
can meet all of these requirements. The helix concept is to transform
N-Dimensional operators into 1-D operators to take advantage of some
well understood properties of 1-D functions. In this case we utilize the
ability to construct stable inverses from simple, causal filters through
polynomial division. IfA is a small roughening operator,B is a large
smoothing operator. But, because we are applying polynomial division
we get the effect of the usually computationally expensiveB at the
cost of the inexpensiveA.

Steering Filters
Plane waves with a given slope on a discrete grid can be predicted (de-
stroyed) with compact filters (Schwab et al., 1996). Inverting such a
filter by the helix method, we can create a signal with a given arbitrary
slope extremely quickly. If this slope is expected in the model, the de-
scribed procedure gives us a very efficient method of preconditioning
the model estimation problem, fitting goal (??).

How can a plane prediction (steering) filter be created? On the helix
surface, the plane waveA(t; x) = f(t � px) translates naturally into
a periodic signal with the period ofT = Nt + �, whereNt is the
number of points on thet trace, and� = p4x

4t
, where� is the plane

slope,1 and4x and4t correspond to the mesh size. If we design
a filter that is two columns long (assuming the columns go in thet
direction), then theplane predictionproblem is simply connected with
the interpolation problem: to destroy a plane wave, shift the signal
by T , interpolate it, and subtract the result from the original signal.
Therefore, we can formally write

A = I � S(�) ; (4)

whereA denotes the steering filter,S is the shift-and-interpolation
operator, andI is the identity operator.

Different choices for the operatorS in (4) produce filters with differ-
ent length and prediction power. A shifting operation corresponds to
the filter with theZ-transform�(Z) = ZT , while the operatorS
corresponds to an approximation of�(Z) with integer powers ofZ.
One possible approach is to expand�(Z)Z�Nt using the Taylor se-
ries around the zero frequency (Z = 1). For example, the first-order
approximation is

S1(Z) = ZNt (1 + �(Z � 1)) = (1� �)ZT + �ZT+1 ; (5)

which corresponds to linear interpolation and leads in the two-dimensional
space to the steering filterA of the form

1 ��
� � 1

(6)

By applying polynomial division we simulate the inverse ofA, B.
Figure 2 shows the result of applying polynomial division using (6) as
the filter. Note how the small annihilation filter acts as a large smooth-
ing filter when applying polynomial division.

1In computational physics, the dimensionless number� is sometimes referred to as the
CFL (Courant, Friedrichs, and Lewy) number (Sod, 1985).

Figure 2: The impulse response of a steering filter oriented 22.5 de-
grees from horizontal.

Space variable filters
Steering filters are effective in spreading information along a given
direction, but are limited to a single dip. If it is inappropriate to apply
a single smoothing direction to the entire model there are two general
courses of action:

Patching (Claerbout, 1992; Crawley, 1998) Redefine the problem into
a series of problems, each on a small subset of the data (patches)
where a dip stationarity assumption is valid. Then recombine
these patches to produce the final output. Unfortunately, de-
termining subsets of the data where the stationarity condition
is satisfied is difficult. In addition, recombining the various
patches is not straightforward. In problems like tomogra-
phy we face yet another limitation; how to effectively com-
bine the global tomography problem, with the local patch-
ing/regularization problem.

Space varying filters Filters that vary with location but are spatially
smooth. In many ways this is the a more appealing approach.
In general, space varying filters require a high level of spa-
tial smoothness to avoid artifacts. Steering filters are uni-
directional, so we can simply smooth the scalar dip field rather
than dealing with the problem of smoothing the multi-component
filter field (issues of filter stability can quickly arise when
using simplistic smoothing schemes.) In addition, because
we are applying polynomial division produced inverse filters
we achieve a higher level of smoothness automatically. Each
inverse filter spreads information over large, overlapping re-
gions at each iteration.

The ease of creating and smoothing steering filters, in addition to the
difficulty in combing the global tomography with the local patching
problem led us to choose the second option for this paper.

WELL LOG/DIP INTERPOLATION

To illustrate the effectiveness of this method imagine a simple inter-
polation problem. Following the methodology of (Fomel et al., 1997)
we first bin the data, producing a modelm, composed of known data
mk and unknown datamu. We have an operatorJ which is simply a
diagonalselector(selects where the model can change) operator with
zeros at known data locations and ones at unknown locations. We can
writemk andmu in terms ofm andJ,

mk � (I�J)m

mu � Jm (7)

whereI is the identity matrix. We have the preconditioning operator
B, which applies polynomial division using the helix methodology.
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Our fitting goals can be written as

mk � (I � J)Bp

0 � �p (8)

So the only question that remains is what to use forB, or more specif-
ically B�1,A.

For this experiment we create a series of well logs by sub-sampling a
2-D velocity field. We use as our a priori information source, reflector
dips, to build the steering filters, and thus the operatorA. For this
synthetic test we pick the dips from our “goal”, the left portion of
Figure 3. We define regions in which we believe each of these dips
to be approximately correct, and smooth the overall dip field (right
portion of Figure 3).

Figure 3: Left, a synthetic seismic section with four picked reflectors
indicated by ’*’; right; the dip field constructed from the picked reflec-
tors.

For a test, we simulate nine well logs along the survey (Figure 4). We
use equation (8) as our fitting goals and a conjugate gradient solver
to estimatep. Within 12 iterations we have a satisfactory solution
(Figure 4). If you look closely, you can still see the well locations,
but in general the solution converges quickly to something close to the
correct velocity field (Figure 3).

Figure 4: Left, correct velocity field; middle, well subset selected as
input; right, velocity field resulting from interpolation.

REGULARIZATION OF A STANDARD TOMOGRAPHY
PROBLEM

For a more realistic test we applied the steering filter methodology to a
standard tomography problem. We started with a simple anticline ve-
locity model, Figure 5 and a dip field (Figure 6) following the reflector
geometry.

We formulated the tomography problem as

�t � Tp (9)

0 � �Am:

Figure 5: Reflector position superimposed over correct velocity model.

Figure 6: Dip field used to create the steering filters.

Which can be rewritten using the same preconditioning logic as,

�t � TBp (10)

0 � �p:

Where:

T is our tomography operator, in this case a simple back projection
operator that also accounts for reflector movement;

B = A�1 our are steering filters;

�t is the difference between the traveltimes (tc) through the true
slowness model to the true reflector position and the mod-
eled traveltimes (ti) through the current slowness model and
current guess at reflector location;

p is the preconditioned variable; and

�s = Bp is the change in the slowness model.

Ray bending and reflector movement make this problem non-linear.
As a result we must add an outer loop, updating the slowness model,

si+1 = si +Bp (11)

= si + �s;

after every outer-loop iteration and reestimating the reflector position
through map-migration.

For this test we started with an initialv(z) velocity model, with veloc-
ity errors up to230 m=s, Figure 7. We then attempted to recover the



Velocity estimation

correct velocity model by a layer-stripping approach (the result down
to the second reflector is shown in Figure 8. The difference between
the initial model and the new model, Figure 9, clearly illustrates that
the velocity perturbations follow structural dip. For comparison we
performed the same sequence using the inverse of the Laplacian as the
preconditioner. Not surprisingly, we get much more isotropic features,
Figure 10, which are inconsistent with our conception of geology.

Figure 7: Initial error in velocity.

Figure 8: Reflector position overlaying our velocity model using the
first two reflectors.

Figure 9: Change in our velocity model estimate using traveltimes
from the first two reflectors. Note how the velocity perturbation follow
the anticline.

CONCLUSIONS

We show that we can quickly converge to geologic consistent velocity
models by reformulating the standard isotropic, regularized inversion
problem into a preconditioned inversion problem using anisotropic
smoothers oriented along dip. This method holds promise in finally
bringing geologist’s insights, while still honoring geophysicist’s data,
into the velocity estimation problem.

Figure 10: Change in our velocity model using traveltimes from the
first two reflectors. Note how the velocity perturbation are isotropic
rather than following geology.
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