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SUMMARY
A wave equation, derived under the acoustic medium assumption for
P -waves in transversely isotropic media with a vertical symmetry axis
(VTI media), though physically impossible, yields good kinematic ap-
proximation to the familiar elastic wave equation for VTI media. The
VTI acoustic wave equation is fourth-order and has two sets of com-
plex conjugate solutions. One set of solutions is just perturbations of
the familiar acoustic wavefield solutions for isotropic media for in-
coming and outgoing waves. The second set describes an unwanted
wave type that propagates at speeds slower than theP -wave for the
positive anisotropy parameter,�, and grows exponentially, becoming
unstable, for negative values of�. Luckily, most� values correspond-
ing to anisotropies in the subsurface have positive values which is in
the stability range of the acoustic equation. Placing the source in an
isotropic layer, a common occurrence in marine surveys where the wa-
ter layer is isotropic, eliminates most of the energy of this additional
wave type. Numerical examples prove the usefulness of this acoustic
equation in simulating wave propagation in complex models.

INTRODUCTION

The wave equation is the central ingredient in defining and constrain-
ing wave propagation in a given medium. No other constraint, such as
the eikonal or raytracing equations, is as conclusive and elaborate (in-
cludes all traveltime and amplitude aspects) as the full wave equation.
Having such an equation in a simple form for transversely isotropic
media with a vertical symmetry axis will help us get a better grip on
wave propagation in such media.

In anisotropic media, the acoustic wave equation does not describe
a physical phenomenon. This is because acoustic media cannot be
anisotropic. If the shear wave velocity equals zero, the medium is
rendered isotropic. However, if we ignore the physical aspects of the
problem, an acoustic equation for VTI media can be extracted by sim-
ply setting the shear wave velocity to zero. Though physically impos-
sible, kinematically the equations resulting from setting the shear wave
velocity to zero yield good approximations of the elastic equations.

Alkhalifah and Tsvankin (1995) showed that time-related processing
for P -waves, including dip-moveout correction and time migration, in
transversely isotropic (TI) media with a vertical symmetry axis (VTI
media) depends just on two parameters: the zero-dip NMO velocity
[Vnmo(0)], and an anisotropy parameter� that is a special combina-
tion of Thomsen’s (1986) parameters.

In an earlier paper (Alkhalifah, 1997), I have derived a simple disper-
sion equation that relates the vertical slowness to the horizontal one in
transversely isotropic media. The simplicity of this acoustic equation
is a direct result of setting the shear wave velocity to zero. Although
the equation results in an approximation, the accuracy is far within
the typical accuracies expected in practical geophysical applications.
Simply stated, the equation is exact within the confines of seismic error
tolerance. This equation served as the starting point for the develop-
ment of an acoustic wave equation that describesP -wave propagation
in VTI media. In this expanded abstract, I derive the acoustic wave
equation for VTI media using the dispersion relation. Numerical sim-
ulations of wave propagation using finite difference techniques demon-
strate the accuracy and efficiency of the VTI acoustic wave equation,
especially in comparison with the elastic wave equation.

THE VTI ACOUSTIC WAVE EQUATION

Recently, I have derived a simple equation that relates the vertical
slowness,pz, to the horizontal one,pr, in VTI media, based on set-
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Figure 1: The wavefield at 1 s resulting from a source at center of
the section for a VTI medium with�=0.4 (left), and for an isotropic
medium (right). In both cases, the velocity (vertical velocity in VTI
media) is 1000 m/s. The solid black curves are the solutions of the
eikonal equation for both media with the shear wave velocity set to
zero, and the dashed curves (not apparent) are the solutions when the
shear wave velocity equals half theP -wave velocity. The two eikonal
solution curves coincide in the isotropic case and practically coincide
in the VTI case.
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Figure 2: The z-component of the elastic wavefield at 1 s caused by a
source at time 0 located at the center. The VTI model is the same as in
Figure 1, withv=1000 m/s and�=0.4. The solid curve corresponds to
the solution of the acoustic eikonal equation for the same medium.



Alkhalifah

ting the vertical shear wave velocity to zero (Alkhalifah, 1997). In
such media, the slowness surface in the horizontal plane is circular
(isotropic), and therefore,pr can be replaced by

p
p2x + p2y, where

the slowness vector,p, has components in the Cartesian coordinates
given bypx, py, andpz . As a result, the migration dispersion relation
in 3-D media is

p2z =
v2

v2v

�
1

v2
�

p2x + p2y

1� 2v2�(p2x + p2y)

�
: (1)

Usingk = !p, wherek is the wavenumber vector with components in
the Cartesian coordinates (kx, ky, kz), and! is the angular frequency,
equation (1) becomes

k2z =
v2

v2v

�
!2

v2
�
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!2 � 2v2�(k2x + k2y)

�
: (2)

Multiplying both sides of equation (2) with the wavefield in the Fourier
domain,F (kx; ky; kz; !), as well as using inverse Fourier transform
onkz , kx, ky, and! (kz ! �i d

dz
, kx ! �i @
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) yields the acoustic wave equation for VTI media is given
by
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This equation is a fourth-order partial differential equation int. Setting

� = 0, v = vv , and substitutingP = @2F
@t2

yields the acoustic
equation for isotropic media
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Rewriting equation (3) in terms ofP (x; y; z; t) instead ofF (x; y; z; t),
yields
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where

F (x; y; z; t) =

Z t

0

dt0

Z t0

0

P (x; y; z; �)d�:

In the numerical implementation, for convenience, I rely on the equa-
tion (5).

For comparison, the 2-D elastic wave equation, which is best described
in VTI media using the density-normalized elastic coefficients,Aijkl(=
Cijkl=�), is given by (Aki and Richards, 1980)
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@x@z
+ A1313

@2uz

@x2
;

whereux anduz are the components of the wavefield vector,u, in two
dimensions. Solving the elastic wave equation in heterogeneous me-
dia requires applying finite-difference computation to two equations
(three equations in 3-D media) corresponding to the components of the
wavefield. Calculating the wavefield for each component is almost as
computationally involved as calculating the acoustic wavefield. This
method also incurs the additional expense of input, output, and stor-
age of the wavefield and the corresponding medium parameters in the
elastic medium case.
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Figure 3: The wavefield at 0.13 s caused by a source at a central lateral
location. The model consists of two layers with an interface at depth
100 m. The first layer is isotropic withv = 1500 m/s, and the second
layer is VTI with v=2000 m/s and� = 0:1. The source depth varies
with (a) the source at depth 100 m (on the isotropic-VTI interface),
(b) the source at depth 95 m, (c) the source at depth 90 m, and (d) the
source at depth 80 m. The arrows point to the additional wave as it
decays gradually with increasing distance between the source and the
VTI layer.

In addition, the solution of the elastic wave equation contains bothP -
andS-waves, whereas the acoustic equation yields onlyP -waves. The
presence ofS-waves in the solution of elastic wave equation makes
that equation less desirable when used for modelingP -wave propa-
gation in zero-offset conditions, such as when the exploding reflector
assumption is used.

FINITE DIFFERENCE SOLUTIONS OF THE WAVE EQUA-
TION

For simplicity, I use the acoustic wave equation (5), which is second
order in t, as opposed to equation (3) [fourth order in derivates of
t]. The finite-difference equations for VTI media are subjected to the
same constraints and rules used in the isotropic case (such as the CFL
condition) to avoid numerical dispersion and instability.

Figure 1 shows the wavefield at time 1 second caused by an impulse
force excited at time 0. On the left side, the medium is homogeneous
and VTI with vv=1 km/s,v=1 km/s, and�=0.4. On the right side, the
medium is isotropic withvv=1 km/s,v=1 km/s, and�=0. Both wave-
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Figure 4: Snapshots of the wavefield at 0.2 s caused by a source at
depth 100 m in a central lateral location of 500 m. Top: A snapshot
corresponding to a homogeneous VTI medium with�=0.2. Middle: A
snapshot for the same medium but with a thin isotropic layer of 25 m
thickness at the top. Bottom: A snapshot for an isotropic medium with
�=0 throughout. The velocity for all models is the same at 2000 m/s.
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Figure 5: Common-shot gathers for the models described in Figure 4
from top to bottom, respectively. The geophones are placed 10 m
under the surface. Top: the gathers generated for the homogeneous
VTI medium with�=0.2. Middle: the gathers generated for the same
homogeneous VTI medium, but with a thin isotropic layer of 25 m
thickness at the top. Bottom: the gathers generated for the isotropic
medium.

fields are calculated using the second-order finite difference applied
to the new acoustic wave equation. In the case of VTI, an additional
wave type appears in the section and travels at a speed that is lower
than theP -wave velocity. This artifact is the additional solution, men-
tioned earlier, that behaves like a wave for positive� and exponentially
decays or grows for negative�. Such an artifact does not appear in the
solution for the isotropic medium. Therefore, we may want to place
the source in an isotropic layer and take advantage of the evanescent
nature of this wave in isotropic media. The black curves in Figure??
correspond to solutions of the eikonal equation. The solid curves cor-
respond to the solutions that use the acoustic assumption, in which the
shear wave velocity equals zero, while the dashed curves correspond to
a shear wave velocity equal to half theP -wave velocity. As expected,
in the isotropic case both curves exactly coincide and are therefore in-
distinguishable. In the VTI case, differences between the two curves
exist, but are hardly noticeable. The independence of the eikonal equa-
tion on the shear wave velocity in VTI medium is in agreement with
the results obtained in an earlier study (Alkhalifah, 1997).
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Figure 6: Top: A velocity model consisting of five layers with velocity
equal 1500, 1900, 1700, 2400, and 3000 m/s from top to bottom. The
corresponding� for the VTI model are 0, 0.1, 0.2, 0.15, and 0.05 from
top to bottom. Bottom: The wavefield at 1 s caused by a source at
distance 1850 m and depth 50 m for the VTI model. The solid black
curve is the solution of the eikonal equation for the VTI model, and
the dashed curve is the solution for the corresponding isotropic model.

Figure 2 shows the z-component of the elastic wavefield (computed
using the elastic wave equation) for the same model used in Figure 1.
The solid curve is the solution of the acoustic eikonal equation. Kine-
matically, forP -waves, the acoustic and elastic wavefields are similar.
Dynamically, they differ considerably; the elastic wavefield includes
S-waves (the slower waves), here with triplication, a phenomenon
common toS-waves in strongly anisotropic media.

ELIMINATING THE ARTIFACT

To demonstrate some of the features of this additional wave type (the
artifact in Figure 1), Figure 3 shows a snapshot taken at 0.13 s of the
finite-difference solution of the acoustic VTI wave equation for a two-
layered model with an interface at depth 100 m. The first layer is
isotropic with velocity equal 1500 m/s, and the second layer is VTI
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with velocity equal to 2000 m/s and�=0.1. In Figure 3a, the source is
placed on the boundary between the isotropic and VTI layers at depth
100 m. As a result, no artifact appears in the isotropic layer, whereas
the artifact is clearly apparent in the VTI layer. In Figure 3b, the source
is placed in the isotropic layer at depth 95 m from the surface. The re-
sulting additional wave is weaker than in the previous case, where the
source was directly interacting with the VTI layer. A greater distance
between the source and the VTI layer, as in Figures 3c and 3d, causes
the artifact to decay. In fact, when the source is placed at depth 80 m
(Figure 3d), only 20 m from the VTI layer, the additional wave practi-
cally disappears.

Putting the receivers in the isotropic layer all but assures that no such
artifacts appear on synthetic sections. The basic concept is that these
waves do not travel in the isotropic layer. Figure 4 shows snapshots
of the wavefield for a VTI homogeneous model (top section), a VTI
model with a thin isotropic layer of 25 m thickness at top (middle
section), and a purely isotropic homogeneous model (bottom section).
All three models have a constant velocity of 2000 m/s. As shown
earlier, the artifact, illustrated by the diamond shaped wave, appears
only when the medium is VTI, as is the case with the top two sec-
tions. However, this wave does not travel in the thin isotropic layer in
the middle section; it actually reflects at the isotropic-VTI boundary.
Therefore, by placing the geophones in this thin isotropic layer, we
will not record the artifact.
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Figure 7: Common-shot gathers for the model in Figure 6 using geo-
phones that span the 4-km distance, buried at depth 50 m from the sur-
face. On top is a shot gather corresponding to the VTI model; on the
bottom, a shot gather corresponding to the isotropic model. Both syn-
thetic gathers were calculated using the acoustic wave equation (??).
The arrows point to some of the differences in energy arrival times
between the two media.

Figure 5 shows common-shot gathers corresponding to the models de-
scribed in Figure 4. The horizontal line of receivers, in all cases, are
placed at depth 10 m from the surface. Therefore, for the VTI model
case with the thin isotropic layer (middle section), the artifact, which is
apparent for the purely VTI model, disappears. The wave traveltimes,
on the other hand, are barely affected by this thin isotropic layer. The

purely isotropic model (bottom section) results in slower wave arrival
times than those in the VTI models.

A PRACTICAL SUBSURFACE MODEL

Figure 6 shows a velocity model and the corresponding wavefield for a
source excited near the surface at lateral distance 1850 m from the ori-
gin. The wavefield is calculated using the finite-difference method ap-
plied to equation (5) with absorbing boundary conditions. The curves
correspond to solutions of the eikonal equation for the VTI model
(solid curve) and an equivalent isotropic model (dashed curve). Both
models have the same vertical and NMO velocities, and as a result the
two wavefront curves coincide at the zero angle from the vertical. The
biggest difference between the two wavefronts occurs near horizontal
wave propagation, where the influence of the different� values affects
the wavefront the most. The corresponding elastic curve (plotted in
gray, but indistinguishable) coincide with the acoustic one for the VTI
model. The model was constructed so that the source and receivers are
placed in the water layer, which conveniently, is isotropic.

Figure 7 shows common-shot gathers corresponding to the model in
Figure 6 computed using geophones placed near the surface. The
geophones cover the whole 4-km lateral distance. The top gather in
Figure 7 corresponds to the VTI model, and the bottom gather corre-
sponds to the isotropic model. The differences (indicated by arrows)
are concentrated at later times, because the largest anisotropies are
at depth. Figure 7 also demonstrates the importance of anisotropy in
processing; such differences in traveltimes, as well as amplitudes, will
considerably hamper isotropic processing when anisotropy similar to
that modeled here is ignored.

CONCLUSIONS

Though physically impossible, the acoustic wave equation forP -waves
in transversely isotropic media with a vertical symmetry axis (VTI me-
dia) yields good kinematic approximations to the familiar elastic wave
equation for VTI media. The fourth-order nature of this acoustic equa-
tion results in two sets of complex conjugate solutions. One set of
solutions are just perturbations of the familiar acoustic wavefield solu-
tions in isotropic media for incoming and outgoing waves. The second
set describes a wave type that propagates at speeds slower than the
P -wave for the positive anisotropy parameter,�, and grows exponen-
tially, becoming unstable, for negative values of�. Most� values cor-
responding to anisotropies in the subsurface are likely to have positive
values. Placing the source or receivers in an isotropic layer, a common
occurrence in marine surveys where the water layer is isotropic, will
eliminate most of the energy of this additional wave type. Numerical
examples, provided in this paper, prove the usefulness of this acoustic
equation in simulating wave propagation in VTI media.
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