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SUMMARY

We test two edge-preserving forms of model regularization in a
least-squares implementation of Dix formula that leads to interval
velocities with sharp edges in the (7,x) plane. This property of the
interval velocity may be desirable in geologic environments with
abrupt changes in velocity, like carbonate layers, salt bodies, or
strong faulting.

INTRODUCTION

Interval velocity estimation is a central problem in reflection seis-
mology (Claerbout, 1999). Without an estimate of seismic veloc-
ities, we would be unable to transform prestack seismic data into
an interpretable image. Advanced velocity estimation techniques
(Clapp, 2001; Biondi and Sava, 1999) have been developed to esti-
mate interval velocity in complex geological environments, though
the cost of these methods is often considerable.

In the early stages of prospect evaluation, an inexpensive interval
velocity estimate is often desired. The Dix equation (Dix, 1952) an-
alytically inverts root-mean-square (RMS) velocity for interval ve-
locity as a function of time. In addition to many physical shortcom-
ings (assumption of a stratified v(z) earth), Dix inversion suffers
from numerical problems that lead to poor velocity estimates. Dix
inversion is unstable when RMS velocities vary rapidly, and may
produce interval velocities with unreasonably large and rapid vari-
ations. For this reason, the problem is often cast as a least-squares
problem, which is regularized in time with a differential operator
to penalize rapid velocity variations and to produce a smooth result
(Clapp et al., 1998).

While temporal velocity smoothness may often be justified from
a geological point of view, in some cases however, it can change
abruptly (e.g., carbonate layers, salt bodies, strong faulting). In
these situations we desire a regularization technique that yields
smooth velocities while preserving sharp geologic interval velocity
contrasts. In addition, no pre-defined boundaries should be sup-
plied.

In this paper we present two automatic edge-preserving regulariza-
tion methodologies for the least-squares implementation of Dix for-
mula. Both methods use iterative reweighted least-squares (IRLS).
The first method imposes a Cauchy distribution of the model pa-
rameters to allow a “spiky” or “sparse” model residual, which leads
to a “blocky” velocity model. The second uses an isotropic edge
detector, the gradient magnitude, in a nonlinear scheme to compute
a measure of the edges of the model. These edges are used as a
model residual weights (Clapp et al., 1998; Lizarralde and Swift,
1999).

DIX EQUATION AS A LEAST-SQUARES PROBLEM

The Dix equation states the nonlinear relationship between root-
mean-square (RMS) velocity and interval velocity.
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Where V is the RMS velocity, v is the interval velocity and 7 is the
vertical traveltime.

However, this equation is linear in the square of the velocities. An
example of the linear solution of the problem is given by Clapp et

al. (1998). They apply a preconditioned least squares optimization
to invert Dix equation, with spatial smoothness constraints.

To get the interval velocities the least-squares problem is stated as
a minimization problem where the quadratic function to minimize
is
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which is equivalent to the least-squares fitting goal:
W(Cu—-d)~0, 3

and where u is the unknown vector of squared interval velocities,
d is the known data, a vector of squared RMS velocities multiplied
by the vertical traveltime, C is the causal integration operator, and
W is a data residual weighting function, which is proportional to
our confidence in the RMS velocity picks.

Fitting goal (3) is notoriously unstable to high frequency variations
in RMS velocity, and moreover, is under-determined in the sense
that only strong reflections really qualify as “data”. Therefore,
Clapp et al. (1998) supplement the system with a regularization
term which penalizes wiggliness. In our case we use a first order
derivative operator, but as we will see later, other rougheners can
be used:
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where D; and Dy are first-order finite-difference derivatives in time
and midpoint, respectively, and the scalars €; and €, balance the
relative importance of the two model residuals with the data resid-
ual.

BLOCKY MODELS

In hard rock environments like carbonates, velocities tend to be
homogeneous for intervals, with abrupt discontinuities at changes
in lithology. There, the desire for a blocky interval velocity model
is well-justified.

In the following sections we introduce two schemes to weight the
model residuals in equations (5) and (6) to obtain sharp edges in
the estimated u.

Edge preserving regularization with the Cauchy norm

Imagine that after solving (4)-(6), the model residuals in equations
(5) and (6) consist of spikes separated by relatively large distances.
Then the estimated interval velocity u would be piecewise smooth
with jumps at the spike locations, which is what we desire. How-
ever in solving (4)—(6) we use the least-squares criterion — mini-
mization of the £, norm of the residual. Large spikes in the resid-
ual tend to be be attenuated. To do this, the solver smoothes the
velocity across the spike location.

It is known that the £ norm is less sensitive to spikes in the resid-
ual (Claerbout and Muir, 1973; Darche, 1989; Nichols, 1994). ¢
norm minimization makes the assumption that the residuals have an
exponential distribution, a “long-tailed” distribution relative to the
Gaussian distribution assumed by the ¢, norm inversion. Here we
compute nonlinear model residual weights which force a Cauchy
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distribution, another long-tailed distribution which approximates
an exponential distribution (Youzwishen, 2001).

Our method consists of recomputing the weights at each non lin-
ear iteration, solving small piecewise linear problems. The IRLS
algorithms converge if each minimization reaches a minimum for
a constant weight. We perform the following non linear iterations:
starting with the weights Q;% = Qx? =1, at the k' iteration the
algorithm solves
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and u¥ is the result of the k" nonlinear iteration, Q- k=1 and ka*I
are the (k — 1) diagonal weighting operators, D, and Dy are the
first order derivatives in time and midpoint, I is the identity matrix,
the scalars o; and oy are the trade-off parameters controlling the
discontinuities in the solution, and the scalars €; and €, balance
the relative importance of the two model residuals.

Edge preserving regularization with the gradient magnitude

In the previous section we changed the norm of the minimization
problem to prevent the roughener from smoothing over edges in
the model. In this section we shift from a statistical to a more
mechanical approach to attain the same goal.

To preserve the edges of the model Clapp et al. (1998) propose
adding a weight that de-emphasizes the model residual at the geo-
logic edges. Lizarralde and Swift (1999) implement a similar ap-
proach for the inversion of VSP data for interval velocity. This ap-
proach requires human intervention for reflector picking. We want
to design a weight which automatically de-emphasizes edges in the
model residual.

The 2-D gradient magnitude is a good isotropic edge-detection op-
erator that can be used to calculate the diagonal weights. By using
the gradient magnitude we can iteratively obtain sharp edges.

‘We perform the following non linear iterations: starting with Q|v|O =
I, at the k" iteration the algorithm solves
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and uf is the result of the k" nonlinear iteration,Q‘v‘k’1 is the
(k — 1) diagonal weight operator, |V| is the gradient magnitude,
V2 is the Laplacian operator, I is the identity matrix, the scalar
« is the trade-off parameter controlling the discontinuities in the
solution, and the scalar € balances the relative importance of model
and data residuals.

REAL DATA RESULTS

We tested both inversion methods on 125 CMP’s from a 2-D prestack
dataset acquired in the Gulf of Mexico. This data is suitable for us-
ing Dix equation, since the main reflectors are flat. The area is
heavily faulted which may imply some lateral velocity variations
with sharp edges to preserve.

First, we performed conventional stacking velocity analysis on each
CMP gather, and then used an auto-picker to pick the maximum
stacking power that corresponds to the best stacking velocity at
each CMP location. In these section we assume the stacking ve-
locity to be equivalent the RMS velocity. The value of the stacking
power at the auto-picked RMS velocity was used as a quality mea-
sure of the data, and used as the data residual weight (W) in equa-
tions (4), (7), and (10). Figures 1,2, and 3 show a particular CMP
gather, the auto-picked RMS velocity, and a stack of the CMP’s.
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‘We hand-picked five faults, displayed as “o” symbols on figure 3.
Since our regularization schemes are meant to allow velocity dis-
continuities at faults and other lithologic boundaries, seeing some
expression of the faults on the estimated velocity panels is a crucial
proof of concept.
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Figure 1: a) CMP gather, b) auto-picked RMS velocity in A.
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Figure 2: 2-D raw RMS velocity section

We show in figure 4 a graph comparing the interval velocities re-
sulting from solving the inverse problems stated in equations (4),
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Figure 3: Stacked data section using the raw RMS velocity.

(7), and (10) respectively and the RMS velocity used as input data
at two CMP locations. Figures 5, 6, and 7 show the interval veloc-
ities resulting from using the three different methods.
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Figure 4: Comparison of the results of solving the inverse problems
stated in equations (4) Smooth, (7) Cauchy norm, (10) Gradient
Magnitude, and the RMS velocity at the midpoint positions 8.04
and 12.194 km.

In figure 5 the resulting interval velocity is smooth in time and
space. Figure 6 shows sharp-edged rectangular shapes all over the
image, looking reasonable in the faults but in general geological
unappealing. Figure 7 shows sharp objects with more geological
meaning.

The preferential shapes can also be seen in the diagonal weight op-
erator. Figures 8 and 9 show Q,N and QXN , the last nonlinear
iteration diagonal weight operator in equation (9). Notice the two
preferential directions in what the edges are preserved. Figure 10
shows QW\N , the last nonlinear iteration diagonal weight opera-
tor in equation (11). Notice the isotropic behavior of the diagonal
weight calculated using the gradient magnitude operator.

CONCLUSIONS

Dix formula can be implemented in a nonlinear least-squares in-
version scheme to obtain interval velocities with sharp edges in
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Figure 5: Interval velocity computed by inversion of the RMS ve-
locity (equation (4)).
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Figure 6: Interval velocity computed by inversion of the RMS ve-
locity using Cauchy norm (equation (7)).
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Figure 7: Interval velocity computed by inversion of the RMS ve-
locity using gradient magnitude (equation (10)).
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Figure 8: Q. is the last nonlinear iteration diagonal weight oper-
ator in equation (8).
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Figure 9: Qx” is the last nonlinear iteration diagonal weight oper-
ator in equation (9).
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Figure 10: Q‘V‘N is the last nonlinear iteration diagonal weight
operator in equation (11).

0.8 0.9

0.7

0.6

0.5

0.9

0.8

0.7

0.6

0.8

0.4

the (7,x) plane. In this paper, we presented two automatic edge-
preserving regularization methods to achieve this goal.

Both methods make use iterative reweighted least-squares (IRLS).
The first effectively change the norm of the problem to permit a
spiky or sparse model residuals, leading to a blocky velocity model.
The second uses an isotropic edge detector, the gradient magnitude,
to compute the residual weights.

Both methods give the expected results when applied in a 2-D real
data set acquired in the Gulf of Mexico. We conclude that the gra-
dient magnitude method shows sharp objects with more geological
appeal than the blocky method.
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