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Instability of adjoint pseudo-acoustic anisotropic wave
equations

Huy Le, Stewart A. Levin, and Biondo Biondi

ABSTRACT

We discover that the adjoint system of the second-order pseudo-acoustic anisotropic
wave equations has unstable solutions and propose two possible alternative systems.
The unstable solutions have magnitude that grows linearly with time and does not
propagate spatially. This is not the kind of numerical instability that occurs when the
propagation timestep does not satisfy the CFL condition. This instability is inherent
to the wave equations. In fact, there is a family of unstable wave equations that all
describe the same kinematics. The key to stability for this type of pseudo-acoustic
anisotropic wave equations is not whether the system is self-adjoint but whether it
reduces to the scalar wave equation in isotropic media.

INTRODUCTION

The pseudo-acoustic anisotropic wave equations were introduced by Alkhalifah (2000) to
avoid having to process shear waves. This system of equations is derived by setting shear
wave velocities along symmetry axes to zeros in the dispersion relation. The most computa-
tionally efficient form is the system of coupled second-order wave equations, which has been
commonly used in reverse time migration (Fletcher et al., 2009; Duveneck and Bakker, 2011;
Zhang et al., 2011). There are several properties to know about this kind of pseudo-acoustic
anisotropic wave equations.

1. Even though shear wave velocity is set to zero, the solution space still encompasses
residual shear waves. These residual shear waves manifest as dimond-shaped artifacts
and can be easily reduced when the source injection location is in isotropic media,
for example in marine environment (Alkhalifah, 2000). Complete suppression of this
artifact requires projection onto a solution subspace (Le and Levin, 2014; Maharramov
et al., 2015; Xu and Zhou, 2014).

2. There is actually a family of infinite number of equivalent systems of wave equations
that all come from the same dispersion relation (Fowler et al., 2010). These systems
similarly describe P-wave kinematics but behave differently in terms of amplitude.

3. All members of this family of pseudo-acoustic wave equations suffer from inherent weak
instability (Bube et al., 2012). This instability is a result of setting shear velocity to
zero combined with second-order time derivatives.

Bube et al. (2016) show that the instability of this type of second-order pseudo-acoustic
wave equations can occur in practice when numerical computation is performed with low
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presicion. They also develop a stable and self-adjoint system by reintroducing finite shear
wave velocity and rewriting second-order derivatives a cascaded first-orders. We recently
find that this problem also occurs in the adjoint systems even with high precision numerics.
The unstable solutions grow linearly with time and are stationary (i.e. does not propagate
spatially), as analyzed by Bube et al. (2012). In this report, we present two alternative
systems that does not suffer from this instability. Compared to those proposed by Bube
et al. (2016), our solutions are more computationally efficient and do not require medium
parameters on different staggered grids.

NON-SELF-ADJOINT SYSTEM

The coupled second-order systems of pseudo-acoustic anisotropic wave equations are com-
monly used in reverse time migration and waveform inversion due to its computational
efficiency and capability to acurately describe P-wave kinematics. One particular form of
such system is {

∂2
t σx = c11(∂2

x + ∂2
y)σx + c13∂

2
zσz,

∂2
t σz = c13(∂2

x + ∂2
y)σx + c33∂

2
zσz,

(1)

which can be written in matrix form as

∂2
t σ = CDσ, (2)

where σ is the stresses, C is the density-normalized stiffness matrix, and D is the derivative
matrix

σ =
[
σx
σz

]
, C =

[
c11 c13

c13 c33

]
, D =

[
∂2
x + ∂2

y

∂2
z

]
. (3)

The elements of stiffness matrix C are related to vertical velocity, v, horizontal velocity, vx,
NMO velocity, vn, and Thomsen parameters, ε and δ by

c11 = v2(1 + 2ε) = v2
x, (4)

c13 = v2
√

1 + 2δ = vvn, (5)

c33 = v2. (6)

Spatial derivatives on the right hand side of system 1 have form of c∂2
i , which is not

self-adjoint (Appendix A). The adjoint system is

∂2
t λ = DCλ, (7)

or {
∂2
t λx = (∂2

x + ∂2
y)(c11λx + c13λz),

∂2
t λz = ∂2

z (c13λx + c33λz),
(8)

where λ =
[
λx
λz

]
is the adjoint wave fields.
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The gradients of the objective function χ with respect to cij are

∂χ

∂c11
=
∫ T

0
λx(∂2

x + ∂2
y)σxdt, (9)

∂χ

∂c13
=
∫ T

0
λx∂

2
zσz + λz(∂2

x + ∂2
y)σxdt, (10)

∂χ

∂c33
=
∫ T

0
λz∂

2
zσzdt, (11)

from which gradients with respect to (v, ε, δ) can be computed from chain rule

∂χ

∂v
=

∂χ

∂c11
2v(1 + 2ε) +

∂χ

∂c13
2v
√

1 + 2δ +
∂χ

∂c33
2v, (12)

∂χ

∂ε
=

∂χ

∂c11
2v2, (13)

∂χ

∂δ
=

∂χ

∂c13

v2

√
1 + 2δ

. (14)

Unfortunately, the above adjoint equations have solutions that grow linearly with time.
The unstable solutions seem to have zero wave speed and does not propagate spatially.
This is the kind of weak instability that is inherent to this type of pseudo-acoustic wave
equations (Bube et al., 2012). It is also easy to see that, for isotropic media (c11 = c13 = c33),
if (λx, λz) is a solution, so is (λx + t, λz − t). In fact, in such medium, the adjoint equations
do not reduce to the well-known scalar acoustic isotropic wave equation.

A SELF-ADJOINT SYSTEM

Bube et al. (2016) modify the forward equations making it self-adjoint in order to achieve
stability. One possible way to make the system self-adjoint is to define

R =
√
C =

[
r11 r13

r13 r33

]
, (15)

and rewrite the system as
∂2
t σ = RDRσ, (16)

or {
∂2
t σx = r11(∂2

x + ∂2
y)(r11σx + r13σz) + r13∂

2
z (r13σx + r33σz),

∂2
t σz = r13(∂2

x + ∂2
y)(r11σx + r13σz) + r33∂

2
z (r13σx + r33σz).

(17)

Because C is always symmetric and positive semi-definite when ε ≥ δ, R exists and is also
symmetric and positive semi-definite.

Equations 16 correctly captures the kinematics of the original equations 2. It can be
shown that the two systems have the same dispersion relation

det(CD̂ + ω2I) = det(RD̂R+ ω2I), (18)

where

D̂ = −
[
k2
x + k2

y

k2
z

]
. (19)
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Moreover, if C is nonsingular, system 2 is equivalent to system 17 by a change of variable
σ → Rσ. The adjoint system 8 is also equivalent to the newly derived system by a similar
change of variable λ→ R−1σ. Despite this equivalence, system 17 is stable. This is because
both equations in this system reduce to the scalar acoustic wave equation in isotropic
media. In fact, in isotropic media, the equivalence among above systems break because C
is singular.

The gradients of the objective function with respect to rij are

∂χ

∂r11
=
∫ T

0

[
λx(∂2

x + ∂2
y)(r11σx + r13σz) + σx(∂2

x + ∂2
y)(r11λx + r13λz)

]
dt, (20)

∂χ

∂r13
=
∫ T

0

[
λx∂

2
z (r13σx + r33σz) + λz(∂2

x + ∂2
y)(r11σx + r13σz)+

σx∂
2
z (r13λx + r33λz) + σz(∂2

x + ∂2
y)(r11λx + r13λz)

]
dt,

(21)

∂χ

∂r33
=
∫ T

0

[
λz∂

2
z (r13σx + r33σz) + σz∂

2
z (r13λx + r33λz)

]
dt. (22)

Elements of R are computed from trace and determinant of C

r11 =
v

t
(1 + 2ε+ s), (23)

r13 =
v

t

√
1 + 2δ, (24)

r33 =
v

t
(1 + s), (25)

where
s =

√
2(ε− δ), t =

√
2(ε+ 1) + 2s. (26)

Since s =
√

2(ε− δ) can be zero, derivatives of s with respect to either ε or δ can become
unbounded. As a result, one has to define new variables

α =1 + s, (27)

β =
√

1 + 2δ. (28)

so that

r11 =
v

t
(β2 + α2 − α), (29)

r13 =
vβ

t
, (30)

r33 =
vα

t
, (31)

with
t =

√
α2 + β2. (32)

Now the gradients with respect to (v, α, β) can be computed from change rule

∂χ

∂v
=

∂χ

∂r11

β2 + α2 − α
t

+
∂χ

∂r13

β

t
+

∂χ

∂r33

α

t
, (33)

∂χ

∂α
=

∂χ

∂r11

v(α3 + αβ2 − β3)
t3

− ∂χ

∂r13

vαβ

t3
+

∂χ

∂r33

vβ2

t3
, (34)

∂χ

∂β
=

∂χ

∂r11

vβ(α2 + α+ β2)
t3

+
∂χ

∂r13

vα2

t3
− ∂χ

∂r33

vαβ

t3
. (35)
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After the inversion, (ε, δ) can be obtained by

δ =
β2 − 1

2
, (36)

ε =
(α− 1)2

2
+ δ. (37)

Using system 17 for waveform inversion is computationally inefficient due to expensive
forward solutions and cumbersome gradient expressions involving a change of variables.
Next section seeks an alternative solution.

ANOTHER SELF-ADJOINT SYSTEM

Another way to make system 2 self-adjoint is to split the differential operator D instead
of the medium matrix C. However, taking the square root of the horizontal derivative,
∂2
x + ∂2

y , which results in a pseudo-differential operator, requires either Fourier transform
or spectral factorization and helix coordinates (Claerbout and Fomel, 2014). Instead, we
expand system 1 to three equations

∂2
t σx = c11∂

2
xσx + c11∂

2
yσy + c13∂

2
zσz,

∂2
t σy = c11∂

2
xσx + c11∂

2
yσy + c13∂

2
zσz,

∂2
t σz = c13∂

2
xσx + c13∂

2
yσy + c33∂

2
zσz,

(38)

which has the same matrix form as system 2, but with

σ =

σxσy
σz

 , C =

c11 c11 c13

c11 c11 c13

c13 c13 c33

 , D =

∂2
x

∂2
y

∂2
z

 . (39)

The adjoint equations of system 38 are
∂2
t λx = ∂2

x(c11λx + c11λy + c13λz),
∂2
t λy = ∂2

y(c11λx + c11λy + c13λz),
∂2
t λz = ∂2

z (c13λx + c13λy + c33λz).

(40)

This adjoint system suffers the same instability as system 8.

Now to make it self-adjoint, define

D1 =
√
D =

∂x ∂y
∂z

 , (41)

and rewrite the system 38 as
∂2
t σ = D1CD1σ, (42)

or 
∂2
t σx = ∂x(c11∂xσx + c11∂yσy + c13∂zσz),
∂2
t σy = ∂y(c11∂xσx + c11∂yσy + c13∂zσz),
∂2
t σz = ∂z(c13∂xσx + c13∂yσy + c33∂zσz).

(43)
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It can be verified that systems 2 and 42 have the same dispersion relation, i.e. they describe
the same kinematics

det(CD̂ + ω2I) = det(D̂1CD̂1 + ω2I), (44)

where

D̂ = −

k2
x

k2
y

k2
z

 , D̂1 =

ikx iky
ikz

 . (45)

Moreover, if one applies D1 on both sides of system 38 and make a change of variables
σ′ = D1σ, they would arrive at system 43. This means that if (σx, σx, σz) is a smooth
solution of system 38, (∂xσx, ∂yσx, ∂zσz) is a solution of system 43.

The gradients of the objective function with respect to cij now are

∂χ

∂c11
=
∫ T

0
(∂xλx + ∂yλy)(∂xσx + ∂yσy)dt, (46)

∂χ

∂c13
=
∫ T

0
(∂xλx + ∂yλy)∂zσz + (∂xσx + ∂yσy)∂zλzdt, (47)

∂χ

∂c33
=
∫ T

0
∂zλz∂zσzdt, (48)

from which gradients with respect to (v, ε, δ) can be computed from chain rule as before
(equations 12, 13, and 14).

Solving system 43 requires staggered grid finite difference methods. Figure 1 shows
grid location of wavefield variables and medium parameters. Advantages of this system
include efficient forward solution, simple expressions for gradients, and colocation of medium
parameters. Numerial experiments, however, show that even though system 43 is self-
adjoint, it is unstable. Indeed, if one integrates system 40, which is unstable, one can prove
that (σx, σy, σz) = (

∫
x λx,

∫
y λy,

∫
z λz) is also a solution of system 38.

X	

Y	

Z	

cij ,∂iσ i ,∂iλi

σ x ,λx
σ y ,λy
σ z ,λz

Figure 1: Staggered grids for system 38. [NR] mypaper/. grid

NON-SELF-ADJOINT BUT STABLE SYSTEM

Fowler et al. (2010) show that system 1 is a member of a family of infinitely many kinemat-
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ically equivalent wave equations. This section seeks to find a stable system in this family.
The general form of this family of equations is{

∂2
t σx =

[
a1(∂2

x + ∂2
y) + a2∂

2
z

]
σx +

[
b1(∂2

x + ∂2
y) + b2∂

2
z

]
σz,

∂2
t σz =

[
c1(∂2

x + ∂2
y) + c2∂

2
z

]
σx +

[
d1(∂2

x + ∂2
y) + d2∂

2
z

]
σz,

(49)

or

∂2
t σ =

[
A B
C D

]
σ, (50)

where A = a1(∂2
x + ∂2

y) + a2∂
2
z and so on. The adjoint equations are

∂2
t λ =

[
AT CT

BT DT

]
λ, (51)

or {
∂2
t λx = (∂2

x + ∂2
y)(a1λx + c1λz) + ∂2

z (a2λx + c2λz),
∂2
t λz = (∂2

x + ∂2
y)(b1λx + d1λz) + ∂2

z (b2λx + d2λz).
(52)

Derivatives with respect to these coefficients (ai, bi, ci, di) are

∂χ

∂a1
=
∫ T

0
λx(∂2

x + ∂2
y)σxdt, (53)

∂χ

∂a2
=
∫ T

0
λx∂

2
zσxdt, (54)

∂χ

∂b1
=
∫ T

0
λx(∂2

x + ∂2
y)σzdt, (55)

∂χ

∂b2
=
∫ T

0
λx∂

2
zσzdt, (56)

∂χ

∂c1
=
∫ T

0
λz(∂2

x + ∂2
y)σxdt, (57)

∂χ

∂c2
=
∫ T

0
λz∂

2
zσxdt, (58)

∂χ

∂d1
=
∫ T

0
λz(∂2

x + ∂2
y)σzdt, (59)

∂χ

∂d2
=
∫ T

0
λz∂

2
zσzdt. (60)

For the this system to correctly describe the kinematics, its dispersion relation has to
be equal to that of system 2, which results in five constraints on eight medium parameters
(ai, bi, ci, di)

a1 + d1 = c11, (61)
a2 + d2 = c33, (62)

a1d1 − b1c1 = 0, (63)
a2d2 − b2c2 = 0, (64)

a1d2 + a2d1 − b1c2 − b2c1 = c11c33 − c2
13. (65)
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These constraints form an under-determined system. There are infinitely many equivalent
solutions. Appendix B systematically shows that members of this family of equations with
have zero parameter coeffficients are all unstable. There are still multiple solutions with all
non-zero coefficients to consider. To simplify algebra and latter computation, one choice is
to have symmetric operators

b1 = c1 =
1
2
rv2
x, (66)

b2 = c2 =
1
2
rv2. (67)

Other coefficients can be expressed in terms of (r, vx, v) as

(a1, d1) =
1
2
v2
x

(
1±

√
1− r2

)
, (68)

(a2, d2) =
1
2
v2
(

1∓
√

1− r2
)
. (69)

Substitute the above expressions into the last constraint 65 and solve for

r =
vn
vx
. (70)

To compute the gradients, define new variables

α =
√

2(ε− δ), (71)

β =
√

1 + 2ε, (72)

γ =
√
β2 − α2, (73)

so that

1 + 2δ = γ2, vx = vβ, vn = vγ, r =
γ

β
,
√

1− r2 =
α

β
, (74)

and

(a1, d1) =
1
2
v2β (β ± α) , (75)

(a2, d2) =
1
2
v2

(
1∓ α

β

)
, (76)

b1 = c1 =
1
2
v2βγ, (77)

b2 = c2 =
1
2
v2 γ

β
. (78)
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Now derivatives with respect to (v, α, β) can be computed from chain rule

∂χ

∂v
= v

{
∂χ

∂a1
β(β + α) +

∂χ

∂d1
β(β − α) +

∂χ

∂a2

(
1− α

β

)
+
∂χ

∂d2

(
1 +

α

β

)
+γ
[(

∂χ

∂b1
+
∂χ

∂c1

)
β +

(
∂χ

∂b2
+
∂χ

∂c2

)
1
β

]}
,

(79)

∂χ

∂α
=

1
2
v2

{(
∂χ

∂a1
− ∂χ

∂d1

)
β −

(
∂χ

∂a2
− ∂χ

∂d2

)
1
β

−α
γ

[(
∂χ

∂b1
+
∂χ

∂c1

)
β +

(
∂χ

∂b2
+
∂χ

∂c2

)
1
β

]}
,

(80)

∂χ

∂β
=

1
2
v2

{(
∂χ

∂a1
− ∂χ

∂d1

)
(2β + α) +

(
∂χ

∂a2
− ∂χ

∂d2

)
α

β2

−1
γ

[(
∂χ

∂b1
+
∂χ

∂c1

)
(2β2 − α2) +

(
∂χ

∂b2
+
∂χ

∂c2

)
α2

β2

]}
,

(81)

After the inversion, (ε, δ) can be retrieved from (α, β) by

ε =
β2 − 1

2
, (82)

δ = ε− α2

2
. (83)

As with our stable self-adjoint system 17, using system 49 involves a change of variables
and cumbersome expressions for the gradients, but the forward equations are slightly more
computationally efficient.

APPENDIX A: ADJOINTS OF COMMON DERIVATIVES

Define functional inner product as

〈u, v〉 =
∫ T

0

∫
Ω
uvdxdt. (A-1)

Adjoint operator is defined by
〈u, Lv〉 = 〈L∗u, v〉. (A-2)

For a particular form of L = ∂2
x

〈u, Lv〉 = 〈u, ∂2
xv〉 =

∫ T

0

∫
Ω
u∂2

xvdxdt (A-3)

=
∫ T

0

∫
Ωyz

u∂xvdydzdt|Ωx −
∫ T

0

∫
Ωyz

v∂xudydzdt|Ωx +
∫ T

0

∫
Ω
v∂2

xudxdt (A-4)

=
∫ T

0

∫
Ω
v∂2

xudxdt = 〈∂2
xu, v〉. (A-5)

where integration by parts has been carried out twice in the x-direction and boundary
conditions u|Ωx = v|Ωx = 0. So by definition, L = ∂2

x is self-adjoint L∗ = ∂2
x.
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Similarly, for L = c∂2
x, where c can be velocity or any medium parameter,

〈u, Lv〉 = 〈u, c∂2
xv〉 = 〈cu, ∂2

xv〉 = 〈∂2
xcu, v〉. (A-6)

As a result, this operator is not self-adjoint L∗ = ∂2
xc.

One can easily find the adjoints of the following common differential operators

L L∗ Self-adjoint
∂2
i ∂2

i yes
c∂2
i ∂2

i c no
a∂2

i b b∂2
i a no

∂i −∂i no
a∂ib −b∂ia no
∂ic∂j ∂jc∂i no

APPENDIX B: MEMBER SYSTEMS WITH ZERO COEFFICIENTS

Because of constraint equations 63, a1d1 = b1c1, and 64, a2d2 = b2c2, if one of the coeffi-
cients, ai, bi, ci, di, is zero, at least one other must also vanish.

Case 1: a1 = b1 = 0

System 49 becomes{
∂2
t σx = a2∂

2
zσx + b2∂

2
zσz,

∂2
t σz =

[
c1(∂2

x + ∂2
y) + c2∂

2
z

]
σx +

[
d1(∂2

x + ∂2
y) + d2∂

2
z

]
σz.

(B-1)

Case 1.1: a2b2 6= 0 and c2d2 6= 0

Because of equation 64, define r = a2
c2

= b2
d2

. Because r 6= 0, multiply the second equation
in B-1 by r and subtract the first equation, resulting in an equivalent system{

∂2
t σx = a2∂

2
zσx + b2∂

2
zσz,

∂2
t (rσz − σx) = rc1(∂2

x + ∂2
y)σx + rd1(∂2

x + ∂2
y)σz,

(B-2)

which, after a change of variable σ′z = rσz − σx or σz = σ′
z+σx

r , becomes{
∂2
t σx = (a2 + b2

r )∂2
zσx + b2

r ∂
2
zσ
′
z,

∂2
t σ
′
z = (rc1 + d1)(∂2

x + ∂2
y)σx + d1(∂2

x + ∂2
y)σ′z.

(B-3)

This system is a special case of the general system 49 with a1 = b1 = c2 = d2 = 0.

Case 1.2: a2b2 6= 0 and c2d2 = 0

Constraint 64 dictates that c2 = d2 = 0, which leads us back to the above case of a1 = b1 =
c2 = d2 = 0.
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Case 1.3: a2b2 = 0 and c2d2 6= 0

In this case, a2 = b2 = 0, resulting in no solution because constraint 65 is violated.

Case 1.4: a2b2 = c2d2 = 0

This results in four cases

• a2 = c2 = 0: this case has a solution.

• a2 = d2 = 0: violation of constraint 62.

• b2 = c2 = 0: the five constraints reduce to

d1 = c11, (B-4)
a2 + d2 = c33, (B-5)
a2d2 = 0, (B-6)

a2d1 = c11c33 − c2
13. (B-7)

The last constraint requires that a2 6= 0, so d2 = 0, which, means a2 = c33. This does
not satisfy the last constraints.

• b2 = d2 = 0: the five constraints reduce to

d1 = c11, (B-8)
a2 = c33, (B-9)

a2d1 = c11c33 − c2
13, (B-10)

in which the last constraint is not satisfied.

In conclusion, for the case a1 = b1 = 0, there are two solutions a1 = b1 = c2 = d2 = 0
and a1 = b1 = a2 = c2 = 0. The first solution results in

a2 = c33, (B-11)
d1 = c11, (B-12)

b2c1 = c2
13. (B-13)

If one chooses b2 = c1 = c13 for example, one gets the system{
∂2
t σx = c33∂

2
zσx + c13∂

2
zσz,

∂2
t σz = c13(∂2

x + ∂2
y)σx + c11(∂2

x + ∂2
y)σz.

(B-14)

The second solution results in

d1 = c11, (B-15)
d2 = c33, (B-16)

b2c1 = c2
13 − c11c33 = v4(δ − ε). (B-17)
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If one chooses b2 = v2(δ − ε) and c1 = v2 for example, one gets the system{
∂2
t σx = v2(δ − ε)∂2

zσz,

∂2
t σz = v2(∂2

x + ∂2
y)σx +

[
v2(1 + 2ε)(∂2

x + ∂2
y) + v2∂2

z

]
σz.

(B-18)

Exchanging b2 and c1 results in{
∂2
t σx = v2∂2

zσz,

∂2
t σz = v2(δ − ε)(∂2

x + ∂2
y)σx +

[
v2(1 + 2ε)(∂2

x + ∂2
y) + v2∂2

z

]
σz.

(B-19)

Case 2: a1 = c1 = 0

This case is similar to the case b1 = d1 = 0, considered below, if one interchanges σx ↔ σz.

Case 3: b1 = d1 = 0

System 49 becomes {
∂2
t σx =

[
a1(∂2

x + ∂2
y) + a2∂

2
z

]
σx + b2∂

2
zσz,

∂2
t σz =

[
c1(∂2

x + ∂2
y) + c2∂

2
z

]
σx + d2∂

2
zσz,

(B-20)

Similar analysis as in the first case applies.

Case 3.1: a2b2 6= 0 and c2d2 6= 0

Define r = a2
c2

= b2
d2

, multiply the second equation in B-20 by r, and subtract from the first
equation {

∂2
t σx =

[
a1(∂2

x + ∂2
y) + a2∂

2
z

]
σx + b2∂

2
zσz,

∂2
t (σx − rσz) = (a1 − rc1)(∂2

x + ∂2
y)σx,

(B-21)

which, after a change of variable σ′z = σx − rσz or σz = σx−σ′
z

r , becomes

{
∂2
t σx =

[
a1(∂2

x + ∂2
y) + (a2 + b2

r )∂2
z

]
σx − b2

r ∂
2
zσ
′
z,

∂2
t σ
′
z = (a1 − rc1)(∂2

x + ∂2
y)σx.

(B-22)

This system is a special case of the general system 49 with b1 = d1 = c2 = d2 = 0.

Case 3.2: a2b2 6= 0 and c2d2 = 0

In this case, c2 = d2 = 0, which leads us back to the above case of b1 = d1 = c2 = d2 = 0.
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Case 3.3: a2b2 = 0 and c2d2 6= 0

In this case, a2 = b2 = 0, the five constraints reduce to

a1 = c11, (B-23)
d2 = c33, (B-24)

a1d2 = c11c33 − c2
13. (B-25)

There is no solution because the last constraint is not satisfied.

Case 3.4: a2b2 = c2d2 = 0

Consider four cases

• a2 = c2 = 0: this case has a solution.

• a2 = d2 = 0: violation of constraint 62.

• b2 = c2 = 0: the five constraints reduce to

a1 = c11, (B-26)
a2 + d2 = c33, (B-27)
a2d2 = 0, (B-28)

a1d2 = c11c33 − c2
13. (B-29)

The last constraint requires that d2 6= 0, so a2 = 0, which, means d2 = c33. This does
not satisfy the last constraints.

• b2 = d2 = 0: violation of constraint 65.

In conclusion, for the case b1 = d1 = 0, there are two solutions b1 = d1 = c2 = d2 = 0
and b1 = d1 = a2 = c2 = 0. The first solution results in

a1 = c11, (B-30)
a2 = c33, (B-31)

b2c1 = c2
13 − c11c33 = v4(δ − ε). (B-32)

If one chooses b2 = v2 and c1 = v2(δ − ε) for example, one gets the system{
∂2
t σx =

[
v2(1 + 2ε)(∂2

x + ∂2
y) + v2∂2

z

]
σx + v2∂2

zσz,

∂2
t σz = v2(δ − ε)(∂2

x + ∂2
y)σx,

(B-33)

Exchanging b2 and c1 gives{
∂2
t σx =

[
v2(1 + 2ε)(∂2

x + ∂2
y) + v2∂2

z

]
σx + v2(δ − ε)∂2

zσz,

∂2
t σz = v2(∂2

x + ∂2
y)σx,

(B-34)
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The second solution results in

a1 = c11, (B-35)
d2 = c33, (B-36)

b2c1 = c2
13. (B-37)

If one chooses b2 = c1 = c13 for example, one gets back the system 1{
∂2
t σx = c11(∂2

x + ∂2
y)σx + c13∂

2
zσz,

∂2
t σz = c13(∂2

x + ∂2
y)σx + c33∂

2
zσz.

(B-38)

Case 4: c1 = d1 = 0

This case is similar to the case a1 = b1 = 0, already considered above, if one interchanges
σx ↔ σz.

The above four cases consider what happens when two of four coefficients (a1, b1, c1, d1)
is zero. Analysis of four other cases when two of (a2, b2, c2, d2) becomes zero is similar by
just interchanging (∂2

x + ∂2
y) ↔ ∂2

z . Unfortunately, none of the above analyzed solutions
produces stable forward and adjoint systems. The only stable solution is one with all
non-zero coefficients.
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