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ABSTRACT

We discover that the adjoint system of the second-order pseudo-acoustic
anisotropic wave equations that we have implemented in previous work has unsta-
ble solutions and propose two possible alternative systems. The unstable solutions
have magnitude that grows linearly with time and does not propagate spatially.
This is not the kind of numerical instability that occurs when the propagation
timestep does not satisfy the CFL condition. This instability is inherent to this
particular type of wave equations. In fact, there is a family of unstable wave
equations that all describe the same kinematics. The key to stability for this
type of pseudo-acoustic anisotropic wave equations is not whether the system is
self-adjoint but whether it reduces to the scalar wave equation in isotropic media.

INTRODUCTION

The pseudo-acoustic anisotropic wave equations were introduced by Alkhalifah (2000)
to avoid having to process shear waves. This system of equations is derived by
setting shear wave velocities along symmetry axes to zeros in the dispersion relation.
The most computationally efficient form is the system of coupled second-order wave
equations, which has been commonly used in reverse time migration (Fletcher et al.,
2009; Duveneck and Bakker, 2011; Zhang et al., 2011). There are several properties
to know about this kind of pseudo-acoustic anisotropic wave equations.

1. Even though shear wave velocity is set to zero, the solution space still encom-
passes residual shear waves. These residual shear waves manifest as dimond-
shaped artifacts and can be easily reduced when the source injection location
is in isotropic media, for example in marine environments (Alkhalifah, 2000).
Complete suppression of this artifact requires projection onto a solution sub-
space (Le and Levin, 2014; Maharramov et al., 2015; Xu and Zhou, 2014).

2. There is actually a family of infinite number of equivalent systems of wave
equations that all come from the same dispersion relation (Fowler et al., 2010).
These systems similarly describe P-wave kinematics but behave differently in
terms of amplitude.
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Le et al. 2 Adjoint instability

3. All members of this family of pseudo-acoustic wave equations suffer from inher-
ent weak instability (Bube et al., 2012). This instability is a result of setting
shear velocity to zero combined with second-order time derivatives.

Bube et al. (2016) show that the instability of this type of second-order pseudo-
acoustic wave equations can occur in practice when numerical computation is per-
formed with low presicion. They also develop a stable and self-adjoint system by
reintroducing finite shear wave velocity and rewriting second-order derivatives a cas-
caded first-orders. We recently find that this instability problem also occurs in the
adjoint systems even with high precision numerics. The unstable solutions grow lin-
early with time and are stationary (i.e. does not propagate spatially), as analyzed
by Bube et al. (2012). In this report, we present two alternative systems that do not
suffer from this instability. Compared to those proposed by Bube et al. (2016), our
solutions are computationally more efficient and do not require medium parameters
on different staggered grids.

NON-SELF-ADJOINT SYSTEM

The coupled second-order systems of pseudo-acoustic anisotropic wave equations are
commonly used in reverse time migration and waveform inversion due to its com-
putational efficiency and capability to acurately describe P-wave kinematics. One
particular form of such system is{

∂2
t σx = c11(∂2

x + ∂2
y)σx + c13∂

2
zσz,

∂2
t σz = c13(∂2

x + ∂2
y)σx + c33∂

2
zσz,

(1)

which can be written in matrix form as

∂2
t σ = CDσ, (2)

where σ is the stresses, C is the density-normalized stiffness matrix, and D is the
derivative matrix

σ =

[
σx
σz

]
, C =

[
c11 c13

c13 c33

]
, D =

[
∂2
x + ∂2

y

∂2
z

]
. (3)

The elements of stiffness matrix C are related to vertical velocity, v, horizontal ve-
locity, vx, NMO velocity, vn, and Thomsen parameters, ε and δ by

c11 = v2(1 + 2ε) = v2
x, (4)

c13 = v2
√

1 + 2δ = vvn, (5)

c33 = v2. (6)

Spatial derivatives on the right hand side of system 1 have form of c∂2
i , which is

not self-adjoint (Appendix A). The adjoint system is

∂2
t λ = DCλ, (7)
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or {
∂2
t λx = (∂2

x + ∂2
y)(c11λx + c13λz),

∂2
t λz = ∂2

z (c13λx + c33λz),
(8)

where λ =

[
λx
λz

]
is the adjoint wave fields.

The gradients of the objective function χ with respect to cij are

∂χ

∂c11

=

∫ T

0

λx(∂
2
x + ∂2

y)σxdt, (9)

∂χ

∂c13

=

∫ T

0

λx∂
2
zσz + λz(∂

2
x + ∂2

y)σxdt, (10)

∂χ

∂c33

=

∫ T

0

λz∂
2
zσzdt, (11)

from which gradients with respect to (v, ε, δ) can be computed from chain rule

∂χ

∂v
=

∂χ

∂c11

2v(1 + 2ε) +
∂χ

∂c13

2v
√

1 + 2δ +
∂χ

∂c33

2v, (12)

∂χ

∂ε
=

∂χ

∂c11

2v2, (13)

∂χ

∂δ
=

∂χ

∂c13

v2

√
1 + 2δ

. (14)

Unfortunately, the above adjoint equations have solutions that grow linearly with
time. The unstable solutions seem to have zero wave speed and does not propagate
spatially. This is the kind of weak instability that is inherent to this type of pseudo-
acoustic wave equations (Bube et al., 2012). Figure 1 shows the XZ palnes of two
adjoint wavefields in a homogeneous isotropic medium. Notice the stationary insta-
bility points at injection location. Figure 2 shows the time evolutions of these adjoint
wavefields at every second. Interestingly, the two adjoint wavefields have opposite lin-
early growing solutions. From equations 8, it is easy to see that, for isotropic media
(c11 = c13 = c33), if (λx, λz) is a solution, so is (λx+t, λz−t). In fact, in such medium,
the adjoint equations do not reduce to the well-known scalar acoustic isotropic wave
equation. All simulations are performed in three dimensions.

A SELF-ADJOINT SYSTEM

Bube et al. (2016) modify the forward equations making it self-adjoint in order to
achieve stability. One possible way to make the system self-adjoint is to define

R =
√
C =

[
r11 r13

r13 r33

]
, (15)
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(a) (b)

Figure 1: XZ planes of adjoint wavefields λx (a) and λz (b) at 0.8 seconds show
stationary instability at the source locations. [ER]

(a) (b)

Figure 2: Time evolutions of adjoint wavefields λx (a) and λz (b) at every second
show the linearly growing instability. [ER]
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and rewrite the system as
∂2
t σ = RDRσ, (16)

or {
∂2
t σx = r11(∂2

x + ∂2
y)(r11σx + r13σz) + r13∂

2
z (r13σx + r33σz),

∂2
t σz = r13(∂2

x + ∂2
y)(r11σx + r13σz) + r33∂

2
z (r13σx + r33σz).

(17)

Because C is always symmetric and positive semi-definite when ε ≥ δ, R exists and
is also symmetric and positive semi-definite.

Equations 16 correctly captures the kinematics of the original equations 2. It can
be shown that the two systems have the same dispersion relation

det(CD̂ + ω2I) = det(RD̂R + ω2I), (18)

where

D̂ = −
[
k2
x + k2

y

k2
z

]
. (19)

Moreover, if C is nonsingular, system 2 is equivalent to system 17 by a change of
variable σ → Rσ. The adjoint system 8 is also equivalent to this newly derived
system by a similar change of variable λ → R−1σ. Despite this equivalence, system
17 is stable. This is because both equations in this system reduce to the scalar acoustic
wave equation in isotropic media. In fact, in isotropic media, the equivalence among
these systems break because C is singular.

The gradients of the objective function with respect to rij are

∂χ

∂r11

=

∫ T

0

[
λx(∂

2
x + ∂2

y)(r11σx + r13σz) + σx(∂
2
x + ∂2

y)(r11λx + r13λz)
]
dt, (20)

∂χ

∂r13

=

∫ T

0

[
λx∂

2
z (r13σx + r33σz) + λz(∂

2
x + ∂2

y)(r11σx + r13σz)+

σx∂
2
z (r13λx + r33λz) + σz(∂

2
x + ∂2

y)(r11λx + r13λz)
]
dt,

(21)

∂χ

∂r33

=

∫ T

0

[
λz∂

2
z (r13σx + r33σz) + σz∂

2
z (r13λx + r33λz)

]
dt. (22)

Elements of R are computed from trace and determinant of C

r11 =
v

t
(1 + 2ε+ s), (23)

r13 =
v

t

√
1 + 2δ, (24)

r33 =
v

t
(1 + s), (25)

where
s =

√
2(ε− δ), t =

√
2(ε+ 1) + 2s. (26)
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Since s =
√

2(ε− δ) can be zero, derivatives of s with respect to either ε or δ can
become unbounded. As a result, one has to define new variables

α =1 + s, (27)

β =
√

1 + 2δ. (28)

so that

r11 =
v

t
(β2 + α2 − α), (29)

r13 =
vβ

t
, (30)

r33 =
vα

t
, (31)

with
t =

√
α2 + β2. (32)

Now the gradients with respect to (v, α, β) can be computed from change rule

∂χ

∂v
=

∂χ

∂r11

β2 + α2 − α
t

+
∂χ

∂r13

β

t
+

∂χ

∂r33

α

t
, (33)

∂χ

∂α
=

∂χ

∂r11

v(α3 + αβ2 − β3)

t3
− ∂χ

∂r13

vαβ

t3
+

∂χ

∂r33

vβ2

t3
, (34)

∂χ

∂β
=

∂χ

∂r11

vβ(α2 + α + β2)

t3
+

∂χ

∂r13

vα2

t3
− ∂χ

∂r33

vαβ

t3
. (35)

After the inversion, (ε, δ) can be obtained by

δ =
β2 − 1

2
, (36)

ε =
(α− 1)2

2
+ δ. (37)

Using system 17 for waveform inversion is computationally inefficient due to ex-
pensive forward solutions and cumbersome gradient expressions involving a change
of variables. Next section seeks an alternative solution.

ANOTHER SELF-ADJOINT SYSTEM

Another way to make system 2 self-adjoint is to split the differential operator D
instead of the medium matrix C. However, taking the square root of the horizon-
tal derivative, ∂2

x + ∂2
y , which results in a pseudo-differential operator, requires ei-

ther Fourier transform or spectral factorization and helix coordinates (Claerbout and
Fomel, 2014). Instead, we expand system 1 to three equations

∂2
t σx = c11∂

2
xσx + c11∂

2
yσy + c13∂

2
zσz,

∂2
t σy = c11∂

2
xσx + c11∂

2
yσy + c13∂

2
zσz,

∂2
t σz = c13∂

2
xσx + c13∂

2
yσy + c33∂

2
zσz,

(38)
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which has the same matrix form as system 2, but with

σ =

σxσy
σz

 , C =

c11 c11 c13

c11 c11 c13

c13 c13 c33

 , D =

∂2
x

∂2
y

∂2
z

 . (39)

The adjoint equations of system 38 are
∂2
t λx = ∂2

x(c11λx + c11λy + c13λz),

∂2
t λy = ∂2

y(c11λx + c11λy + c13λz),

∂2
t λz = ∂2

z (c13λx + c13λy + c33λz).

(40)

This adjoint system suffers the same instability as system 8.

Now to make it self-adjoint, define

D1 =
√
D =

∂x ∂y
∂z

 , (41)

and rewrite the system 38 as
∂2
t σ = D1CD1σ, (42)

or 
∂2
t σx = ∂x(c11∂xσx + c11∂yσy + c13∂zσz),

∂2
t σy = ∂y(c11∂xσx + c11∂yσy + c13∂zσz),

∂2
t σz = ∂z(c13∂xσx + c13∂yσy + c33∂zσz).

(43)

It can be verified that systems 2 and 42 have the same dispersion relation, i.e. they
describe the same kinematics

det(CD̂ + ω2I) = det(D̂1CD̂1 + ω2I), (44)

where

D̂ = −

k2
x

k2
y

k2
z

 , D̂1 =

ikx iky
ikz

 . (45)

Moreover, if one applies D1 on both sides of system 38 and make a change of variables
σ′ = D1σ, they would arrive at system 43. This means that if (σx, σx, σz) is a smooth
solution of system 38, (∂xσx, ∂yσx, ∂zσz) is a solution of system 43.

The gradients of the objective function with respect to cij now are

∂χ

∂c11

=

∫ T

0

(∂xλx + ∂yλy)(∂xσx + ∂yσy)dt, (46)

∂χ

∂c13

=

∫ T

0

(∂xλx + ∂yλy)∂zσz + (∂xσx + ∂yσy)∂zλzdt, (47)

∂χ

∂c33

=

∫ T

0

∂zλz∂zσzdt, (48)
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from which gradients with respect to (v, ε, δ) can be computed from chain rule as
before (equations 12, 13, and 14).

Solving system 43 requires staggered grid finite difference methods. Figure 3
shows grid locations of wavefield variables and medium parameters. Advantages of
this system include efficient forward solution, simple expressions for gradients, and
co-location of medium parameters. Numerial experiments, however, show that even
though system 43 is self-adjoint, it is unstable. Indeed, if one integrates system
40, which is unstable, one can prove that (σx, σy, σz) = (

∫
x
λx,
∫
y
λy,
∫
z
λz) is also a

solution of system 38.

X	

Y	

Z	

cij ,∂iσ i ,∂iλi

σ x ,λx
σ y ,λy
σ z ,λz

Figure 3: Staggered grids for system 38. [NR]

NON-SELF-ADJOINT BUT STABLE SYSTEM

Fowler et al. (2010) show that system 1 is a member of a family of infinitely many
kinematically equivalent wave equations. This section attempts to find a stable system
in this family. The general form of this family of equations is{

∂2
t σx =

[
a1(∂2

x + ∂2
y) + a2∂

2
z

]
σx +

[
b1(∂2

x + ∂2
y) + b2∂

2
z

]
σz,

∂2
t σz =

[
c1(∂2

x + ∂2
y) + c2∂

2
z

]
σx +

[
d1(∂2

x + ∂2
y) + d2∂

2
z

]
σz,

(49)

or

∂2
t σ =

[
A B
C D

]
σ, (50)

where A = a1(∂2
x + ∂2

y) + a2∂
2
z and so on. The adjoint equations are

∂2
t λ =

[
AT CT

BT DT

]
λ, (51)

or {
∂2
t λx = (∂2

x + ∂2
y)(a1λx + c1λz) + ∂2

z (a2λx + c2λz),

∂2
t λz = (∂2

x + ∂2
y)(b1λx + d1λz) + ∂2

z (b2λx + d2λz).
(52)
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Derivatives with respect to these coefficients (ai, bi, ci, di) are

∂χ

∂a1

=

∫ T

0

λx(∂
2
x + ∂2

y)σxdt, (53)

∂χ

∂a2

=

∫ T

0

λx∂
2
zσxdt, (54)

∂χ

∂b1

=

∫ T

0

λx(∂
2
x + ∂2

y)σzdt, (55)

∂χ

∂b2

=

∫ T

0

λx∂
2
zσzdt, (56)

∂χ

∂c1

=

∫ T

0

λz(∂
2
x + ∂2

y)σxdt, (57)

∂χ

∂c2

=

∫ T

0

λz∂
2
zσxdt, (58)

∂χ

∂d1

=

∫ T

0

λz(∂
2
x + ∂2

y)σzdt, (59)

∂χ

∂d2

=

∫ T

0

λz∂
2
zσzdt. (60)

For the this system to correctly describe the kinematics, its dispersion relation
has to be equal to that of system 2, which results in five constraints on eight medium
parameters (ai, bi, ci, di)

a1 + d1 = c11, (61)

a2 + d2 = c33, (62)

a1d1 − b1c1 = 0, (63)

a2d2 − b2c2 = 0, (64)

a1d2 + a2d1 − b1c2 − b2c1 = c11c33 − c2
13. (65)

These constraints form an under-determined system. There are infinitely many equiv-
alent solutions. Appendix B systematically shows that members of this family of
equations with have zero parameter coeffficients are all unstable. There are still mul-
tiple solutions with all non-zero coefficients to consider. To simplify algebra and latter
computation, one choice is to have symmetric operators

b1 = c1 =
1

2
rv2

x, (66)

b2 = c2 =
1

2
rv2. (67)

Other coefficients can be expressed in terms of (r, vx, v) as

(a1, d1) =
1

2
v2
x

(
1±
√

1− r2
)
, (68)

(a2, d2) =
1

2
v2
(

1∓
√

1− r2
)
. (69)
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Substitute the above expressions into the last constraint 65 and solve for

r =
vn
vx
. (70)

To compute the gradients, define new variables

α =
√

2(ε− δ), (71)

β =
√

1 + 2ε, (72)

γ =
√
β2 − α2, (73)

so that
1 + 2δ = γ2, vx = vβ, vn = vγ, r =

γ

β
,
√

1− r2 =
α

β
, (74)

and

(a1, d1) =
1

2
v2β (β ± α) , (75)

(a2, d2) =
1

2
v2

(
1∓ α

β

)
, (76)

b1 = c1 =
1

2
v2βγ, (77)

b2 = c2 =
1

2
v2 γ

β
. (78)

Now derivatives with respect to (v, α, β) can be computed from chain rule

∂χ

∂v
= v

{
∂χ

∂a1

β(β + α) +
∂χ

∂d1

β(β − α) +
∂χ

∂a2

(
1− α

β

)
+
∂χ

∂d2

(
1 +

α

β

)
+γ

[(
∂χ

∂b1

+
∂χ

∂c1

)
β +

(
∂χ

∂b2

+
∂χ

∂c2

)
1

β

]}
,

(79)

∂χ

∂α
=

1

2
v2

{(
∂χ

∂a1

− ∂χ

∂d1

)
β −

(
∂χ

∂a2

− ∂χ

∂d2

)
1

β

−α
γ

[(
∂χ

∂b1

+
∂χ

∂c1

)
β +

(
∂χ

∂b2

+
∂χ

∂c2

)
1

β

]}
,

(80)

∂χ

∂β
=

1

2
v2

{(
∂χ

∂a1

− ∂χ

∂d1

)
(2β + α) +

(
∂χ

∂a2

− ∂χ

∂d2

)
α

β2

−1

γ

[(
∂χ

∂b1

+
∂χ

∂c1

)
(2β2 − α2) +

(
∂χ

∂b2

+
∂χ

∂c2

)
α2

β2

]}
,

(81)

After the inversion, (ε, δ) can be retrieved from (α, β) by

ε =
β2 − 1

2
, (82)

δ = ε− α2

2
. (83)
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As with our stable self-adjoint system 17, using system 49 involves a change of
variables and cumbersome expressions for the gradients, but the forward equations
are computationally more efficient.

CORRECT ADJOINT AND TIME-REVERSED
FORWARD

Both of the above proposed solutions (equations 17 and 49) are significantly more
expensive than the original adjoint equations 8. Instead of using the correct ad-
joint equations, one might time-reverse the forward equations to compute the adjoint
wavefields. In this section, we study how incorrect adjoints affect the convergence
of FWI. In the two following 2D synthetic examples, we have uniformly distributed
sources and receivers on the water surface and use a Ricker wavelet of 5 Hz central
frequency to model our systhetic data. We use a LBFGS solver and invert simuta-
neously for velocity, v, and Thomsen parameters, ε and δ. We do not concern with
parameterization and trade-off in these experiments.

Figure 4a shows a simple velocity model (ε and δ models are similar). For this
model, we try to recover the high velocity layer at 1000 meter depth. Figure 4b
plots the objective functions of two inversions with correct adjoint and time-reversed
forward. Figures 5a and 5b respectively show the inverted velocity models after 50
iterations using the correct adjoint equations and time-reversed forward equations.
The instability of the correct adjoint equations does not affect our inversion because
it is stationary at injection locations (receivers, for adjoint equations). These figures
show that upon convergence, the incorrect adjoint performs just as well as the correct
one. Figures 6a and 6b show the inverted models after only 12 iterations, at which the
two objective functions are most different. As one expects, the correct adjoint gives
a slightly better result. Although, the two inversions carry out the same number of
objective function and gradient evaluations per iteration, a more truly cost compar-
ison is between correct adjoint iteration 12th (Figure 6a) and time-reversed forward
iteration 18th (Figure 6c) because solving the correct adjoint equations is about 1.5
times more expensive than reversing the forward equations. In this metric, using the
time-reversed forward for adjoint wavefields actually leads to a better result.

In another experiment to understand the effect of incorrect adjoint equations,
we use BP 2007 synthetic anisotropic models. Figures 7 show the true and initial
velocity models. Figures 8a and 8b show the inverted models ater 100 iterations with
the correct adjoint and time-reversed forward. We again observe that the two methods
perform equally well if converged. This can also be seen in Figure 8c plotting the
objective functions. For such complicated model as this one, the difference between
correct and incorrect adjoints at early iterations are less significant. Figures 9a and
9b show the inverted models after 10 iterations and Figure 9c shows the inverted
model with incorrect adjoint after 15 iterations. These three results are virtually
indistinguishable.
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(a) (b)

Figure 4: Simple velocity model (a) and objective functions from two inversions (b)
using the correct adjoint and time-reversed forward. The initial model does not
include the high velocity layer at 1000 m depth. [CR]

(a) (b)

Figure 5: Inverted velocity models after 50 iterations using the correct adjoint (a)
and time-reversed forward (b). [CR]
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(a) (b)

(c)

Figure 6: Inverted velocity models after 12 iterations using the correct adjoint (a) and
time-reversed forward (b). (c) shows the inverted velocity model after 18 iterations
using the time-reversed forward. True cost comparison is between (a) and (c). [CR]

(a) (b)

Figure 7: True (a) and initial (b) velocity models from BP2007 synthetic. [CR]
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(a) (b)

(c)

Figure 8: Inverted velocity models after 100 iterations using the correct adjoint (a)
and time-reversed forward (b). Objective functions of the two inversions (c). [CR]
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(a) (b)

(c)

Figure 9: Inverted velocity models after 10 iterations using the correct adjoint (a) and
time-reversed forward (b). (c) shows the inverted velocity model after 15 iterations
using the time-reversed forward. True cost comparison is between (a) and (c). [CR]

SEP–174



Le et al. 16 Adjoint instability

CONCLUSIONS

The second-order pseudo-acoustic anisotropic wave equations can have unstable ad-
joint solutions with linearly growing magnitude and zero wave speed. This kind of
weak instability is an inherent property of this particular type of wave equations.
We propose two alternative systems of equations that are kinematically equivalent
and free of this instability. The first system is self-adjoint and obtained by split-
ting the medium parameter matrix while the second system is a generalization of the
original system with all non-zero coefficients. To use in waveform inversion, both of
these systems involve a change of variables and are computationally more expensive
than the original system. Instead, one can use the time-reversed forward wave equa-
tions to compute the gradients. Our numerical experiments indicate that in terms of
convergence, the difference between the correct and incorrect adjoints is minimal.

APPENDIX A: ADJOINTS OF COMMON DERIVATIVES

Define functional inner product as

〈u, v〉 =

∫ T

0

∫
Ω

uvdxdt. (A-1)

Adjoint operator is defined by

〈u, Lv〉 = 〈L∗u, v〉. (A-2)

For a particular form of L = ∂2
x

〈u, Lv〉 = 〈u, ∂2
xv〉 =

∫ T

0

∫
Ω

u∂2
xvdxdt (A-3)

=

∫ T

0

∫
Ωyz

u∂xvdydzdt|Ωx −
∫ T

0

∫
Ωyz

v∂xudydzdt|Ωx +

∫ T

0

∫
Ω

v∂2
xudxdt (A-4)

=

∫ T

0

∫
Ω

v∂2
xudxdt = 〈∂2

xu, v〉. (A-5)

where integration by parts has been carried out twice in the x-direction and boundary
conditions u|Ωx = v|Ωx = 0. So by definition, L = ∂2

x is self-adjoint L∗ = ∂2
x.

Similarly, for L = c∂2
x, where c can be velocity or any medium parameter,

〈u, Lv〉 = 〈u, c∂2
xv〉 = 〈cu, ∂2

xv〉 = 〈∂2
xcu, v〉. (A-6)

As a result, this operator is not self-adjoint L∗ = ∂2
xc.

One can easily find the adjoints of the following common differential operators
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L L∗ Self-adjoint
∂2
i ∂2

i yes
c∂2

i ∂2
i c no

a∂2
i b b∂2

i a no
∂i −∂i no
a∂ib −b∂ia no
∂ic∂j ∂jc∂i no

APPENDIX B: MEMBER SYSTEMS WITH ZERO
COEFFICIENTS

Because of constraint equations 63, a1d1 = b1c1, and 64, a2d2 = b2c2, if one of the
coefficients, ai, bi, ci, di, is zero, at least one other must also vanish.

Case 1: a1 = b1 = 0

System 49 becomes{
∂2
t σx = a2∂

2
zσx + b2∂

2
zσz,

∂2
t σz =

[
c1(∂2

x + ∂2
y) + c2∂

2
z

]
σx +

[
d1(∂2

x + ∂2
y) + d2∂

2
z

]
σz.

(B-1)

Case 1.1: a2b2 6= 0 and c2d2 6= 0

Because of equation 64, define r = a2

c2
= b2

d2
. Because r 6= 0, multiply the second

equation in B-1 by r and subtract the first equation, resulting in an equivalent system{
∂2
t σx = a2∂

2
zσx + b2∂

2
zσz,

∂2
t (rσz − σx) = rc1(∂2

x + ∂2
y)σx + rd1(∂2

x + ∂2
y)σz,

(B-2)

which, after a change of variable σ′z = rσz − σx or σz = σ′
z+σx

r
, becomes{

∂2
t σx = (a2 + b2

r
)∂2
zσx + b2

r
∂2
zσ
′
z,

∂2
t σ
′
z = (rc1 + d1)(∂2

x + ∂2
y)σx + d1(∂2

x + ∂2
y)σ

′
z.

(B-3)

This system is a special case of the general system 49 with a1 = b1 = c2 = d2 = 0.

Case 1.2: a2b2 6= 0 and c2d2 = 0

Constraint 64 dictates that c2 = d2 = 0, which leads us back to the above case of
a1 = b1 = c2 = d2 = 0.
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Case 1.3: a2b2 = 0 and c2d2 6= 0

In this case, a2 = b2 = 0, resulting in no solution because constraint 65 is violated.

Case 1.4: a2b2 = c2d2 = 0

This results in four cases

• a2 = c2 = 0: this case has a solution.

• a2 = d2 = 0: violation of constraint 62.

• b2 = c2 = 0: the five constraints reduce to

d1 = c11, (B-4)

a2 + d2 = c33, (B-5)

a2d2 = 0, (B-6)

a2d1 = c11c33 − c2
13. (B-7)

The last constraint requires that a2 6= 0, so d2 = 0, which, means a2 = c33. This
does not satisfy the last constraints.

• b2 = d2 = 0: the five constraints reduce to

d1 = c11, (B-8)

a2 = c33, (B-9)

a2d1 = c11c33 − c2
13, (B-10)

in which the last constraint is not satisfied.

In conclusion, for the case a1 = b1 = 0, there are two solutions a1 = b1 = c2 =
d2 = 0 and a1 = b1 = a2 = c2 = 0. The first solution results in

a2 = c33, (B-11)

d1 = c11, (B-12)

b2c1 = c2
13. (B-13)

If one chooses b2 = c1 = c13 for example, one gets the system{
∂2
t σx = c33∂

2
zσx + c13∂

2
zσz,

∂2
t σz = c13(∂2

x + ∂2
y)σx + c11(∂2

x + ∂2
y)σz.

(B-14)

The second solution results in

d1 = c11, (B-15)

d2 = c33, (B-16)

b2c1 = c2
13 − c11c33 = v4(δ − ε). (B-17)
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If one chooses b2 = v2(δ − ε) and c1 = v2 for example, one gets the system{
∂2
t σx = v2(δ − ε)∂2

zσz,

∂2
t σz = v2(∂2

x + ∂2
y)σx +

[
v2(1 + 2ε)(∂2

x + ∂2
y) + v2∂2

z

]
σz.

(B-18)

Exchanging b2 and c1 results in{
∂2
t σx = v2∂2

zσz,

∂2
t σz = v2(δ − ε)(∂2

x + ∂2
y)σx +

[
v2(1 + 2ε)(∂2

x + ∂2
y) + v2∂2

z

]
σz.

(B-19)

Case 2: a1 = c1 = 0

This case is similar to the case b1 = d1 = 0, considered below, if one interchanges
σx ↔ σz.

Case 3: b1 = d1 = 0

System 49 becomes{
∂2
t σx =

[
a1(∂2

x + ∂2
y) + a2∂

2
z

]
σx + b2∂

2
zσz,

∂2
t σz =

[
c1(∂2

x + ∂2
y) + c2∂

2
z

]
σx + d2∂

2
zσz,

(B-20)

Similar analysis as in the first case applies.

Case 3.1: a2b2 6= 0 and c2d2 6= 0

Define r = a2

c2
= b2

d2
, multiply the second equation in B-20 by r, and subtract from

the first equation {
∂2
t σx =

[
a1(∂2

x + ∂2
y) + a2∂

2
z

]
σx + b2∂

2
zσz,

∂2
t (σx − rσz) = (a1 − rc1)(∂2

x + ∂2
y)σx,

(B-21)

which, after a change of variable σ′z = σx − rσz or σz = σx−σ′
z

r
, becomes{

∂2
t σx =

[
a1(∂2

x + ∂2
y) + (a2 + b2

r
)∂2
z

]
σx − b2

r
∂2
zσ
′
z,

∂2
t σ
′
z = (a1 − rc1)(∂2

x + ∂2
y)σx.

(B-22)

This system is a special case of the general system 49 with b1 = d1 = c2 = d2 = 0.

Case 3.2: a2b2 6= 0 and c2d2 = 0

In this case, c2 = d2 = 0, which leads us back to the above case of b1 = d1 = c2 =
d2 = 0.
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Case 3.3: a2b2 = 0 and c2d2 6= 0

In this case, a2 = b2 = 0, the five constraints reduce to

a1 = c11, (B-23)

d2 = c33, (B-24)

a1d2 = c11c33 − c2
13. (B-25)

There is no solution because the last constraint is not satisfied.

Case 3.4: a2b2 = c2d2 = 0

Consider four cases

• a2 = c2 = 0: this case has a solution.

• a2 = d2 = 0: violation of constraint 62.

• b2 = c2 = 0: the five constraints reduce to

a1 = c11, (B-26)

a2 + d2 = c33, (B-27)

a2d2 = 0, (B-28)

a1d2 = c11c33 − c2
13. (B-29)

The last constraint requires that d2 6= 0, so a2 = 0, which, means d2 = c33. This
does not satisfy the last constraints.

• b2 = d2 = 0: violation of constraint 65.

In conclusion, for the case b1 = d1 = 0, there are two solutions b1 = d1 = c2 =
d2 = 0 and b1 = d1 = a2 = c2 = 0. The first solution results in

a1 = c11, (B-30)

a2 = c33, (B-31)

b2c1 = c2
13 − c11c33 = v4(δ − ε). (B-32)

If one chooses b2 = v2 and c1 = v2(δ − ε) for example, one gets the system{
∂2
t σx =

[
v2(1 + 2ε)(∂2

x + ∂2
y) + v2∂2

z

]
σx + v2∂2

zσz,

∂2
t σz = v2(δ − ε)(∂2

x + ∂2
y)σx,

(B-33)

Exchanging b2 and c1 gives{
∂2
t σx =

[
v2(1 + 2ε)(∂2

x + ∂2
y) + v2∂2

z

]
σx + v2(δ − ε)∂2

zσz,

∂2
t σz = v2(∂2

x + ∂2
y)σx,

(B-34)
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The second solution results in

a1 = c11, (B-35)

d2 = c33, (B-36)

b2c1 = c2
13. (B-37)

If one chooses b2 = c1 = c13 for example, one gets back the system 1{
∂2
t σx = c11(∂2

x + ∂2
y)σx + c13∂

2
zσz,

∂2
t σz = c13(∂2

x + ∂2
y)σx + c33∂

2
zσz.

(B-38)

Case 4: c1 = d1 = 0

This case is similar to the case a1 = b1 = 0, already considered above, if one inter-
changes σx ↔ σz.

The above four cases consider what happens when two of four coefficients (a1, b1, c1, d1)
is zero. Analysis of four other cases when two of (a2, b2, c2, d2) becomes zero is similar
by just interchanging (∂2

x + ∂2
y) ↔ ∂2

z . Unfortunately, none of the above analyzed
solutions produces stable forward and adjoint systems. The only stable solution is
one with all non-zero coefficients.
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