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ABSTRACT

We present a regularization strategy to integrate geomechanical modeling re-
sults into the time-lapse full waveform inversion (FWI) workflow. The method
constructs a non-local shaping regularization based on the time-lapse attributes
change from geomechanical modeling linearly correlated with the seismic velocity
change. The regularization pushes the velocity change to have similar shape as
the geomechanical attributes, overcoming the challenge of unknown scaling fac-
tors between different attributes. We show the potential of the proposed methods
on synthetic models with both noise free data and noisy data.

INTRODUCTION

Successful reservoir management requires the integration of knowledge from seismic
imaging, reservoir simulation and geomechanical modeling to understand the reservoir
production process (Biondi et al., 1998; Johnston, 2013). The conventional methods
for analyzing time-lapse data are based on interpretation such as picking changes in
travel time for seismic images. While effective in practice, the interpretation relies on
highly specialized skills and the process is not fully automatic. In addition, quantita-
tive comparison of attributes is challenging because of the scale of different reservoir
data types, which increases the difficulty of integrating optimization-based seismic
imaging methods such as wave equation migration velocity analysis and FWI.

Full waveform inversion estimates the high-resolution subsurface models by min-
imizing the mismatch between the observed seismic data and the synthetic data
(Tarantola, 1984; Virieux and Operto, 2009). FWI is a useful tool for time-lapse
(4D) seismic imaging problems (Denli and Huang, 2009; Routh et al., 2012; Mahar-
ramov and Biondi, 2014). Time-lapse FWI faces the challenge of detectability and
non-repeatability from the seismic surveys. Different inversion strategies, including
parallel difference, sequential difference, and joint inversion have been proposed to re-
duce the impact of the acquisition footprint. Regularization techniques, such as total
variation (TV) (Maharramov and Biondi, 2014) and L1 norm optimization methods
are used to recover production-induced changes from noisy seismic data.

In this paper, we propose a regularization strategy to integrate the geomechanical
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modeling results into the time-lapse FWI objective function. We assume a linear
relation exist between production-induced attribute changes, such as velocity and
strain, while the exact relation is assumed to be unknown. A non-local shaping
regularization is constructed, forcing the attributes to be visually similar.

We test our methods on a synthetic model based on the Marmousi model, with
time-lapse changes simulating reservoir compaction and overburden dilation, inspired
by previous field data studies (Hodgson et al., 2007; Herwanger and Horne, 2009).
In the absence of noise, time-lapse FWI captures the velocity changes even without
regularization, and the use of regularization improves the accuracy of the inversion.
When noise is present in the data, minimizing the data residuals alone cannot recover
the time-lapse change properly, especially the low amplitude changes in the overbur-
den. Our proposed methods improve the inversion results with non-repeatable noise
in the surveys.

METHODS

Time-domain full waveform inversion can be formulated as an optimization problem
with the following objective function (Tarantola, 1984; Virieux and Operto, 2009)

J(m) =
1

2
‖Su (m)− d‖22, (1)

where m is the subsurface model (velocity, anisotropic parameter, etc), S is the
measurement operator, u is the synthetic wavefield and d is the observed data. For
isotropic acoustic wave equation with m being the velocity model, the wavefield is
computed by solving the following:[

1

v2
∂2

t −∇2

]
u = f , (2)

where v is the acoustic velocity, f is the source function.

We estimate the subsurface model m∗ by minimizing the following objective func-
tion

m∗ = argminmJ(m). (3)

Time-lapse FWI estimates the production-induced change in the subsurface using
seismic data from a survey before production (baseline survey), and repeated surveys
during production (monitor survey). Common Time-lapse FWI strategies include
parallel difference (estimating baseline and monitor model separately), sequential dif-
ference (using baseline model as the starting model for monitor model estimation),
double difference (inverting the differential data) and joint inversion approach (esti-
mating baseline and monitor model simultaneously).
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We use a the joint inversion approach with the following objection function:

J(mb,mm) =
1

2
‖Sbub (mb)− db‖22

+
1

2
‖Smum (mm)− dm‖22

+
α

2
‖WR (mm −mb −∆mprior) ‖22, (4)

where b is a substript indicating baseline variables, m is a subscript for monitor
variables, α is the strength of the regularization term, W is a weighting function, R
is regularization on the model difference mm−mb and ∆mprior is the a prior time-lapse
model change. In practice R can be an identity operator, promoting minimum norm
solution. R can also be the gradient operator for the recovery of blocky time-lapse
change.

The estimation of model prior ∆mprior is challenging for integrated reservoir mon-
itoring. In principle we can estimate ∆mprior from reservoir simulation results, based
on the relation between velocity and differential pressure (Johnston, 2013)

v = vinf(1− Ae−P/P0), (5)

where vinf, A and P0 are fitting constants. We can also estimate ∆mprior from geome-
chanical modeling (Landr and Stammeijer, 2004) using the following:

dv

v
= −Rεzz, (6)

where dv
v

is the fractional change in velocity and εzz is the vertical strain. The ratio R
depends on the rock properties. Without sufficient data to fix the value of those fit-
ting parameters, we cannot effectively integrate reservoir simulation or geomechanical
modeling results into our time-lapse FWI objective function.

In this paper we propose a non-local, non-convex regularization term on the time-
lapse model change. We assume a linear relation between time-lapse velocity change
and the prior information from geomechanical modeling as follows:

∆m ∝ ∆pprior, (7)

where ∆pprior can be vertical strain, pressure change, etc. We formulate a shaping
regularization term as

‖ ∆m

‖∆m‖2
− ∆pprior

‖∆pprior‖2
‖22, (8)

where the scaling factor between velocity change and attribute change is eliminated
by the normalization.

The regularization term in Equation 8 promotes time-lapse change ∆m to have
the same shape as the prior ∆pprior. As long as the linear relation in Equation 7
holds, the regularization term in Equation 8 goes to zero.
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With our proposed regularization strategies, we modify the time-lapse FWI ob-
jective function as follows:

J(mb,mm) =
1

2
‖Sbub (mb)− db‖22

+
1

2
‖Smum (mm)− dm‖22

+
γ

2
‖ mm −mb

‖mm −mb‖2
− ∆pprior

‖∆pprior‖2
‖22, (9)

where each term in the objective function is nonlinear, non-convex.

The non-convex nature of the FWI objective could potentially lead to the conver-
gence to a local minimum (the cycle-skipping issue), and adding another non-convex
regularization term could be problematic. However for time-lapse FWI, where cycle-
skipping issue can be avoided even when applied to field data, the objective function
in Equation 9 has the potential of integrating the geomechanical results with the
seismic data.

NUMERICAL EXAMPLES

We tested our method based on the Marmousi model. The Marmousi velocity model
in Figure 1a is used as the baseline model. The production-induced changes are shown
in Figure 1c. On the right side of the model the velocity increases and is localized
in space, thereby simulating fluid substitution by water injection. On the left side of
the model, the velocity decreases near the reservoir and also in the overburden area,
thereby simulating fluid extraction, reservoir compaction and overburden dilation,
inspired by recent studies in the Gulf of Mexico (Hodgson et al., 2007; Herwanger
and Horne, 2009).

Figure 1b shows the starting velocity model. The starting model does not contains
a high contrast except for the water bottom.

For this synthetic study, we build the prior model based on the true time-lapse
change of the velocity model. We multiply the velocity change by a random factor as
follows:

∆pprior = κ (mm −mb) , (10)

where κ is the fitting parameter and is supposed to be unknown during the opti-
mization process. The prior model in Equation 10 cannot be directly used in the
regularization for objective function 5; however, it provides valuable information for
our proposed objective function 9.

For the first numerical test, no noise is added to the observed data. For the
second numerical test, we add noise to the observed data, thereby simulating the
non-repeatability issues for the time-lapse problem.
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We use a hierarchical multiscale approach for the optimization process. We start
from data centered at 5 Hz, and increase the frequency up to 20 Hz. The same
starting velocity model is used for both the baseline and the monitor model. For our
proposed objection function 9, the regularization is added only after the inversion
with data at 5 Hz. The reason is that our objective function goes to infinity when
mm −mb → 0.

In Figure 2, we see the inversion results for noise-free data. We can see that
even without regularization we recover both time-lapse changes without difficulty.
Artifacts below the reservoir are expected because we update the whole domain before
having built an accurate model for the shallow part. Using our proposed methods, the
estimated time-lapse change approaches the true production induced change as we
increase the regularization strength from Figure 2b, Figure 2c to Figure 2d. Result
in Figure 2d exhibits features beyond the resolution of seismic data, showing that
the regularization is too strong and that we are not estimating the time-lapse change
mainly from the seismic data.

Figure 3 shows the results with noisy data. In this case, inversion without regu-
larization is contaminated by the noise. The time-lapse change on the right is still
observable; however, we cannot recover the overburden dilation induced change on
the left. With our proposed method, we get better results shown in Figure 3b, Figure
3c and Figure 3d, with increasing regularization strength. Similar to the clean data
study, results in Figure 3d suggest improper regularization. The optimal choice of
regularization strength is still under investigation.

CONCLUSIONS AND DISCUSSIONS

In conclusion, we propose a regularization strategy to combine geomechanical mod-
eling results into the time-lapse FWI objective. Assuming linear relation between
attributes from different types of reservoir data, we construct a non-local shaping
regularization. The shaping regularization forces the attributes to be visually similar
without knowing the exact scaling factor between them.

We study the shaping regularization with a simple synthetic example based on
the Marmousi model. The numerical results suggest that the shaping regularization
improves the inversion results for the production-induced change, especially in the
presence of noise in the data.

Ideally we would like the regularization term to provide guidance for the shape
of the time-lapse change, and use the seismic data to recover the amplitude of the
change. Therefore we can effectively combine different types of reservoir data for
integrated reservoir monitoring.
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(a)

(b)

(c)

Figure 1: (a) true baseline velocity model. (b) starting velocity model. (c) time-lapse
velocity change. [CR]
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(a)

(b)

(c)

(d)

Figure 2: Estimated time-lapse change with noise-free data. (a) is the inversion result
without regularization. (b) (c) and (d) are the inversion results using our proposed
regularization method, with increasing regularization strength. [CR]
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(a)

(b)

(c)

(d)

Figure 3: Estimated time-lapse change using data with noise. (a) is the inversion
result without regularization. (b) (c) and (d) are the inversion results using our
proposed regularization method, with increasing regularization strength. [CR]
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