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ABSTRACT

Shape optimization can be used to invert for the position of a sharp salt bound-
ary in a way that minimizes the full-waveform inversion (FWI) objective func-
tion. However, we are also interested in using interpreter information to guide
the inversion away from what are perceived as local minima. In this work we
demonstrate a method of including interpreter guidance, while still maintaining
the integrity of being a data driven method. With this approach, we achieve
improved convergence on a synthetic 2D model.

INTRODUCTION

The process of building velocity models for salt bodies is one that traditionally requires
significant manual intervention. While approaches to completely automate the work
flow of salt model building are ambitious, what is certainly more practical are methods
that minimize the need for human input except at the most important junctures of
the work flow. Previous work by Lewis et al. (2014) propose methods for utilizing
interpreter guidance for directing FWI inversion. However, with salt bodies, FWI
can have trouble creating the sharp boundaries that salt often has. Work by Santosa
(1996), Burger (2003), Lewis et al. (2012), Guo and de Hoop (2013), and Dahlke et al.
(2015) demonstrate how level sets can build sharp boundary salt models even without
high frequencies in the data by using an implicit surface to track the boundary.
These steepest descent approaches were improved upon by using the Hessian of a
new objective function Dahlke et al. (2016). More recently, the work in Kadu et al.
(2017) demonstrated the practical improvement that radial basis functions (RBF’s)
provide for defining the implicit surface as a sparse and more computationally feasible
model space. However, the update gradient for these examples has support only along
the salt boundaries. By expanding the support of the gradient, we can make updates
in areas inside the salt body and thus allow for inclusion discovery. We can choose
where to allow these updates using interpreter input as guidance. This guidance can
further be used to modify the implicit surface to direct a level-set based salt body
inversion while still allowing the final model to ultimately be determined by the data
itself. In this work, we begin by explaining how level sets are combined with the
FWI objective function for optimizing the shape of the salt. Next, we explain how to
include the interpreter guidance in this inversion, and how it relates to an improved
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method for mapping the radial basis function centers. Last, we demonstrate and
compare this work flow on the Sigsbee synthetic model.

DERIVATION

Shape optimization

The first step of this derivation is to describe the model space that we are working
with. We will call our velocity model m, which we define at every 2D spatial position
(i, j) as:

m(φi,j, bi,j) = Ĥ(φi,j)(csalt − bi,j) + bi,j, (1)

where Ĥ(◦) is a smooth approximation to the Heaviside function, m(φi,j, bi,j) is the
velocity value, φi,j is the implicit surface value, and bi,j is the background velocity
value. We first want to define a perturbation of m in terms of 4b and 4φ. To do
this, we generalize these parameters for the entire spatial domain (ignoring i, j), and
expand equation (1) with a Taylor series as:

m1 = m0 +
∂m

∂φ

∣∣∣
m0

4φ+
∂m

∂b

∣∣∣
m0

4b+ ....

By truncating this series and ignoring higher order terms, we can create a linear
approximation of 4m:

4m ≈
[
∂m(φ0,bo)

∂φ
∂m(φ0,bo)

∂b

] [4φ
4b

]
≈ D4p.

where we define 4p = [4φ 4b]T , and D as the derivative taken at m(φ0, b0) :

D =
[
δ(φ0)(csalt − b0) 1− Ĥ(φ0)

]
.

This operator D scales and masks the parameter fields 4φ and 4b. From the
FWI objective function:

ψ = ||F (m(φ, b))− dobs||

we can take the derivative with respect to φ and b to find the gradient:

4p ≈ DTBT4d.

where 4d is the data space residual, and B is the classic Born operator. Similarly,
we can find the application of the Hessian to the search direction as:

DTHD4p ≈ −DTBT4d. (2)

In equation 2, we can substitute H with the Gauss-Newton Hessian of the FWI
objective function. The method we propose solves equation 2 for4p using a conjugate
gradient algorithm.
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Modifications for inclusion discovery

An underlying axiom of the previous derivation is that the salt model only changes
at the boundary of the original shape, due to the δ(φ0) term. However, an advantage
of level sets is that the implicit surface can be deformed at positions that are not on
the boundary, even to the extent that it “punctures” the zero level set and creates a
donut hole or other topology type. If we only update along the current boundary, we
eliminate the possibility of topology changes, such as the discovery of inclusions.

For this reason, we change the masking term in our D operator to allow for
updating outside of the boundary regions. Because the support of the gradient we
previously derived is a subset of the actual objective function support (which is the
entire model domain), we can expand the support of the masking term to include
regions inside the current salt boundaries without affecting our ability to minimize
our objective function. We represent this modification with a new term ˆδ(φ0, G),
which takes into account the interpreter guidance G.

D =
[
δ̂(φ0, G)(csalt − b0) 1− Ĥ(φ0)

]
.

We can only discover an inclusion if the update perturbs the implicit surface below the
zero-level set. This means that the way we initialize the height of the implicit surface
matters. The opportunity here is to set the height of the implicit surface according to
how likely we believe that an inclusion is present at that position. This allows us to
input a probabilistic mapping of inclusion likelihood into our initialization of φ. For
the Sigsbee example, Figure 1 shows the implicit surfaces with interpreter guidance
applied, and Figure 2 shows it without.

Sparsifying with Radial Basis Functions

Kadu et al. (2017) replaces a regular grid parameterization of φ with an aggregate
surface composed of many RBFs, resulting in a much sparser model:

φ(λ; ε, r) =
Nλ∑
i

λi exp−(εr)2

where λ is the new model parameter, r is the radial distance from the RBF center i,
and ε controls the sharpness of the RBF taper (constant). Rather than use regular
spacing of RBF centers as in Kadu et al. (2017), we cluster the RBF centers where
we expect to see updating occur (Figure 3). The RBF centers are randomly chosen
from a spatial probability distribution based on δ̂(φ0, G). Clustering allows us to
use fewer RBF parameters to attain a higher resolution around the salt boundary
than we would get using regular spacing of the RBF centers. Our operator D must
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be modified to account for the additional linear transformation inherent in the RBF
formulation:

D =
[
∂m(φ0,bo)

∂φ
∂φ
∂λ

∂m(φ0,bo)
∂b

]
=
[
δ̂(φ0, G)(csalt − b0) exp−(εr)2 1− Ĥ(φ0).

]
(3)

This also changes our model space to 4p = [4λ 4b]T .

Once we have chosen the RBF function centers, we then select the variance (ε)
to describe the shape of the Gaussian that each RBF creates. In our example these
parameters were chosen by trial and error such that the aggregated surface covers
the full model domain. This could certainly be performed automatically in a more
advanced implementation. After, we can invert for the amplitudes of the RBF’s (λ)
with a linear conjugate gradient inversion that uses the D operator defined earlier.
This gives us a set of RBF parameters that create an implicit surface that matches
our initial implicit surface (and thus our initial velocity model). We can then begin
the actual non-linear inversion from this starting model.

DEMONSTRATION ON 2D SIGSBEE MODEL

We used a portion of the 2D Sigsbee velocity model and modified it with a low-velocity
inclusion (Figure 4). Our initial model was the same expect with the inclusion shifted
left about 1.5km (Figure 5). For each inversion the acquisition was 24 shots and
380 receivers evenly spaced, with a 8Hz source wavelet. The first inversion had an
implicit surface initialized using interpreter guidance, while the second did not. Both
inversions used the modified masking function (δ̂(φ0, G)) to allow for updating inside
the salt body, and used the same RBF centers (Figure 3). However, the ”unguided”
inversion did not have a modified implicit surface. In both cases, updating was done
only on the λ parameter; the b parameter was fixed over all iterations.

As we expected, by expanding the support of the gradient to include the inter-
preter guidance areas, we are able to recover the correct inclusion and close the false
one (Figure 6) for both cases. Even with the some of the interpreter guidance be-
ing incorrect (compare Figure 1 with 4), the inversion was not misguided. Further,
we found that the additional step of initializing φ as per Figure 1 gave us better
convergence in terms of both the model and data residual norms (Figure 7 and 8).

CONCLUSIONS

We introduce the derivation of a shape optimization algorithm that minimizes the
FWI objective function using a level set based on a radial basis parameterization.
From this, we introduce a way to integrate interpreter guidance by using a masking
term in our operator with expanded spatial support. We further use this guidance to
augment the shape of the initial implicit surface. With the Sigsbee synthetic model,
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Figure 1: Initial implicit surface (guided). [ER]

Figure 2: Initial implicit surface (unguided). [ER]
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Figure 3: RBF center locations. [ER]

Figure 4: True model [ER]
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Figure 5: Initial model (guided). [ER]

Figure 6: mtrue −minit (guided, at it=8) [CR]
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Figure 7: Objective function value (data residual norm). [CR]

Figure 8: Model residual norm. [CR]
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we demonstrate how this improves convergence of our non-linear inversion, even with
poorly placed interpreter guidance present. We find that this approach elegantly
allows for interpreter guidance with the level set formulation of salt inversion, and
improves the ability to discover inclusions.
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