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ABSTRACT

By restricting the constituent materials in a horizontally stratified medium to a specific
set with well-known acoustic (or elastic) properties, transmission tomography can, in
principle, provide the relative fraction of each material within the set of beds over which
the rays traverse. In this paper, we formulate an algorithm for this “super-resolution”
calculation suitable for quantum computing.

INTRODUCTION

In a horizontally stratified medium, one may arbitrarily permute the layers between source
and receiver without changing the recorded traveltime of the direct arrival. This permu-
tation is easily understood because the fixed Snell parameter for any one layer ordering
results in a fixed horizontal extent traversal across the layer and a fixed traveltime across
the layer. As the horizontal extent of the ray is the sum of the individual horizontal extents
of the layers and the total traveltime is the sum of the individual layer traveltimes, any
permutation of the layers results only in a permutation of the terms in the sums.

Clearly, a single ray crossing the layers cannot distinguish their arrangement. However,
if the velocities of possible layer materials are known or at least tightly bracketed, it may
well be possible to determine the fraction of each material in the total package. Of par-
ticular interest is net-to-gross or the percentage of sand in, say, a sand-shale package. In
that particular two material setting we have two constraints—total traveltime and total
horizontal distance traveled by the ray—against which to adjust the fraction of sand versus
the fraction of shale. Indeed, for pure vertical propagation time T through a macro-layer
thickness Z consisting of materials with velocities v1 and v2, the fraction of material 1 is
given by

(
T

Z
− 1
v2

)
/

(
1
v1
− 1
v2

)
.

(The case of nonvertical propagation through two materials is worked out in Appendix
B.) Similarly, with N distinct constant velocity materials and a corresponding number of
at least N − 1 independent rays there is no a priori reason not to expect a unique set of
fractions for a larger number of material compositions.
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In the setting of transmission surveys there are often additional measurements to match
that span various ranges of layers. This theoretically reduces uncertainty in the calculations,
albeit at the cost of a combinatoric explosion of possible layer fractions to resolve. Quantum
computing holds the promise of exploring many combinations of parameters at the same
time. A naive example would be to finely divide each layer into many minilayers and
calculate the traveltime misfit for every possible choice of distinct material for each layer.

ALGORITHMS

As the ordering of fine layering is immaterial to calculating traveltimes, the first simplifi-
cation is to assume materials are ordered from slowest to fastest within each layer being
subdivided. A continuous variable formulation for a layer of thickness Z posits unknown
sublayer thicknesses δi, i = 1 . . . N that total Z and seeks the constant Snell ray parameter
p that allows a ray to reach from source to receiver and match the known traveltime T .
Of course, measurement errors mean we may not be able to precisely match the known
endpoint at the known traveltime; therefore we formulate the problem as a least-square fit
of both horizontal deviation and traveltime deviation for a given trial Snell parameter and
sublayer thicknesses. To balance time misfit against distance misfit, we choose to divide
horizontal misfit by the fastest layer velocity.

Let the height of the macrolayer be Z and its width L. We have, as above, Z =
∑N

i=1 δi.
Denoting the material velocities of the N layers by vi, Snell’s law (Slotnick and Geyer, 1959)
states that for an individual sublayer i,

pvi = sin θi . (1)

Therefore,
tan θi =

pvi√
1− p2v2

i

(2)

and the horizontal traversal of a ray through the ith sublayer is given by

li =
pδivi√

1− p2v2
i

. (3)

Finally, the traveltime through the sublayer is

ti =
δi

vi

√
1− p2v2

i

. (4)
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Our least-squares formulation asks that, given K traveltime-offset measurements, we mini-
mize

J =
∑
rays

1
2

[
1

v2
max

(Lray −
N∑
i=1

l
ray
i )2 + (T ray −

N∑
i=1

t
ray
i )2

]
(5)

over p values for the K rays and the set of thicknesses δi. Of course the δi’s must not be
negative.

Before we continue, there are two things to note. First, using reciprocity as needed,
we can take p to be nonnegative, e.g., traversing left to right; and therefore, limit the
value of p between 0 and 1/vmax. The lower bound of 0 can be improved by noting that
the straight line between source and receiver is the smallest value possible with the fastest
material velocity, and so, pmin = L/(vmax

√
Z2 + L2). Second, there is a possibility that some

sublayer thickness should be zero. To handle this possibility, we need to also progressively
drop the fastest sublayer velocity and recalculate with the new sub-stack and new p upper
and lower bounds.

The δi occur linearly in the li and ti variables; and therefore, for a fixed guess for p, the
minimization leads to a linear problem, quite suited for a conventional computer. For our
choice of continuous algorithm, we solve for the δi’s using the MATLAB R© lsqlin approach,
alternating between that and searching over possible p’s.

Searching over p is not as simple as it might seem, which is because ray tracing can be
discontinuous as a layer shrinks to zero thickness. For example, consider a two layer model
with composite dimensions 1 km vertically and 2 km horizontally and ask for the ray that
connects the top left to the bottom right. Let the two materials have velocities 1 km/s and 2
km/s respectively. If the low velocity layer has zero thickness, p = 1/

√
5 = 0.4472136. If the

high velocity layer has zero thickness, p = 0.5/
√

5 = 0.223607. Calculating for intermediate
fractions of lower-velocity material yields the following table:

Z p
0.00 0.4472136
0.25 0.4640339
0.50 0.4802597
0.75 0.4938107
0.99 0.4999877
1.00 0.2236068

The discontinuity arises because the equations permit near horizontal propagation in the
fastest velocity. This discontinuity emphasizes why we include an outer iteration that drops
materials one at a time from fastest to slowest.

However, Levin (2012) has noted that using Newton’s method to determine p for two
point ray tracing to match a given offset in this setting is globally convergent because the
first and second derivatives with respect to p,

dli
dp

=
δivi

(1− p2v2
i )3/2

,
d2li
dp2

=
3δipv3

i

(1− p2v2
i )5/2

,
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are positive in (0, 1/vmax), which is also true for matching a given arrival time as

dti
dp

=
δipvi

(1− p2v2
i )3/2

,
d2ti
dp2

=
δivi(1 + 2pv2

i )
(1− p2v2

i )5/2
.

This equation suggests that we might be quite effective in approximating the effect of
changing p with a quadratic derived from an initial ray and a handful1 of Newton iterations.
In particular, for a given set of layering δi and a given k, the minimum of equation 5 lies
between the ps that separately minimize the offset and arrival time terms. Our numerical
experience with the three material, single macrolayer case has been that initializing p to its
minimum feasible value and Newton iterating only over the traveltime fit has so far led us
to a global minimum.

COMBINATORIAL OPTIMIZATION

In this section, we leverage ideas from the previous section to formulate a combinatorial
optimization problem that in principle seeks to minimize the same quantity J , as in equation
5. Let us assume that all the N sublayer thicknesses are equal, which we denote as δ; and
therefore, we have δ = Z/N . Let V be the finite set of M material velocities. The velocity
of the jth material is denoted as vj , and we assume that all the vjs are unique. We introduce
binary decision variables xij ∈ {0, 1} to represent the assignment of sublayer i to material
j, and define as follows:

xij =

{
1 if sublayer i is material j
0 otherwise,

(6)

for all i = 1, . . . , N and j = 1, . . . ,M . To ensure that each sublayer gets assigned to one
and only one material we will additionally need the family of constraints

M∑
j=1

xij = 1 , for all i = 1, . . . , N. (7)

Assuming that we have a total of K ≥M−1 rays that can be used in the fitting process, we
denote the ray parameter for the kth ray by pk, the horizontal traversal of the ray through
the ith sublayer by lki, the traveltime through the ith sublayer by tki, the known total
horizontal traversal by Lk, and the known traveltime by Tk. Then, analogous to formulas
(3) and (4), we have

lki =
M∑
j=1

αkjxij , tki =
M∑
j=1

βkjxij , (8)

where
αkj =

δpkvj√
1− p2

kv
2
j

, βkj =
δ

vj
√

1− p2
kv

2
j

. (9)

1While globally convergent, the first few Newton iterations may swing around a fair amount and only
converge quadratically in the later iterations.
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Our misfit function Jk for the kth ray is

Jk =
1

v2
max

Lk − N∑
i=1

M∑
j=1

αkjxij

2

+

Tk − N∑
i=1

M∑
j=1

βkjxij

2

, (10)

and we seek to minimize the sum of these misfit functions over all the K rays, which is the
quantity J =

∑K
k=1 Jk, where the minimization takes place over all the binary variables xij

and all the ray parameters pk, thereby leading to the optimization problem

minimize
K∑
k=1

Jk

subject to xij ∈ {0, 1} , ∀ i ∈ {1, . . . , N}, ∀ j ∈ {1, . . . ,M},
M∑
j=1

xij = 1 , ∀ i ∈ {1, . . . , N}.

(11)

Invariance under symmetry of composition

The number of binary variables involved in the optimization problem in equation 11 is NM .
For typical applications, the number of materials, M , is a small number and is fixed for
a given problem which we will think of as a constant, but we want to be able to study
the behavior of solutions as we refine our layer discretization δ, by increasing N . Clearly
it raises the question of whether or not we can reduce the dependency of the number of
binary variables needed to encode the problem. As we show next, this reduction is indeed
possible by exploiting a symmetry of the objective function.

We start by noticing that we can interchange the order of summation over i and j in
equation 10, and introducing the integer variables yj =

∑N
i=1 xij for all j = 1, . . . ,M , we

have

Jk =
1

v2
max

Lk − M∑
j=1

αkj

N∑
i=1

xij

2

+

Tk − M∑
j=1

βkj

N∑
i=1

xij

2

=
1

v2
max

Lk − M∑
j=1

αkjyj

2

+

Tk − M∑
j=1

βkjyj

2

.

(12)

This equation suggests an important symmetry, namely the “symmetry of composition,”
which states that the quantity Jk is invariant with respect to permutations of the sublayers
as long as the number of sublayers of each material type is kept constant. Moreover, this is
true for each k, which means that it is true for the quantity J =

∑K
k=1 Jk. Such permutations

also do not lead to any constraint violations in equation 11 as it simply involves relabeling of
the binary variables. Thus, any feasible solution of equation 11, not necessarily optimal, has
the property that permuting the sublayers leads to another feasible solution with exactly
the same objective function value.

It is possible to remove this redundancy by formulating an optimization problem that is
equivalent to equation 11, in terms of the new variables yj . Transformation of the objective
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function has already been carried out in equation 12; and therefore, we only need to worry
about the constraints, which follow immediately by noticing that each integer variable yj is
confined to the range 0 ≤ yj ≤ N because

M∑
j=1

yj =
M∑
j=1

N∑
i=1

xij =
N∑
i=1

M∑
j=1

xij =
N∑
i=1

1 = N . (13)

This observation leads to the equivalent optimization problem

minimize
K∑
k=1

 1
v2
max

Lk − M∑
j=1

αkjyj

2

+

Tk − M∑
j=1

βkjyj

2
subject to yj ∈ {0, . . . , N} , ∀ j ∈ {1, . . . ,M},

M∑
j=1

yj = N .

(14)

Notice that once we have yj for all j, any assignment of sublayers to materials that satisfy∑N
i=1 xij = yj will be a valid assignment. For example, such an assignment can be trivially

generated by assigning the first y1 sublayers to material 1, the next y2 sublayers to material
2, etc.

Binary encoding trick

Although the optimization problem in equation 14 is an improvement over equation 11 in
terms of the number of variables, we now have integer variables that are no longer binary
and instead take values from the set S = {0, . . . , N}. However, because the elements of S
are uniformly spaced, an additional “binary encoding” trick can be employed that converts
the optimization problem in equation 14 into one involving binary variables, at the expense
of increasing the number of variables by a factor of roughly log2N . The binary encoding
trick involves writing each yj in its base-2 representation. For each j, we introduce r binary
variables bj1, . . . , bjr, such that

yj =
r∑
l=1

bjl2l−1 , ∀ j = 1, . . . ,M , (15)

where r = blog2Nc+ 1. Direct substitution into equation 14 gives the equivalent optimiza-
tion problem

minimize
K∑
k=1

 1
v2
max

Lk − M∑
j=1

r∑
l=1

αkjbjl2l−1

2

+

Tk − M∑
j=1

r∑
l=1

βkjbjl2l−1

2
subject to bjl ∈ {0, 1} , ∀ j ∈ {1, . . . ,M} , ∀ l ∈ {1, . . . , r} ,

M∑
j=1

r∑
l=1

bjl2l−1 = N.

(16)

The optimization problem in equation 16 is still over all the ray parameters pk and all
the binary variables bjl, but the important difference is that compared to the optimization
problem in equation 11, which required MN binary variables; we now only require Mr
binary variables, which is approximately M log2N , a logarithmic improvement in N .
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Alternating minimization

The optimization problem in equation 16 is a mixed-integer non-convex optimization prob-
lem and is difficult to solve in general. However, if we fix the binary decision variables
bjl subject to the constraints, then the objective function becomes separable in each ray,
indexed by the variable k, and the resulting minimization problem for fixed k only involves
searching over a single ray parameter pk. This can be done using one of the two methods
described in Appendix A.

Otherwise, once we fix the ray parameters for all K rays, the objective function in
equation 16 becomes a quadratic function of the binary variables bjl, subject to the linear
constraints. This problem can be written in an equivalent Quadratic Unconstrained Binary
Optimization (QUBO) form, as outlined in Appendix C, which can then be solved using
a quantum annealer. These observations motivate us to formulate a heuristic for solving
equation 16 using an alternating minimization strategy, outlined in algorithm 1.

Algorithm 1 Alternating minimization algorithm
1: procedure Alternating QUBO
2:

3: // Random assignment
4: xij ← 0 , for all i = 1, . . . , N and j = 1, . . . ,M
5: for i = 1 to N do
6: j ← Randomly choose from the set {1, . . . ,M}
7: xij ← 1
8: end for
9: Compute yj =

∑N
i=1 xij , for all j = 1, . . . ,M

10: Compute bjl as binary representation of yj , for all j = 1, . . . ,M and l = 1, . . . , r
11:

12: // Alternating minimization
13: while Not converged do
14: pk ← arg min

pk

Jk , for all k = 1, . . . ,K, and with all bjl fixed.

15: bjl ← solution of QUBO in (16) with all pk fixed.
16: end while
17: Compute yj =

∑r
l=1 bjl2

l−1, for all j = 1, . . . ,M
18:

19: return pk, yj for all k = 1, . . . ,K and j = 1, . . . ,M
20: end procedure

For comparison, we use algorithm 2 in our numerical experiments to seek a continu-
ous variable solution on a conventional computer using convex optimization and Newton’s
method for traveltime fit and iterates over the set of compositions of N minilayers to avoid
getting trapped in local minima.

In the general case of inverting Nray arrivals from Nmacro macro-layers divided indi-
vidually into Nmini minilayers consisting of up to M materials, the complexity of algorithm
2 is

O
(
Nray ·

(
M +Nmini − 1

M − 1

)Nmacro
)

.
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Algorithm 2 Continuous minimization with Newton refinement algorithm
1: procedure Alternating QUBO with Newton refinement
2:

3: // Iterate over different number of materials
4: for µ = M to 1 materials, ordered fastest to slowest do
5:

6: // Iterate over all compositions
7: for Each composition of N layers into µ materials do
8:

9: // Assign layer thicknesses
10: yj ← Assign based on composition, for all j = 1, . . . , µ
11:

12: // Iterate over the rays and perform Newton refinement
13: for k = 1 to K rays do
14: while Not converged do
15: pk ← pk − (T (pk)− Tk)/T ′(pk), with all yj fixed
16: end while
17: end for
18:

19: // Relax layer thicknesses to take continuous values
20: ỹj ← solution of constrained convex optimization with all pk fixed
21:

22: Record (pk, µ, ỹj) pairs with the best fit, for all k = 1, . . . ,K and j = 1, . . . , µ
23: end for
24: end for
25:

26: return pk, µ, ỹj for all k = 1, . . . ,K and j = 1, . . . , µ
27: end procedure
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NUMERICAL EXPERIMENTS

In this section we provide some numerical results obtained by running algorithms 1 and
2 on specific instances of the tomography problem. We first present a detailed study of
the full alternating algorithm to understand how it is performing in practice on different
problem sizes, and how efficient it is at solving these problem instances. We then present
some preliminary results obtained by solving a few small problem instances of only the
QUBO subproblem on a quantum annealer.

Analysis of the overall algorithm performance

The first aspect we report on is the performance of algorithm 1 with respect to finding a
good solution. This was conducted by solving both steps of the process using a classical
CPU based computer. In particular, the QUBO problems were solved using the CPLEX R©

optimization library. The problem sizes were kept small for each QUBO instance to be
solvable in a reasonable amount of time, allowing us to generate statistics over a large
number of runs. It is to be noted that as the problem sizes grow, solving for the layer
assignments becomes increasingly more difficult using classical search heuristics, such as
those employed by CPLEX, because of the combinatorial nature of the problem.

For our experiments, we set up a single macro-layer of thickness 1 km, and three con-
stituent materials—Sandstone, Shale and Salt—with velocities given by 3.0 km/s, 2.5 km/s,
and 4.6 km/s, respectively. We considered different experimental geometries by varying the
number of minilayers N from 2 to 32; and similarly, we also varied the number of mea-
surements Nmeas to take values 2, 4, and 8. For each value of Nmeas, the ray parameters
were chosen by uniformly dividing the interval [0, 1/vmax) into that many points. Next,
we randomly assigned the minilayers to create our ground truth model, and traced rays
through it to generate the Lj and the Tj . This gave us one instance of our optimization
problem, and we generated 50 such instances for each value of N and Nmeas. We solved
each instance 50 times using algorithm 1 to gather meaningful statistics. In all the cases, the
average reduction in the objective function was close to 100%, thereby indicating that the
alternating algorithm is performing well at minimizing the objective function. We should
also note that algorithm 1 guarantees that the objective function reduction is monotonic if
the QUBOs are solved exactly, which was also confirmed in our experiments.

In Figure 1, we show several key performance indicators of the convergence properties
of the algorithm, such as the number of iterations and time taken until convergence in
a) and b), respectively, and the errors in the solved variables as compared to the actual
ones in c) and d). These plots show some obvious facts such as an increasing trend in
the runtime and the number of iterations as the number of variables increase, but it also
exhibits some phenomena that are harder to explain—for example, while the errors in the
ray parameters appear to stay flat as we increase the number of minilayers, the errors in
the layer assignments show a linearly increasing trend.

For algorithm 2, our testing was run on a 2-GHz central processing unit (CPU). Running
a single case with the same materials and all 5151 compositions of 100 minilayers took 7
minutes and 28 seconds, working out to an average of a shade less than one tenth of a
second per composition.
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Figure 1: Plots of various performance metrics for algorithm 1, averaged over runs with
the error bars representing the standard deviations of the quantities. The horizontal axis in
all the plots represent the number of minilayers N . The quantities plotted clockwise from
top-left are: a) number of iterations to convergence, b) wall clock time to convergence, c)
mean l1 error in the ray-parameter solution, and d) mean l1 error in the layer assignments.
[CR]
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Initial quantum annealing results

Here we present and examine our results of solving the QUBO sub-problem on the D-Wave
2000Q quantum annealer. We consider the same experimental setup, as in the last section.
In the current annealers, a practical limitation affecting performance is the lack of hardware
coupling between all the qubits. Therefore, in order to embed a general QUBO with fully
connected topology, copies of the qubits are necessary. We refer to the total qubits after
embedding as the “qubit count,” and the number of binary variables in the original QUBO
as the “logical variable count.”. In our problem, once we fix the number of materials,
the logical variable count grows logarithmically in N , and is independent of Nmeas. The
resulting qubit counts are shown in Figure 2. We observe that Nmeas has almost no impact
on the qubit count, as we can see from the plot that the variance is near zero.
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Figure 2: Mean counts for qubits plotted with their standard deviations for different values
of N and Nmeas for three materials. The logical variable count has also been plotted. [CR]

Another important performance metric is the time taken to solution. We plot this
metric for values of N ranging from 2 to 16, and Nmeas taking values 2, 4, 8 in Figure 3.
For each parameter combination we generated 10 QUBO problem instances with random
initializations, and solved each problem 1000 times on the annealer. The time plotted is the
total time to solution that involves network communication costs, time needed to embed the
problem on the annealer, etc., in addition to the actual anneal time for all the 1000 runs.
As expected, the time increases with the problem size N ; although interestingly even with
overhead costs, the time taken per anneal cycle has a maximum value of approximately 0.5
s among the problem sizes tried, which is quite comparable to the overall runtime of the
alternating algorithm on classical computers, for similar problem sizes.

Adiabatic quantum computation by its very nature has stochasticity built into it—
that is, the annealing process gives us a solution close to the ground state of the QUBO
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Figure 3: Total time to solution for 1000 anneal cycles plotted with their standard deviations
for different values of N and Nmeas for three materials. [NR]

objective, but not always exactly the ground state. This process is demonstrated for a
particular QUBO instance in Figure 4, where we have plotted a histogram of the QUBO
objective function (which can be negative because we drop constant terms in the QUBO
formulation) corresponding to the solutions obtained for 1000 repeated annealing trials. As
we can see, most of the solutions are clustered around the global minimum.

CONCLUSIONS AND FUTURE WORK

We formulated our Snell tomography problem for laterally homogenous media and a finite
set of material velocities as a mixed integer problem and proposed an alternating algorithm
to solve it. Our numerical studies suggest that the algorithm performs reasonably well at
solving the optimization problem. Although we can only guarantee convergence to a local
minimum, the objective function reduction is on an average over 99%, which is good for most
practical applications. We studied the solution of the QUBO sub-problem on a quantum
annealer to obtain the qubit counts after the embedding process, and get an estimate of the
runtimes, and found them to be reasonable for different problem sizes.

For future work on the quantum annealing aspect, a detailed suite of performance bench-
marking tests needs to be performed to evaluate important metrics such as the accuracy
of the solutions as compared to the ground state, statistics of the solutions with respect
to constraint satisfaction, etc. Another very interesting aspect that remains to be studied
is the impact of quantum solves for the QUBO subproblems on the complete alternating
algorithm. The inherent stochasticity of quantum annealing may allow the alternating al-
gorithm to escape local minima, and be an aspect that we study in the future. Finally, we
are exploring possible ways the full Snell tomography problem, that is including a search
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Figure 4: Histogram of objective function values (normalized by the maximum value ob-
tained) corresponding to solutions for 1000 anneal cycles for a single QUBO instance. [NR]

over a discrete set of ray parameters such as developed in Appendix D, might feasibly be
run on the current generation of quantum annealers.
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APPENDIX A

In this appendix, we present two algorithms that can be used to perform the search over the
ray parameter pk for the kth ray given that the layer assignments are fixed, or alternatively
when the binary variables bjl in equation 16 are fixed for all j = 1, . . . ,M and l = 1, . . . , r.
The first algorithm takes a discrete sampling approach to the problem to locate the global
minima of this one dimensional search problem up to discretization errors. The second
algorithm is the descent based Newton’s algorithm that converges to a local minima.

Global search based on discretization

The optimization problem that we are solving for a fixed ray k and fixed layer assignments
is given by the following:

minimize
1

v2
max

Lk − M∑
j=1

δpkvjyj√
1− p2

kv
2
j

2

+

Tk − M∑
j=1

δyj

vj
√

1− p2
kv

2
j

2

subject to pk ∈ [0, 1/vmax)

(A-1)

where we have substituted the expressions for αkj , βkj and yj from equation 9 and equation
15 in the objective function of equation 16 for a single ray k. We discretize the domain
[0, 1/vmax), into P uniformly spaced values for some positive integer P , and choose the value
that attains the minimum objective function. The pseudocode is outlined in algorithm A-1,
which takes as input the index k of the ray and the discretization parameter P .

Algorithm A-1 Global ray parameter search
1: procedure Discretized global search (k, P )
2: ∆p← 1

P vmax

3: S ← {n∆p : n = 0, . . . , P − 1}

4: pk ← arg min
p∈S

1
v2max

(
Lk −

M∑
j=1

δpvjyj√
1−p2v2j

)2

+

(
Tk −

M∑
j=1

δyj

vj

√
1−p2v2j

)2

5: return pk
6: end procedure

Newton’s method

In view of the global convergence of Newton’s method for ray tracing in a horizontally
isotropic layered medium (Levin, 2012), for fixed layer assignment yj , the ray parameters
pk can be updated using algorithm A-2. It is easily seen that this is just Newton’s root
finding algorithm for a stationary point of the objective function in (A-1), with a slight
modification that forms a convex combination of the traveltime and offset misfit terms. In
this case we are only guaranteed to converge to a local minima, as the global convergence
guarantee does not hold any more with both the offset and traveltime misfit terms present.
We finally note that we used γ = 0 in our numerical experiments as that option appeared
to avoid trapping us in a local minima of the larger optimization problem.
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Algorithm A-2 Newton ray parameter search
1: procedure Continuous local search (k, γ ∈ [0, 1])

2: pmin ← Lk/(vmax

√
Z2 + L2

k) , pmax ← 1/vmax

3: pk ← pmin+pmax

2
4: while Not converged do
5: pk ← pk − ((1−γ)(T (pk)−Tk)2+γ(L(pk)−Lk)2/v2max)′

((1−γ)(T (pk)−Tk)2+γ(L(pk)−Lk)2/v2max)′′

6: pk ← max(pmin,min(pmax, pk))
7: end while
8: return pk
9: end procedure

APPENDIX B

Two material analytic formula

As noted in this report, material percentages for a two-layer system are resolvable with
one offset-time pair and a vertical ray example was shown. For an offset ray, an analytic
formulation is significantly more complex and results in a sixth order polynomial to solve.
Our derivation follows.

Let the ray traverse from (0, 0) to (L,Z) in time T , and let A and B be the vertical
division of Z into between the velocities v1 and v2. We then have four equations to combine:

Z = A+B vertical distance, (B-1)
L = A tan θ1 +B tan θ2 horizontal distance, (B-2)

T =
A

v1 cos θ1
+

B

v2 cos θ2
traveltime, and (B-3)

v1
v2

= γ =
sin θ1
sin θ2

Snell’s Law. (B-4)

Eliminating B = Z −A yields

A (tan θ1 − tan θ2) = L− Z tan θ2 (B-5)

A

(
1

v1 cos θ1
− 1
v2 cos θ2

)
= T − Z

v2 cos θ2
. (B-6)

Eliminating A
L− Z tan θ2

tan θ1 − tan θ2
=

T − 1
v2 cos θ2

Z
1

v1 cos θ1
− 1

v2 cos θ2

=
Tv2 cos θ2 − Z
v2 cos θ2
v1 cos θ1

− 1
(B-7)

and using Snell’s Law B-4 to eliminate θ1 gives us

L− Z tan θ2
γ sin θ2/

√
1− γ2 sin2 θ2 − tan θ2

=
Tv1 cos θ2 − γZ

cos θ2/
√

1− γ2 sin2 θ2 − γ
(B-8)

to solve for sin θ2; and therefore, p. Denoting s = sin θ2 and replacing cos θ2 with
√

1− s2,
we expand

L− Zs/
√

1− s2

γs/
√

1− γ2s2 − s/
√

1− s2
=

Tv1
√

1− s2 − γZ
√

1− s2/
√

1− γ2s2 − γ
, (B-9)
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multiply by s/
√

1− γ2s2

L− Zs/
√

1− s2

γ −
√

1− γ2s2/
√

1− s2
= s

Tv1
√

1− s2 − γZ
√

1− s2 − γ
√

1− γ2s2
, (B-10)

and simplify to obtain

L
√

1− s2 − Zs
γ
√

1− s2 −
√

1− γ2s2
= s

Tv1
√

1− s2 − γZ
√

1− s2 − γ
√

1− γ2s2
. (B-11)

Subtracting the right side from the left and simplifying yields

0 =
(Tv1s− γL)

√
1− γ2s2 − (1− γ2)Zs− (γTv1s− L)

√
1− s2[

(γ2 + 1)(1− s2)
√

1− γ2s2 + γ((γ2 + 1)s2 − 2
]√

1− s2
. (B-12)

Before continuing, we note that both the numerator and denominator vanish when
γ = 1. This is reassuring because if the two layer velocities are the same, we can choose
any boundary or boundaries between them and not change the offset and traveltime of the
(straight) ray.

Setting the numerator equal to zero, we eliminate the radicals by first moving the term
with

√
1− γ2s2 to one side, squaring both sides, rearranging to put

√
1− s2 to one side

and squaring again to generate a nominally eighth order polynomial. However, the 8th,
7th, and 1st order terms cancel, leaving the 6th order polynomial equation

0 = 4γ2(γ2 − 1)2T 2v2
1(Z2 + L2) s6

−4γ(γ2 − 1)2Tv1L[(γ2 + 1)(L2 + Z2) + T 2v2
1] s5

+(γ2 − 1)2[(γ2 − 1)2Z4 + 2(γ4 + 1)L2Z2 + (γ2 + 1)2L4

+2(γ2 + 1)T 2v2
1(L2 − Z2) + T 4v4

1] s4

+4γ(γ2 − 1)2Tv1L(L2 + 2Z2) s3

−2(γ2 − 1)2L2[(γ2 + 1)(L2 + Z2) + T 2v2
1] s2

+(γ2 − 1)2L4 (B-13)

in s = sin θ2.

Regardless of the sign of the s4 term, there are four sign changes in the coefficients.
Applying Descartes’ Rule of Signs (Gauss, 1828), we conclude that there are either zero,
two or four positive roots. One may further limit the number of roots between 0 and 1
using the change of variable u = 1/s − 1, which is the same as recasting B-13 in terms of
tan θ2

2 . For the test case (v1 = 1.7, v2 = 2.2, Z = 1, L = 2, T = 1.061728621), there are
two sign changes in the coefficients of the resulting 6th order u polynomial. One root has
sin θ2 = 0.913856216, corresponding to the ray actually traced for the test with A = 0.2 and
B = 0.8. The other root, sin θ2 = 0.874985873, corresponds to a negative value of cos θ2 and
a negative value of A. This nonphysical solution is understandable because of the repeated
squaring we did to obtain equation B-13 erased signs.
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APPENDIX C

Transformation to QUBO form

We carry out the reduction of the constrained binary optimization problem in equation 16
to a quadratic unconstrained binary optimization problem (QUBO), using a well-known
transformation process. Let b denote the vector formed by stacking all the binary variables
bjl, for all j ∈ {1, . . . ,M} and l ∈ {1, . . . , r}, and let f(b) denote the objective function
in equation 16. Then, following Hansen (1979), an equivalent optimization problem can
be obtained by adding a squared penalty term of the equality constraint to the objective
function as follows:

minimize f(b) + λ

 M∑
j=1

r∑
l=1

bjl2l−1 −N

2

subject to bjl ∈ {0, 1} , ∀ j ∈ {1, . . . ,M} , ∀ l ∈ {1, . . . , r} ,

(C-1)

where λ is any suitably chosen constant that satisfies λ ≥ f̄ , with f̄ being the solution to
the following optimization problem

maximize f(b)
subject to bjl ∈ {0, 1} , ∀ j ∈ {1, . . . ,M} , ∀ l ∈ {1, . . . , r} .

(C-2)

The optimization problem thus obtained in equation C-1 is now in QUBO form. Notice
that although solving for f̄ itself involves solving another QUBO in equation C-2, one does
not need to do so to obtain a λ satisfying λ ≥ f̄ . One such choice is given by observing
that, p and Lk having the same sign in this experiment geometry,

K∑
k=1

 1
v2
max

Lk − M∑
j=1

r∑
l=1

αkjbjl2l−1

2

+

Tk − M∑
j=1

r∑
l=1

βkjbjl2l−1

2
≤

K∑
k=1

 L2
k

v2
max

+
1

v2
max

 M∑
j=1

r∑
l=1

αkj2l−1

2

+ T 2
k +

 M∑
j=1

r∑
l=1

βkj2l−1

2
≤

K∑
k=1

 L2
k

v2
max

+
22r

v2
max

 M∑
j=1

αkj

2

+ T 2
k + 22r

 M∑
j=1

βkj

2 ,

(C-3)

and therefore,

λ =
K∑
k=1

 L2
k

v2
max

+
22r

v2
max

 M∑
j=1

αkj

2

+ T 2
k + 22r

 M∑
j=1

βkj

2 (C-4)

is a valid choice. However, if λ is too large, the objective function in equation C-1 is
dominated by the penalty term, and numerical optimization algorithms end up completely
ignoring the original objective function that we wanted to minimize. To avoid this issue,
it is better to choose a value of λ that is as small as possible that still guarantees that a
global minimum of equation C-1 satisfies the constraints. For example, notice that we can

SEP-172



Levin & Sarkar 18 Quantum annealing Snell tomography

drop any constant term in the objective function f(b) in equation C-1 without changing
the optimization problem. This allows us to improve the bound in equation C-4 to

λ =
K∑
k=1

 22r

v2
max

 M∑
j=1

αkj

2

+ 22r

 M∑
j=1

βkj

2 . (C-5)

Other choices for the parameter λ are also possible. We illustrate two such possibilities.
The starting point of these choices is the observation that because all the variables bjl
are binary, we have the identity bjl = b2jl, and therefore the objective function in the
optimization problem of equation 16 can be expressed as a quadratic form if we ignore the
constant terms, as follows:

bTQb , where Q is a symmetric matrix of dimensions Mr ×Mr given by

Qr(j−1)+l,r(j′−1)+l′ =


2l+l

′−2
K∑
k=1

(
αkjαkj′

v2max
+ βkjβkj′

)
if j 6= j′, or l 6= l′, else

K∑
k=1

[
1

v2max

(
22l−2α2

kj − 2lLkαkj
)

+
(

22l−2β2
kj − 2lTkβkj

)] (C-6)

for all j, j′ ∈ {1, . . . ,M} and l, l′ ∈ {1, . . . , r}.

The first possibility then follows by noticing that as b is a binary vector, we have

bTQb ≤ |bTQb| ≤
M∑

j,j′=1

r∑
l,l′=1

|Qr(j−1)+l,r(j′−1)+l′ | . (C-7)

The second possibility follows from the inequality bTQb ≤ λmax(Q)bTb ≤ λmax(Q)Mr,
where λmax(Q) is the largest eigenvalue of the matrix Q. Thus, the following choices of λ
are also valid choices

λ =
M∑

j,j′=1

r∑
l,l′=1

|Qr(j−1)+l,r(j′−1)+l′ | , and λ = λmax(Q)Mr . (C-8)

Equivalent Ising spin-glass Hamiltonian

To solve the optimization problem in equation C-1 using quantum annealing, we introduce
the spin variables sjl ∈ {−1, 1} given by

sjl = 2bjl − 1 , ∀ j ∈ {1, . . . ,M} , ∀ l ∈ {1, . . . , r} . (C-9)

Let s denote the vector formed by stacking all the spin variables sjl. The Ising Hamiltonian
Hf (s), whose ground state encodes the solution to equation C-1 is obtained by directly
substituting the spin variables sjl into the objective function yielding

Hf (s) =
M∑

j,j′=1

r∑
l,l′=1

2l+l
′−4

[
λ+

K∑
k=1

(
αkjαkj′

v2
max

+ βkjβkj′

)]
sjlsj′l′

−
M∑
j=1

r∑
l=1

2l−1

[
λN ′ +

K∑
k=1

(
L′kαkj
v2
max

+ T ′kβkj

)]
sjl ,

(C-10)
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where we have introduced the quantities L′k, T
′
k and N ′ defined as follows:

L′k = Lk −
1
2

(2r − 1)
M∑
j=1

αkj

T ′k = Tk −
1
2

(2r − 1)
M∑
j=1

βkj

N ′ = N − M

2
(2r − 1) ,

(C-11)

and we have neglected the constant terms.

APPENDIX D

Full QUBO optimization problem

We present a full QUBO problem formulation for Snell tomography, that is derived from
the optimization problem in (16) by additionally discretizing the ray parameters. Let us
discretize the ray parameter range [0, 1/vmax) into P uniformly spaced values given by the
set P̂ = {p̂1, . . . , p̂P }, defined as p̂q = (q−1)/Pvmax. The parameter P is used to control the
level of discretization that we want, which in turn will affect the accuracy of the solutions.
The key step in getting a full QUBO problem formulation is to allow each ray to take all
possible values in P̂ and for each material. To achieve this goal, we start by defining α̂qj
and β̂qj as follows

α̂qj =
δp̂qvj√
1− p̂2

qv
2
j

, β̂qj =
δ

vj
√

1− p̂2
qv

2
j

, (D-1)

for all j = 1, . . . ,M and q = 1, . . . , P . We next define indicator variables x̂kq as

x̂kq =

{
1 if ray k has ray parameter p̂q
0 otherwise.

(D-2)

To ensure that each ray gets assigned an unique p̂q while propagating through each material,
we require that the following constraints be satisfied

P∑
q=1

x̂kq = 1 , ∀ k = 1, . . . ,K. (D-3)

With constraint (D-3) in place, we can now write the objective function in (16) as follows

J =
K∑
k=1

P∑
q=1

x̂kq

 1
v2
max

Lk − M∑
j=1

r∑
l=1

α̂qjbjl2l−1

2

+

Tk − M∑
j=1

r∑
l=1

β̂qjbjl2l−1

2 ,

(D-4)
and notice that it is a quadratic function in the variables x̂kq and bjl, which is clear from the
fact that b2jl = bjl because the variables bjl are binary. Thus, the full QUBO optimization
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problem can now be written as

minimize
K∑
k=1

P∑
q=1

x̂kq

 1
v2
max

Lk − M∑
j=1

r∑
l=1

α̂qjbjl2l−1

2

+

Tk − M∑
j=1

r∑
l=1

β̂qjbjl2l−1

2
subject to bjl ∈ {0, 1} , ∀ j ∈ {1, . . . ,M} , ∀ l ∈ {1, . . . , r} ,

x̂kq ∈ {0, 1} , ∀ k ∈ {1, . . . ,K} , ∀ q ∈ {1, . . . , P} ,
M∑
j=1

r∑
l=1

bjl2l−1 = N ,

P∑
q=1

x̂kq = 1 , ∀ k = 1, . . . ,K.

(D-5)

As before the equality constraints can be removed by adding them as penalty terms, for
example as outlined in Appendix C. The number of binary variables involved in solving
optimization problem in (D-5) is KP +Mr.
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