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ABSTRACT

We develop the theory of frequency domain tomographic full waveform inversion
(TFWI) with the goal of alleviating some of the computational bottlenecks present
in its time domain implementation. Fourier transforming the time coordinate con-
verts the extended Born modeling operator into a pointwise multiplication operator
in the frequency domain, which is computationally cheap as compared to its time do-
main counterpart that involves computing expensive convolutions in time. This trans-
formation leads to significant computational gains for the inner loop sub-problem in
TFWI, where for each frequency band being inverted for, the factorization of the sparse
Helmholtz matrix only needs to be performed once for the whole sub-problem. The
theory is developed for the acoustic case in a constant density medium, ans we provide
examples of some preliminary 2D numerical tests.

INTRODUCTION

TFWI, introduced by Biondi and Almomin (2014), belongs to a class of algorithms based
on the idea of model extensions developed to overcome the issue of non-convexity of full
waveform inversion (FWI). It is a widely held belief that the success of these methods is
intimately linked to the ability of the extended modeling operator in each case to model the
recorded wave field. While TFWI attempts to perform this using a time lag extension, other
forms of extensions have also been tried successfully, for example extensions in subsurface
offset or equivalently subsurface angles (Rickett and Sava, 2002; Sava and Fomel, 2003),
and source extensions (Huang and Symes, 2015; Huang et al., 2016). When viewed as an
optimization problem, these algorithms relax the original FWI problem with an extended
model, which plays the role of artificial variables introduced into the problem that allow for
the solution of an easier extended inverse problem. The physical variables or the velocities
are eventually recovered by solving a sequence of such problems using a strategy that
gradually removes the need for the artificial variables, for example by using regularization.

In the case of TFWI, Biondi and Almomin (2014) proposes to minimize the following
objective function in order to achieve the above mentioned objectives

J(c, δc) =
Ns∑
i=1

1
2
||Ri(ui + δui)− di||22 +

ε2

2
|| tδc||22 , (1)

where Ns is the number of sources, δc is the non-physical model; and for the ith source di is
the recorded data, Ri is the operator that samples the wave field at the receiver locations,
and ui and δui are the physical and non-physical wave fields respectively, corresponding to
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the solutions of the following wave equations with zero initial Cauchy data(
1

c2(x)
∂2

∂t2
−∇2

)
ui(x, t) = fi(x, t) ,(

1
c2(x)

∂2

∂t2
−∇2

)
δui(x, t) =

∫
R

2
∂2ui
∂t2

(x, t− τ)
δc(x, τ)
c3(x)

dτ,

(2)

In equation (2), c denotes a physical velocity model, fi represents the source function for
the ith source, ∇2 denotes the Laplacian operator, x ∈ Rd represents the physical space
coordinate and t represents time. We will mostly be interested in the cases d = 2, 3. The
second equation involves a convolution in time for each source separately, which makes both
the forward and adjoint of the extended Born modeling operator expensive to compute.
In the original version of the algorithm, the optimization problem in (1) is solved using
the adjoint state method treating the problem as a non-linear optimization problem with
respect to c and δc simultaneously, and using scale mixing. It is easily seen that for fixed
c, the minimization step for δc is a linear least squares problem (also called the inner-
loop subproblem for TFWI), which is typically solved using some variant of the conjugate
gradient (CG) algorithm. In fact, this observation has already been suggested previously
by Barnier et al. (2017) in the context of variable-projection TFWI. However as CG is an
iterative method, this requires us to repeatedly apply the extended Born modeling operator
and its adjoint and hence perform the convolutions for each shot and for every CG iteration.
This is the main bottleneck of TFWI, and it is clear that one must be able to perform the
minimization step over δc more efficiently in order for the overall algorithm to be practical.
The main contribution of this report is to demonstrate that the inner-loop subproblem can
be made really efficient by solving an equivalent problem in the frequency domain. In the
next sections, we develop the complete theoretical framework of this technique, and then
provide some 2D synthetic examples.

THEORY

For reasons that will become clear, we will consider a slightly different problem from equa-
tion (1) given by the minimization of the following objective function

J(c, δc) =
Ns∑
i=1

1
2
||Ri(ui + δui)− di||22 +

ε2

2
|| tδc||22 +

γ2

2
||δc||22 , (3)

where γ 6= 0, but not too large. In this section we develop the theory, discuss the algorithm
details, and then discuss how we obtain computational savings in the frequency domain
algorithm as compared to the time domain algorithm.

Frequency domain transformation

The first step involves transforming all the quantities involved to the frequency domain. In
this paper, any Fourier transformed quantity that will appear will be assumed to belong to
the Schwartz class of functions in time, and hence also in frequency. We will denote the
frequency domain coordinate by ω. Denoting by F the Fourier transform operator acting
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on the time coordinate, we first introduce the following notation where all variables with a
“hat” are in the frequency domain, and are thus complex :

ûi = F(ui) , δûi = F(δui) ,

d̂i = F(di) , f̂i = F(fi) ,
δĉ = F(δc) .

(4)

It should be noted that as all the time domain quantities ui, δui,di, fi and δc are real valued,
by property of the Fourier transform we also have the following symmetry conditions

ûi(x,−ω) = ûi(x, ω) , δûi(x,−ω) = δûi(x, ω) ,

d̂i(x,−ω) = d̂i(x, ω) , f̂i(x,−ω) = f̂i(x, ω) ,

δĉ(x,−ω) = δĉ(x, ω) .

(5)

By Parseval’s theorem, the L2 norm is preserved by the Fourier transform, and hence Fourier
transforming the right hand side of (3) allows us to rewrite the objective function as

J(c, δc) = J(c, δĉ) =
Ns∑
i=1

1
2
||Ri(ûi + δûi)− d̂i||22 +

ε2

2

∥∥∥∥ ∂

∂ω
δĉ
∥∥∥∥2

2

+
γ2

2
||δĉ||22 . (6)

We also need to express the wave equations in (2) in the frequency domain, and so Fourier
transforming them in time lead to the following Helmholtz equations with radiation bound-
ary conditions (

∇2 +
ω2

c2(x)

)
ûi(x, ω) = −f̂i(x, ω) ,(

∇2 +
ω2

c2(x)

)
δûi(x, ω) =

2ω2

c3(x)
ûi(x, ω)δĉ(x, ω) .

(7)

Problem discretization

The next crucial step involves discretization of physical space, time and frequency that
allows us to formulate and solve the inverse problem on a computer. We will proceed with
a rectangular gridding strategy. Let ∆x ∈ Rd

>0, ∆t ∈ R>0 and ∆ω ∈ R>0 denote the grid
spacings in space, time and frequency respectively. Let the number of grid points in space
be given by N ∈ Nd, and in frequency be given by Nω ∈ N, where N is the set of positive
integers. Also letting Ni denote the components of N we will denote the total number of
spatial grid points by N =

∏d
i=1Ni. With this notation, the quantities ûi, δûi, f̂i and δĉ

become elements of a finite dimensional vector space of dimension NNω, and c becomes an
element of a vector space of dimension N . Finally, if Nri is the number of receivers present
for the ith source, then d̂i becomes an element of a vector space of dimension NriNω.

We solve the Helmholtz equations in (7) using the numerical scheme outlined in Liu and
Ying (2016), where the radiation boundary condition is imposed using perfectly matched
layers (Johnson, 2008; Sommerfeld, 1949). We have previously demonstrated numerical
results from 2D experiments implementing this numerical scheme in Sarkar and Biondi
(2017), and as was also remarked in that paper, the numerical scheme extends naturally to



Sarkar & Biondi 4 Frequency Domain TFWI

three and higher spatial dimensions. Thus for the kth frequency ωk, solving the equations
in (7) reduce to solving the following linear systems of equations :

A(ωk)ûi(x, ωk) = −f̂i(x, ωk) ,

A(ωk)δûi(x, ωk) =
2ω2

k

c3(x)
ûi(x, ωk)δĉ(x, ωk) ,

(8)

where A(ωk) is a complex matrix of dimensions N ×N that additionally depends on c(x).
In order to simplify the notation, we will furthermore denote all the matrix and vector
quantities involved for each frequency ωk, indexed by k as follows :

Ak = A(ωk) , Λki = diag
(

2ω2
k

c3(x)
ûi(x, ωk)

)
,

ûki = ûi(x, ωk) , δûki = δûi(x, ωk) ,

d̂ki = d̂i(x, ωk) , f̂ki = f̂i(x, ωk) ,
δĉk = δĉ(x, ωk) .

(9)

where Ak,Λki ∈ CN×N are matrices, ûki, δûki, f̂ki, δĉk ∈ CN are vectors, and d̂ki ∈ CNri

is a vector. The complete vectors ûi, δûi, f̂i, δĉ and d̂i are obtained by stacking the vectors
ûki, δûki, f̂ki, δĉk and d̂ki respectively, for all the frequencies ω1, . . . , ωNω . So for example,
we have ûi = [ûT1i . . . û

T
Nωi

]T . Using this notation, we may finally write the system of
Helmholtz equations in (8) in the following compact form

Akûki = −f̂ki ,

Akδûki = Λkiδĉk ,
(10)

and note that if ∆x is chosen properly, then Ak admits an inverse (Liu and Ying, 2016),
which allows us to be able to invert the linear system of equations in (10) and obtain the
quantities ûki and δûki. We will formally write the solution to this system as

ûki = −A−1
k f̂ki ,

δûki = A−1
k Λkiδĉk ,

(11)

but note that we will never invert the matrix Ak in order to solve (10). The actual solution
process in principle involves factorizing the matrix Ak into its lower and upper triangular
factors, and then performing a forward substitution followed by a backward substitution
to solve the systems of equations. We will provide more details of this procedure in later
sections.

Finally, it is to be noted that the objective function in (6) is now transformed to the following
form involving the vector quantities

J(c, δĉ) =
Ns∑
i=1

1
2
||Ri(ûi + δûi)− d̂i||22 +

ε2

2
‖ Dδĉ‖22 +

γ2

2
||δĉ||22 , (12)

with the understanding that the norm denoted by || · || now refers to the norm induced by
the standard Hilbert space inner product, in the corresponding vector spaces for each of
the different quantities, and D is the derivative operator along the frequency axis. For our
convenience, we will take D to be the forward difference derivative operator.
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The normal equations

In the time domain inner-loop sub-problem of TFWI, one seeks to find an extended model
that is able to model the residuals using the extended Born modeling operator, for a fixed
background velocity model. Posed an an optimization problem, this is equivalent to finding
a minimizer δc∗ of J(c, δc) for a fixed value of c, that is

δc∗ = arg min
δc

J(c, δc) . (13)

Because of the equivalence of the time domain and frequency domain objective functions,
as shown in equation (6), the corresponding frequency domain solution δĉ∗ is given as

δĉ∗ = arg min
δĉ

J(c, δĉ) , (14)

with the time and frequency domain solutions for the extended model being related by
δĉ∗ = F(δc∗). This correspondence will be shown shortly as we will show that the solution
to problem (14) is unique. It is also clearly seen from the first equation in (11) that
the vectors ûki are completely determined once we fix c, and thus ûi is also completely
determined, because after all it is just the physical wavefield modeled using the background
velocity model which has been Fourier transformed to the frequency domain. We will denote
the misfit between the recorded data and the modeled physical wave field in the frequency
domain as r̂i, and define it as

r̂i = d̂i −Riûi , (15)

which allows us to rewrite the objective function for the inner-loop TFWI problem as

Jc(δĉ) =
Ns∑
i=1

1
2
||Riδûi − r̂i||22 +

ε2

2
‖ Dδĉ‖22 +

γ2

2
||δĉ||22 , (16)

where the notation Jc(δĉ) denotes the implicit dependence on the background velocity c.
As was previously remarked, the inner-loop TFWI sub-problem is a linear least squares
problem, which is also true in the frequency domain. We can see this directly from the form
of the objective function in (16), by additionally noting that δûi is related to δĉ through a
linear transformation which we next make explicit.

Using the fact that ûi = [ûT1i . . . û
T
Nωi

]T , δĉ = [δĉT1 . . . δĉ
T
Nω

]T , and the second equation in
(11), we can express the relationship between δûi and δĉ using a block diagonal matrix as
follows  δû1i

...
δûNωi

 =

A−1
1 Λ1i . . . 0

...
. . .

...
0 . . . A−1

Nω
ΛNωi


 δĉ1

...
δĉNω

 , (17)

where the non-zero blocks A−1
k Λki are of dimensions N ×N , and we will compactly write

this relationship as δûi = Biδĉ, with Bi representing the block diagonal matrix which again
is completely determined for fixed c. This allows us to write the objective function in (16)
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entirely in terms of δĉ, which can be further simplified as follows

Jc(δĉ) =
Ns∑
i=1

1
2
||RiBiδĉ− r̂i||22 +

ε2

2
‖ Dδĉ‖22 +

γ2

2
||δĉ||22

=
1
2
δĉH

(
Ns∑
i=1

BH
i RH

i RiBi + ε2DHD + γ2I

)
δĉ

− 1
2

Ns∑
i=1

(
r̂Hi RiBiδĉ + δĉHBH

i RH
i r̂i
)

+
1
2

Ns∑
i=1

‖ r̂i‖22 ,

(18)

where I represents the identity matrix. The next observation is that the matrix M =(∑Ns
i=1 BH

i RH
i RiBi + ε2DHD + γ2I

)
is Hermitian and positive definite for any γ 6= 0, and

therefore by Theorem 1 in Appendix A, Jc(δĉ) has a unique minimizer δĉ∗ satisfying the
following invertible linear system

M δĉ∗ = b , where b =
Ns∑
i=1

BH
i RH

i r̂i , (19)

which is the normal equation for the inner-loop TFWI sub-problem.

Solving the normal equations

As the matrix M is Hermitian positive definite, the method of choice for solving the linear
system is the conjugate gradient (CG) algorithm (Hestenes and Stiefel, 1952), each iteration
of which requires us to form matrix vector products. From equation (A-8), it is clear that
M consists of the sum of two matrices M1 and M2 of which the first is trivial to apply to
a vector and poses no challenge. The second matrix M2 is more complicated, but it has
a nice block diagonal structure, and we seek to exploit its structure to efficiently compute
the result of its application to a vector. A necessary step towards achieving this goal is
to precompute and store certain invariant quantities for the entire duration of solving the
TFWI inner-loop subproblem.

Precomputing quantities

The quantities A−1
k only depend on the frequencies ωk and is independent of the shots. We

start by forming the LU factors of the matrices Ak = LkUk and AH
k = L̃kŨk for each

k = 1, . . . , Nω and store them. For each shot and each frequency ωk, we can compute the
primary wavefields ûki, and hence also the quantities Λki. As Λki is a diagonal matrix, we
only need to store the diagonal entries of the matrix. Then for any vector y of appropriate
dimensions, all of the following operations can be easily performed :

A−1
k y, (A−1

k )Hy,Λkiy and ΛH
kiy , ∀ k = 1, . . . , Nω, and ∀ i = 1, . . . , Ns . (20)

The first two operations can be performed by forward and backward substitutions involving
the precomputed LU factors, while the last two operations are trivial multiplications by
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precomputed diagonal matrices. The other quantity that we will precompute are the ma-
trices ΓHi Γi for all shots i = 1, . . . , Nω. As mentioned in Appendix B, ΓHi Γi is a diagonal
{0, 1} matrix with 1s only in the positions corresponding to the receiver locations. Thus
ΓHi Γi can be stored easily by storing just the node indexes of the receivers corresponding
to each shot, and quantities of the form ΓHi Γiy for a vector y of appropriate dimension can
be calculated as follows

(ΓHi Γiy)α =

{
yα if a receiver is present at node index α ,
0 otherwise.

(21)

The storage cost of the precomputed quantities is given in Table 1, where density refers to
the fraction of non-zero entries of a matrix. It should be noted that all the matrices Lk are
structurally same for all k, and the same is true for Uk. Moreover, UH

k is structurally same
as L̃k, and similarly LHk is structurally same as Ũk. Also for 2D problems the density of
the matrices Lk,Uk, L̃k and Ũk is approximately O(1/N).

Precomputed Quantity Subscript Ranges Storage Cost (number of floats)
ΓHi Γi i = 1, . . . , Ns

∑Ns
i=1Nri

Λki k = 1, . . . , Nω, i = 1, . . . , Ns NωNsN
Lk,Uk k = 1, . . . , Nω NωN

2(density(L1) + density(U1))
L̃k, Ũk k = 1, . . . , Nω NωN

2(density(L̃1) + density(Ũ1))

Table 1: Storage costs of the precomputed quantities in terms of the number of floating
point variables.

Computing the matrix vector product

Once we have the precomputed quantities, the task of forming matrix vector products with
the matrix M = M1 + M2 is straightforward. The steps are outlined in Algorithm 1
where we apply M to δĉ = [δĉT1 . . . δĉ

T
Nω

]T for illustration. The output is a vector y which
naturally also admits a block decomposition of the form δĉ, i.e. y = [yT1 . . .y

T
Nω

]T . In the
algorithm, it is assumed that the precomputed quantities in Table 1 are already available.

It is possible to write down the amount of work needed to perform the steps in Algo-
rithm 1. Computing the M1δĉ updates costs N(3Nω − 2) additions and 2NNω multi-
plications. For the M2δĉ computation, all the updates excluding the linear solves cost
3NNωNs multiplications and NNωNs additions. For each linear solve per shot per fre-
quency, using forward and backward substitution with the cached LU factors costs roughly
N2O(density(L1) + density(U1)) multiplications and additions. Thus the total cost of the
M2δĉ update is NωNsN

2O(density(L1) + density(U1)).

NUMERICAL EXPERIMENTS

In this section we provide some numerical results to test the performance of the algorithm
proposed in this paper. We will use a simple model for our test cases that has a Gaussian
anomaly in the center as the true model. We will denote this model as ctrue. The incorrect
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Algorithm 1 Application of M to a vector
1: procedure Matrix Vector Product (δĉ)
2:

3: // Initialize the output to zeros
4: y← 0
5:

6: // Compute M2δĉ
7: for k = 1 to Nω do
8: for i = 1 to Ns do
9: z← Λkiδĉk

10: Solve: LkUkw = z
11: z← ΓHi Γiw
12: Solve: L̃kŨkw = z
13: z← ΛH

kiw
14: yk ← yk + z
15: end for
16: end for
17:

18: // Compute M1δĉ
19: y1 ← y1 + (ε2 + γ2)δĉ1 − ε2δĉ2

20: for k = 2 to Nω − 1 do
21: yk ← yk + (2ε2 + γ2)δĉk − ε2(δĉk−1 + δĉk+1)
22: end for
23: yNω ← yNω + (ε2 + γ2)δĉNω − ε2δĉNω−1

24:

25: return y
26: end procedure
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starting model will be a constant velocity background model, that we will denote using
the already introduced notation c. Both these models are plotted in Figures 1a and 1b
respectively. The grid spacing in both X and Z directions is 10 m. The number of grid
points for the models are given by the parameters Nx = 50 and Nz = 50. We will use a
Ricker wavelet of peak frequency 10 Hz in our experiments.
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Figure 1: a) The true velocity model ctrue, b) The incorrect starting velocity model c. [ER]

Effect of sampling in frequency on adjoint images

In the first experiment we study the effect of sampling in the frequency domain on the
zero-lag adjoint extended image, which is obtained by stacking all the adjoint extended
images along the frequency axis. The adjoint extended image for various frequencies is
simply the right hand side b of equation (19). For this study, we choose a Ricker wavelet of
peak frequency fp = 10 Hz, which gives roughly a maximum frequency fmax = 20 Hz. We
divide the frequency range [0, fmax] into Nω uniformly spaced points, for Nω = 2, 4, 8, 16
and compute b for each value of Nω, and finally compute the adjoint zero-lag extended
image by stacking the images at all the frequencies. The results are plotted in Figures 2a,
2b, 2c and 2d respectively. A fact that is clearly seen from this example is that the zero-lag
images are almost the same for Nω = 8 and Nω = 16. This suggests a general direction,
which remains to be fully explored, that not too many frequencies are needed to reconstruct
the time domain adjoint extended image. Our experiments with the given model suggests
that this fact continues to be true even for the adjoint images with non-zero lags.

Variation of adjoint images with frequency

In the next illustration we show how the adjoint extended images vary with different fre-
quencies, and so give the reader some intuition of how these fields look like. We choose the
case Nω = 8 for this illustration. The results are plotted in Figures 3a, 3b and Figures 4a,
4b.
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Figure 2: Zero-lag adjoint extended images for different values of Nω : a) Nω = 2, b)
Nω = 4, c) Nω = 8, d) Nω = 16. [ER]
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Figure 3: Adjoint extended images for the different frequencies for Nω = 8 : a) f = fmax/8,
b) f = 3fmax/8. [ER]
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Figure 4: Adjoint extended images for the different frequencies for Nω = 8 : a) f = 5fmax/8,
b) f = 7fmax/8. [ER]
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Time taken for Helmholtz solves as a function of model size

The final illustration compares the run times needed for factorizing the 2D Helmholtz matrix
and the time needed for solving the resulting linear system for different model sizes. This
is an important numerical test as it essentially captures the most important aspect of the
feasibility of frequency domain TFWI from a computational complexity point of view. The
results are shown in Figures 5, 6 and 7, where we have plotted the same figures with and
without log scales for the different axes. The plotted values have been averaged over 10
factorizations to compute the time needed for the LU factorization, and averaged over 50
linear solves to compute the time needed for the solves. The graphs show us that the
factorization times and the solve times scale approximately linearly with the number of
grid points in the model in the log-log scale.
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Figure 5: Plot of time taken versus the number of grid points in the model, for performing
LU factorization and solution of linear systems using the factorized matrices. [CR]

CONCLUSIONS AND FUTURE WORK

We have developed the theory for solving the inner-loop TFWI problem in the frequency
domain in this paper, and experimented with solving the normal equations using the con-
jugate gradient algorithm. The resulting algorithm is much faster than its time domain
counterpart in 2D. The LU factorization of the Helmholtz matrix for each frequency needs
to be performed only once for the whole problem, and the results are cached. Moreover
the same factorization works for all the shots in the survey. It should be noted that the
stated matrix factorization is feasible in 2D; however in 3D for higher frequencies and with
big model sizes, the factorization of the Helmholtz matrix becomes prohibitively expensive,
and moreover the resulting matrix fill-in can be significant to erode away all computational
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Figure 6: Plot of time taken in logarithmic scale versus the number of grid points in
the model, for performing the LU factorization and solution of linear systems using the
factorized matrices. [CR]
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Figure 7: Plot of time taken versus the number of grid points in the model (both in log-
arithmic scale), for performing LU factorization and solution of linear systems using the
factorized matrices in logarithmic scale. [CR]
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gains. Thus the proposed direct method is only expected to be useful for low frequency
inversions and with reasonable model sizes.

The conjugate gradient algorithm used to solve the system requires matrix vector products
per iteration. We have shown in the paper that this is easily calculated using the block
tridiagonal form of the matrix. Forming the matrix vector products involves some trivial
multiplication by diagonal matrices, and two sparse linear solves using the cached LU factors
per frequency band per shot. However, performing Gaussian elimination using sparse LU
factorization is only proportional to the number of non-zero elements in the LU factors.
In 2D this leads to very high savings in computational cost compared to time domain
implementations of the inner-loop problem.

We are also currently exploring other linear algebra algorithms that do not involve solving
the normal equations. This is in part motivated by the observation that the normal equa-
tions have squared condition number compared to the original matrix. In literature there
exist methods to solve such problems that do not involve dealing with the normal equations
directly. Whether these methods will be useful in our case remains to be investigated.

Irrespective of the methods used to solve the inner-loop subproblem, the next steps involve
performing the non-linear update of the background velocity model and eventually extend
the method to handle the 3D case. It will be interesting to investigate if frequency domain
methods can provide computational savings for the non-linear update as well.
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APPENDIX A

Proofs

Theorem 1. Let x,b ∈ CN , and let A ∈ CN×N be a Hermitian positive definite matrix.
Consider the following C∞ function f : CN → C given by f(x) = 1

2xHAx− 1
2(bHx+xHb).

Then we have the following :

a) The map f is real valued, and so is in fact f : CN → R.

b) The matrix H =
[
AR −AI

AI AR

]
is symmetric positive definite, where A = AR + iAI, with

AR,AI ∈ RN×N .
c) f has a unique stationary point x∗ which is also the global minimum of the function,
given by the solution to the equation Ax∗ = b.

Proof. As A is Hermitian we have A = AH . Thus f(x)H = f(x) = f(x), proving that f
is a real valued function. For the remaining parts of the proof, we will need to decompose
x and b into their real and imaginary parts. Let x = xR + ixI , and b = bR + ibI , where
xR,xI ,bR,bI ∈ RN . Let us also define the vectors z,y ∈ R2N defined as z = [xTR xTI ]T ,
and y = [bTR bTI ]T .

We first observe that as A = AH , we immediately have that AR = AR
T and AI = −AI

T ,
which implies that AR is symmetric and AI is skew-symmetric. This then implies that
H is symmetric. The skew-symmetry of AI also implies that for any u ∈ RN , we have
uTAIu = 0. Using this fact, a direct computation gives us

xHAx = xTRARxR + xTI ARxI − xTRAIxI + xTI AIxR

=
[
xTR xTI

] [AR −AI

AI AR

] [
xR
xI

]
= zTHz ,

(A-1)

and thus as A is positive definite, we also have that H is positive definite which proves the
second part of the theorem.

For the final part of the theorem, another explicit computation gives us

bHx + xHb = 2 (bTRxR + bTI xI) = 2yT z , (A-2)

and so now treating f as a function of z given by the expression f(z) = 1
2zTHz− yT z, the

goal of minimizing f(x) over x is equivalent to minimizing f(z) over z. We next note that
the Hessian of f with respect to z is given by (∇2f)(z) = H � 0, which implies that f is
convex in z (and hence also in x), and also implies that f has a unique global minimizer z∗

that satisfies Hz∗ = y. If z∗ = [x∗TR x∗TI ]T , then the corresponding unique global minimizer
of f in x is given by x∗ = x∗R + ix∗I , and stationarity of f at x∗ follows by observing that
f(x) is holomorphic in x. It thus only remains to be shown that Ax∗ = b.

Using the relationship Hz∗ = y, the component equations are ARx∗R − AIx∗I = bR, and
AIx∗R + ARx∗I = bI . Multiplying the second equation by i and adding to the first equation
gives

(AR + iAI)x∗R + i(AR + iAI)x∗I = bR + ibI , (A-3)

which upon regrouping gives Ax∗ = b, completing the proof of the theorem.
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APPENDIX B

Block structure of M

We give a short derivation of the explicit form of the matrix M, that appears in the normal
equation (19). To achieve this, we will first express each term individually in block diagonal
form that appears in the expression M =

∑Ns
i=1 BH

i RH
i RiBi + ε2DHD + γ2I, and then

aggregate the results. As the term γ2I is trivial, we will focus on the other two terms∑Ns
i=1 BH

i RH
i RiBi and ε2DHD.

As mentioned previously, the derivative operator D that we use in this paper is the forward
difference operator, that is we are using the approximation ∂δĉk

∂ω ≈ (δĉk+1 − δĉk)/∆ω, for
all k = 1, . . . , Nω − 1. This leads to the following block diagonal structure for DHD

DHD =
1

∆ω2



I −I . . . . . . 0

−I 2I −I
. . .

...
... −I

. . . −I
...

...
. . . −I 2I −I

0 . . . . . . −I I


. (A-4)

The matrix DHD has Nω row blocks and Nω column blocks, and in addition each I ap-
pearing in (A-4) is an identity matrix of dimensions N ×N .

In order to study the term
∑Ns

i=1 BH
i RH

i RiBi, we first fix a shot i. Then using (17), the block
diagonal structure of BH

i RH
i RiBi is completely determined once we have a block diagonal

representation of the matrix RH
i Ri. The first trivial observation is that the sampling

operator (i.e. the set of receivers) stays the same across all the frequencies. Let us denote
this operator as Γi, which is a {0, 1} matrix of dimensions Nri ×N . Then we can write the
following expression for Ri

Ri =

Γi . . . 0
...

. . .
...

0 . . . Γi

 . (A-5)

We assume that no receiver is sampled twice, which implies that ΓHi Γi is a diagonal matrix
with 1s at the diagonal entries corresponding to the receiver locations, and 0s at the diagonal
entries corresponding to the locations where there are no receivers present. This in turn
implies that RH

i Ri is a {0, 1} diagonal matrix given by

RH
i Ri =

ΓHi Γi . . . 0
...

. . .
...

0 . . . ΓHi Γi

 , (A-6)

and so using equation (17) we can write

BH
i RH

i RiBi =

(A−1
1 Λ1i)HΓHi ΓiA−1

1 Λ1i . . . 0
...

. . .
...

0 . . . (A−1
Nω

ΛNωi)HΓHi ΓiA−1
Nω

ΛNωi

 . (A-7)
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It is easy to see from equation (A-7) that the matrix BH
i RH

i RiBi is block diagonal, and
so
∑Ns

i=1 BH
i RH

i RiBi is also block diagonal. Reassembling all the terms and absorbing the
factor of 1/∆ω into the constant ε we can finally write the expression for M in block matrix
form as

M =



(ε2 + γ2)I −ε2I . . . . . . 0

−ε2I (2ε2 + γ2)I −ε2I . . .
...

... −ε2I . . . −ε2I
...

...
. . . −ε2I (2ε2 + γ2)I −ε2I

0 . . . . . . −ε2I (ε2 + γ2)I



+



Ns∑
i=1

(A−1
1 Λ1i)HΓHi ΓiA−1

1 Λ1i . . . 0

...
. . .

...

0 . . .
Ns∑
i=1

(A−1
Nω

ΛNωi)HΓHi ΓiA−1
Nω

ΛNωi


= M1 + M2 ,

(A-8)

where M1 and M2 are the first and second matrices in the above expression. The matrix
M1 is block tridiagonal, and the matrix M2 is block diagonal, and hence M is also block
tridiagonal.


