Minimizing wave propagation dispersion by
optimal parameter search in mimetic finite
differences.
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ABSTRACT

The discrete nature of the numerical operators used in wave propagation leads to
dispersion errors in the simulation. The effects of dispersion can be mitigated by
resorting to high-order operators, which yield more precise results at a greater
computational cost. The mimetic finite-difference method introduced by Castillo
et al. consists of finite-difference operators that retain a high order of accuracy
when tackling Dirichlet boundary conditions, such as the free-surface condition
in onshore acquisitions. The mimetic operators can be constructed by adjusting
six free parameters. I present a study of the impact that varying the parameters
has on the dispersion of a wave propagating in a 1-D medium, while looking
for the optimal combination to minimize the numerical error at no increased
computation cost.

INTRODUCTION

One of the most ubiquitous problems in geophysical imaging is simulating the propa-
gation of seismic waves through the Earth’s crust. Seismic waves enable us to compose
images of the upper layers of the earth by providing information about the structures
that lie beneath the surface. The wave propagation should be modeled as accurately
as possible to obtain images that better represent the underlying geology.

More often than not, an analytical solution to the wave equation cannot be found
because of the complexity of the simulation; and thus, we favor numerical approx-
imations. The accuracy of the approximated solution is determined, among other
factors, by the order of the numerical method used. A higher-order method yields
results with reduced dispersion compared to its lower-order counterpart, often at the
expense of increased computing cost.

The most prevalent method in seismic modeling is the Finite-Difference (FD)
method because of its simplicity. Moreover, the FD operator can be designed in a
straightforward manner for a desired order of accuracy, and it is easy to optimize com-
pared to other methods. Nevertheless, this method has some downsides: high-order
FD operators struggle to incorporate solutions with Dirichlet boundary conditions
with accuracy, as well as to deal with irregularly-shaped domains—for instance, when
including faults or surfaces with topographic features.
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Onshore seismic simulations typically include a free-surface Dirichlet boundary
condition to represent the tractionless interface between ground and air. On the
surface, the wave does not exert traction in the vertical direction. By incorporating
this condition, we introduce in our simulation surface phenomena, such as Rayleigh
and Love waves, that need to be accurately modeled.

To model the free-surface condition without compromising the precision of our
results, we use a class of FD operators called the Mimetic Finite-Difference (MFD)
operators (Castillo et al. (2001)). The MFD method defines two operators that pre-
serve the order of accuracy when Dirichlet boundary conditions are present. The
MFD operators can be constructed from a set of three parameters for each operator.

The present work constitutes a study of the effect of varying the parameters when
constructing the MFD operators, for the 1-D case. In particular, I analyze the impact
that different MFD operators have on the dispersion of elastic waves in the presence of
a free-surface condition, while searching for an optimal set of parameters to minimize
numerical dispersion in the 1-D case.

ELASTIC WAVE PROPAGATION USING MIMETIC
FINITE-DIFFERENCE OPERATORS

The velocity-stress formulation of the elastic equation is a system of coupled differ-
ential equations. For the 1-D, isotropic case, the system can be described as follows:
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where p is the density of the medium, v, represents the velocity component, o,
represents the compressional stress, Fj(t) is the force originating the wave, and A
and p are the Lamé parameters, which depend on the material properties of the
propagating media. Typically, in a 2-D or 3-D domain, the free-surface boundary
condition aligns with the top plane of our domain, where the vertical traction becomes
zero. In our case study, we set both limits of our 1-D domain (z = 0 and x = L,
where L is the length of the array) as free surfaces, 0yz|s—0.r = 0.

We discretize the domain using two interleaved grids: one holding the stress nodes,
and the other holding the velocity nodes, following Levander (1988). This schema,
called staggered-grid formulation, is illustrated in Figure 1. To compute the deriva-
tives in space from Equation (1), we apply the fourth-order FD operator to the stress
and velocity grids, as follows:

¢l (pk+§ _pkf%) + 2 (Pk+g _pk—%)
Az
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Figure 1: Staggered-grid formulation in a one-dimensional array. Blue nodes hold
the velocity values, while red nodes represent stresses. The grid is staggered because
stress and velocity nodes are separated by half of the spatial discretization. [NR]

S is the centered FD stencil operator, p, is the variable to differentiate at node k
(stress or velocity); Az is the spatial discretization; and ¢; and ¢y are the fourth-
order stencil coefficients, (¢; = § and ¢, = 5;), as seen in Levander (1988) and
Fornberg (1988).

Because there are no nodes beyond the boundaries of the array, we have to resort
to one-sided stencil operators to update the boundary values. However, one-sided
standard FD operators are less precise than their centered counterparts. To preserve

the order of accuracy, we employ the MFD operators, following Castillo et al. (2001).
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Figure 2: Staggered-grid formulation including the mimetic extra nodes (in green),
collocated on the boundary. [NR]

The mimetic operators require one extra node to compute the derivative at the
boundary. This extra node is collocated on the grid with the boundary node, as
illustrated in Figure 2. Velocity nodes are differentiated using the Mimetic Divergence
operator, GG, while stress nodes compute their derivatives using the Mimetic Gradient
operator D, as explained in de la Puente et al. (2014):
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Each operator is constructed from three free parameters, ag, Gy, and 79 (0 = G
if we are referring to the Gradient operator, § = D for the Divergence operator),
as introduced by Castillo et al. (2001). These operators have a limited mimetic
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bandwidth. When computing derivatives near the boundaries, the coefficients are
particular to the mimetic method. As the operator moves to the interior points of
the grid, the stencil coefficients become those of the standard FD operator previously
discussed. In the specific case of the compact fourth-order operator, the mimetic
bandwidth is limited within the first four grid points.

We have a myriad of methods to perform the time integration to retrieve the values
of stress and velocity at a certain time step. In general, higher-order methods offer
improved precision and reduced dispersion in the wave propagation, but in return
require us to either perform more complex calculations or to store more information,
such as values at previous time steps, in memory (Moczo and Kristek (2014)). For
this study, we use a second-order leapfrog integration. Using this explicit method on
Equation (1), and omitting the force term, we obtain the following:

m+1 _ ,m
T Uy
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where At represents the time discretization. Finally, using (3)

At
v ™ 4 = Glo™]. (4)
Similarly, to update stresses,
m+3 mt g m+1

OPTIMIZING THE MIMETIC OPERATORS

Analyzing the behavior of the MFD operators requires assembling a test to compare
different operators and measuring their impact. My test consists of a 1-D domain
discretized using a staggered grid, with a free-surface boundary condition at both
ends. Instead of using a force term, as seen in Equation (1), I initialize the values in
the stress nodes with a Ricker wavelet centered in the domain. Once the simulation
begins, the wave propagates both ways in the x direction toward the boundaries
located at * = 0 and z = L, where it is reflected back toward the center of the
domain. After several reflections, we reconstruct the wave in the center of the domain
by superposition.

If the propagation was modeled analytically, the reconstructed wave should be
identical to the initial pulse; as there are no dissipative effects in the problem. How-
ever, because of the numerical nature of the simulation, we can expect some errors in
phase (numerical dispersion) and some errors in amplitude (numerical dissipation).

To assess the quality of the operators, I consider two criteria: (1) the misfit
function and (2) the maximum Courant number of the operator. The misfit function
allows us to quantify the dispersion and dissipation error, while the maximum Courant
number gives us an idea of how numerically stable the operators are.

SEP-172



Ferrer 5 Dispersion in mimetic finite differences

The misfit function evaluates the discrepancy between the original and the recon-
structed wave in phase and envelope. Less dissipative operators produce results with
lower envelope-misfit than their more dissipative counterparts, while operators that
are less dispersive produce results with lower phase-misfit.

To estimate how stable the operator is in relation to the others, we turn to its
maximum Courant number C,,,,. For a FD simulation to be stable, it is necessary
that C', as determined by the grid parameters, is lower than the maximum Courant
number allowed by the operator, C,,,.. This necessary condition is referred to as the
Courant-Friedrichs-Lewy condition,

v, At
= <
O : T — Cmaxv (6)

with v, representing the maximum P-wave velocity. Therefore, we can use the
maximum Courant number of an operator, C),,., as a measure of the stability limit
in terms of the wave propagation parameters, v,, Az, and At. For constant dis-
cretization and wave velocity of our problem, operators with greater Courant number
require fewer iterations to simulate the wave propagation, as larger time steps can be
used.

With these testing criteria established, I need to define the optimization problem.
The parameter space is every set of ag, Ba, Yo, ap, Bp, and vp used to construct
an MFD operator. To search for less dispersive operators, I developed a code that
explores the parameter space, generating new operators, evaluating them using the
test previously defined, and finding those operators that further reduce the misfit
function.

The algorithm can be refined for a specific size of the parameter space to explore,

P = [Poins Prrea] X [Drits Prve] X <+ X (D> Pt (7)

with Drin, Pmar Tepresenting the parameter domain limits for each of the six
parameters. This space is discretized,

Phae — P
dpk = W ke {@G,ﬁGaf}/GaaD"-}
pr=pF. 4 dp” ic{0,1,...,N —1,N}, (8)

and the discrete domain to explore is

P = {(ple,p, pl¢, piP, piP  piP)}. (9)
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Because of the large number of free parameters to consider, the number of solutions
to test can be prohibitive: N°. By choosing pmin = —1, Pmaez = 1 and N = 20, which
yields a coarse discretization dp = 0.1, we need to run the test 64 million times, for
more than 40 days of computing time. However, we can reduce the total execution
time by taking an iterative approach to the optimization process, and by parallelizing
the program.

Instead of solving for the complete parameter space with fine sampling, I adopt
an iterative approach. I progressively reduce the limits of the parameter domain,
thereby adapting p¥ . and pF __ to leave out regions that yield more dispersive or
unstable operators to test an increasingly finer discretization. Additionally, I paral-
lelized the code so that it runs simultaneously on multiple computing nodes using
Message Passing Interface (MPI), each instance running tests on disjoint regions of
the parameter space. I also use OpenMP to perform intranode parallelism.

RESULTS

For the purpose of this study, the test case had a fixed P-wave velocity, v, = 3000 m/s,
constant spatial discretization Ax = 10 m, and constant Courant number C' = 0.5;
which yields a temporal discretization of At = 1.67 ms. [ propagate the wave for
sufficient time for it to reflect against the boundaries on 10 occasions. Using the
program previously described with different considerations as to the search direction
of the parameter space, I obtain various mimetic operators that merit further anal-
ysis. Their attributes, along those of other previously established FD operators are
summarized in Table 1.

Operator | Parameters (ag, Ba, Yo, @b, Bp, 7p) | Cmasx
Taylor Not applicable (non-mimetic) 0.81
Compact (0,0, —5;, 0,0, —57) 0.81
Adjoint | (5735, THesr mro7 Toi2rr 7ors 0 7o) | -85
Alpha (5622, 0, 5355, 22,0, 77) 0.50
Beta (0, 222, 55,0, ==L, 51) 0.64
Optimal (g, %, %, %, _71, %) 0.68

Table 1: Parameters used to construct each operator and their maximum Courant
number.

The Taylor operator is a standard one-sided fourth-order FD operator, con-
structed according to Fornberg (1988). The Compact mimetic operator is presented
in Castillo et al. (2001) as a fourth-order MFD operator with the smallest mimetic
bandwidth possible—one point in the D operator and two points in the G operator.
It constitutes our reference when measuring improvement in reducing dispersion with
our operators.
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The Adjoint operator is an approximation of the mimetic operator with a negative
adjoint, so that G ~ —D?. This quasi-adjoint MFD operator is presented in Cérdova
et al. (2016). A benefit of using the quasi-adjoint operator is its increased numerical
stability.

The Alpha operator is obtained by using our algorithm to search in the ag and
ap parameter space, keeping the rest with the same values as the Compact operator.
In similar fashion, we can compose the Beta operator by optimizing for the G5 and
Op parameters. Finally, the Optimal operator is obtained by searching concurrently
for the optimal values of all the parameters.

When considering stability, the MFD operators obtained using our algorithm are
more restrictive on the problem parametrization, in order to fulfill Equation (6). The
Cinae of the Optimal operator is 16% smaller than that of the more stable Compact
operator. For comparison, with a constant v, and Az, the At of the Optimal operator
needs to be 84% smaller, which results in an increase of 19% in the number of time
iterations.

However, our operators outperform the rest when examining the accuracy of the
results. Figure 3 illustrates the wave reconstruction. The wave profiles obtained
depend on the operator used to model the propagation. The effect on dispersion is
apparent in the reconstructed wave, especially for the Compact operator.

Wave reconstruction after 10 reflections
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Figure 3: Initial pulse (stress component) and its reconstruction after propagating
with different operators. The Taylor and Adjoint results are omitted, since they are
almost indistinguishable from Compact. [NR]

The effects that each operator has in reducing the dispersion on the test case are
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illustrated in Table 2.

Operator | Envelope misfit | Phase misfit
Taylor 43.6% 14.9%
Compact 42.9% 14.9%
Adjoint 42.8% 14.9%
Alpha 8.1% 2.0%
Beta 17.0% 2.8%
Optimal 5.7% 1.1%

Table 2: Envelope and phase misfit results for each operator after propagation in the
test case.

Dissipation (on wave envelope) and dispersion (on wave phase) are minimized
using our operator, as illustrated by Figures 4 and 5. After 10 reflections, the Optimal
operator exhibits a 92% decrease in phase misfit and a 87% decrease in envelope misfit.
The improved accuracy is preserved as the number of reflections grows, with an 80%
and 84% reduction in envelope and phase misfit respectively, at 20 reflections.

Envelope misfit vs reflection times
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Figure 4: Misfit due to dissipation increases with the number of reflections against
the free surface. Operator Optimal is less dissipative. [CR]

The rate of convergence of an operator with the analytical solution increases as
the grid becomes denser. Figure 6 highlights the superior convergence of the Optimal
operator. It is important to remark that the fourth-order operator requires at least
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Phase misfit vs reflection times
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Figure 5: Phase misfit due to dispersion also increases with the number of reflections.
Operator Optimal outperforms the other operators across the range of reflections.
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six points per wavelength to correctly model the wave propagation, as explained in
Levander (1988).

DISCUSSION

The MFD method provides alternative operators to the standard FD method. These
operators are constructed from a family of six free parameters, and can retain the
order of accuracy in the presence of Dirichlet boundary conditions.

Using a parallel scanning algorithm, I searched for sets of parameters to construct
MFD operators with reduced dispersion and dissipation effects, on a 1-D medium
with free-surface boundary conditions.

The resulting Optimal operator outperforms the standard Taylor FD operator and
other mimetic operators in reducing wave dispersion and dissipation on the simulation.
This increase in numerical accuracy has no impact in the computational cost, because
it only requires adjusting the value of the coefficients used to compute the derivative.

There is a trade-off in terms of stability, as the resulting operator is less tolerant
to problems with a higher Courant number. Nonetheless, the limits to the stability of
the Optimal operator are well within typical values used in geophysical applications.
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Envelope misfit vs PPW
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Figure 6: Convergence of the operators as the domain sampling becomes more dense
(the number of points per wavelength (PPW) increases). [CR]

FUTURE WORK

The optimization of the mimetic operator has successfully been applied to the 1-D
case. The 1-D domain has been chosen for its simplicity and inexpensive validation.
It remains as future work to find the corresponding operator in 2-D. It should be
remarked that the testing methodology will be different, since in a 2-D domain the
wave reconstruction and comparison with the initial pulse is not possible, and the
analytical solution is difficult to obtain.

The velocity-stress formulation of the elastic wave equation using staggered grids
requires two different layouts in the vertical direction: (1) one for which the extra
mimetic node on the boundary is a velocity node, and (2) one for which it is a stress
node. Because these nodes compute their derivatives with different mimetic operators
(D or G), the Optimal operator differs between layouts. Thus, the operator obtained
by searching for parameters to minimize dispersion in 1-D is not the same as the 2-D
case.

Furthermore, it would be of interest to compute the dispersion curves for every
operator, both in 1-D and 2-D, as an extra measure to quantify numerical dispersion.
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