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ABSTRACT

We develop a new algorithm for directly imaging blended data via waveform
inversion. The algorithm relies on performing a data-space deblending step at
each iteration of the waveform inversion. Following a pattern-based approach,
this data-space deblending step is done through independent modeling of the
source wavefields on which filters can be estimated and used to deblend the
blended data. As the velocity model is updated, the filters will be estimated on
increasingly more accurate data and therefore will provide improved deblending
results from iteration to iteration. We show that with the introduction of these
filters, the waveform inversion results contain significantly fewer artifacts than
those obtained with conventional waveform inversion of blended data.

INTRODUCTION

Reducing the acquisition time of seismic surveys by reducing the amount of time
between shots of source vessels has shown to be very cost-efficient and also can pro-
vide better seismic imaging results (Beasley et al., 1998; Berkhout, 2008; Soni and
Verschuur, 2015). This method, known as simultaneous sourcing or blending, has
been successfully implemented for large seismic exploration surveys and is now in-
creasingly more common in seismic acquisition (Abma et al., 2012; Kommedal et al.,
2016). While simultaneous sourcing does provide a decrease in acquisition time, it
also introduces an overlap between shots that must be dealt with in the processing
and imaging of these blended data.

There are two methodologies for obtaining seismic images from blended data. One is
to first separate the overlapped shots and then image the separated data. This ap-
proach has been widely studied and has provided high quality imaging results (Abma
and Yan, 2009). The other, less-studied approach is to directly image these blended
data by way of waveform inversion (Tang et al., 2009). While this approach has
shown promise, it requires many iterations of inversion in order to mitigate the arti-
facts introduced in the imaging due to the cross-talk between sources (Leader, 2015).
In some cases, depending on the extent of blending, these artifacts may remain even
after many iterations of waveform inversion leading to poor-quality seismic images.
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Previous studies on direct imaging of blended data have been successful in mitigat-
ing these artifacts by introducing a regularization term to the waveform inversion
objective function (Xue et al., 2014; Chen et al., 2017). While effective, these ap-
proaches require a priori knowledge of the subsurface model (i.e., practitioners must
make a choice of how to style the estimated model). In this work, we present an algo-
rithm that does not require regularization of the model parameters but still results in
minimal artifacts in the inverted model. The key to our approach is an inexpensive
data-space deblending step based on a pattern-based method that is performed at
each iteration of the waveform inversion.

Pattern-based approaches separate signal and noise using the fact that the multidi-
mensional spectra of the signal and the noise differ. These approaches have been suc-
cessfully used in multiple removal, ground-roll attenuation and other coherent noise
removal applications (Manin and Spitz, 1995; Brown et al., 2001; Guitton, 2005). In
spite of their success, perhaps the most challenging part of working with pattern-
based approaches is that they require a model of the patterns of the signal and the
noise. For the simultaneous source deblending problem, we overcome this challenge
by independently modeling the source wavefields at each iteration of the waveform
inversion.

In our waveform inversion scheme, we independently model the sources and use these
as models for the unblended data. Upon these models, we estimate non-stationary
multidimensional prediction-error filters (PEFs) which then are used as proxies for
the spectra of the unblended data in order to approximately deblend the shots. We
then update the velocity using gradients calculated on these approximately deblended
shots. As the inversion proceeds, the deblending improves and therefore the image
contains increasingly fewer artifacts. We show for a linearized waveform inversion
(LWI) on the Marmousi model that our proposed algorithm results in an inverted
subsurface model with significantly fewer artifacts, and one that is comparable to
performing LWI on unblended data.

THEORY
Waveform inversion of blended data

A single unblended shot gather observed in recorded seismic data can be mathemat-
ically expressed by the following non-linear operation:

f*(m,x;) = df, (1)

where f%(m, x;) is the unblended non-linear wave equation modeling operator for a
particular earth model m and spatial source location x;, and d} represents the ¢th shot
gather of a seismic survey. The superscript * indicates that these data are unblended
(never have been blended). With this representation of a single shot gather, we can
then form a column vector of non-linear operators to represent n shots and recorded
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data in a single seismic survey as

fu(l’l’l7 Xl) dif
f“(m’ XQ) d12L
f*(m,x,) dy
£4(m) = d. (2)

In order to express non-linear blended modeling we introduce the blending operator
I'. This operator is linear and its primary function is to describe the blending of
the data performed during the acquisition. In matrix form, it can be written as a
rectangular matrix with many more columns than rows (n >> m) where the number
of rows (m) represents the extent of the blending, and the number of columns (n) is
determined by the number of shots. Applying this operator to equation 2 results in
the following expression

T'f*(m) = I'd",
f*(m) = d’, (3)

where f°(m) and d® are the blended non-linear modeling operator and blended data
respectively. Now that we have defined the blended modeling operator and data, we
can write the objective function for waveform inversion of blended data as

J(m) = JI*(m) — |3 ()

It is well known that directly minimizing equation 4 will result in a subsurface model
that can be highly contaminated with artifacts. This is due to the fact that when
calculating the waveform inversion gradient via the cross-correlation of the source
(forward) wavefield and back-propagated data residual (adjoint wavefield), artifacts
will be created if the mixed source and receiver wavefields present in the blended
wavefields interact (Jiang et al., 2010). While these artifacts can be attenuated with
iteration, it can require many iterations to do so and in some cases no amount of
iteration will suppress them, leading to low-quality seismic images.

Combining direct imaging and data-space deblending

In order to mitigate the strong artifacts contaminating our estimated model parame-
ters, we introduce two primary changes to the traditional blended waveform inversion
algorithm. The first of these changes is that as opposed to performing blended mod-
eling, we independently model the source wavefields. The second change is that
on these independently-modeled shots we estimate multidimensional non-stationary
PEFs which are then used to deblend the blended data at each iteration of the wave-
form inversion. With these changes, we can write a modified version of equation 4
as

J(m) = I (m) — Ad|}3 )
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where A is a linear filter that is estimated and applied at each iteration of the wave-
form inversion and has the following property:

Ad? = d? ~ d“. (6)

This approach of estimating multidimensional non-stationary PEFs on the independently-
modeled data (i.e., models for the true unblended data) and then using these PEFs to
separate the shots is known as a pattern-based method for signal and noise separation
(Abma, 1995). The key to pattern-based approaches is that there exist models for the
signal and noise, and that the multidimensional spectra of the signal and noise differ.

As previously stated, the first step is to estimate PEFs on the independently-modeled
data which can be mathematically expressed as solving the following regressions

~ — DS ~ — D3 ~ _ s
ONI‘l —Dlal, ONI‘Q —Dgag, 0~I‘3 —D3a3, (7)

where ]51, D, and Dj are the independently-modeled (proxy) shots formed into con-
volution operators, a;, a; and az are vectors that upon solving these regressions,
contain the PEF coefficients and ry, ry and r3 are the prediction-error residuals.
While here we have assumed that three shots have been blended, this theory extends
to more than just three shots. Note that when solving for these filter coefficients,
we force that the zero-lag coefficient be unity in order for these filters to remain
PEFs. Upon solving these regressions, the estimated PEF coefficients will contain
the approximate inverse spectra of Ell, d, and Cig (Claerbout, 2014). We then form
convolution operators (A1, Ay and Aj) with these filter coefficients and use them in
the following objective function in order to deblend the data

1 1 1 1
J(lf,df, ) = S df + g+ df — 3 + 5| | A + ]| Aadd] B + 5] Asd] B, ()

where d{, d¢ and d¢ are the desired deblended data. The first term of this objective
function is the familiar data-space deblending objective function that requires that
the sum of the deblended shots be equal to the blended data. The other three terms
can be seen as additional constraints and effectively act to enforce the separation of
the three shots. Because A;, Ay and Az contain the inverse spectra of dl, d2, and
d3, the additional terms constrain df, d§ and d§ so that they take the spectra of d,,
d, and ds respectively. We also point out that minimizing equation 8 is equivalent to
applying a filter that optimally separates the shots in the least-squares sense (equation
6).

This process of pattern-based deblending occurs at each iteration of the waveform in-
version. The key to the waveform inversion with pattern-based deblending algorithm
is that it uses both waveform inversion as well as the pattern-based deblending step
in order to simultaneously provide high-quality deblended data as well as seismic im-
ages. As the subsurface parameters are updated and improved, so will the deblending
at each iteration. We summarize the process of waveform inversion of blended data
with pattern-based deblending in algorithm 1.
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Figure 1: Comparison of (a) direct LWI of blended data, (b) LWI with a pattern-
based method and (c) conventional LWI. Note that the image resulting from direct
LWI of blended data (panel (a)) is contaminated with a number of artifacts. Also
note that using the pattern-based method with LWI results in a clean image that is
comparable to LWI of unblended data. [CR]

SEP-172



Jennings et al. 6 Direct imaging and deblending

Algorithm 1 Waveform inversion of blended data with pattern-based deblending

Require: my (starting/background model) and d°
1: for iter=1 to n_iter do
2: Compute independently-modeled data f*(my,,.) = dier
3: Estimate non-stationary, multidimensional PEFs on Eliter
4: With the PEFs, deblend d® via the minimization of equation 8 resulting in
the deblended data d,_,
Compute the data residual: ry., = (All-ter — dfm
Compute gradient using rj,
Update model with gradient
end for

RESULTS

In order to test our algorithm, we performed a linearized waveform inversion (LWT) on
synthetic data generated using the Marmousi velocity model. To create the blended
data, we modeled blended data via acoustic finite difference modeling where each
blended shot consisted of two shots with randomly dithered shot times and a 1.4 km
shot spacing. In total, we had 23 blended shots with receivers at each grid point on
the surface.

Using a smoothed version of the true Marmousi model as our background velocity
model (my), we then performed 30 iterations of LWI with pattern-based deblending
as well as 30 iterations of blended LWI. The results of these inversions are shown in
Figure 1. Comparing the results of blended LWI (Figure 1a) with those of LWT with
pattern-based deblending (Figure 1b) we observe that the inverted result from LWI
with pattern-based deblending has significantly fewer artifacts. In fact, the inverted
result from LWI with pattern-based deblending is comparable to the result obtained
from LWTI of unblended data shown in Figure 1c.

Next we compared the deblended data obtained using each approach. To obtain the
deblended data from the blended LWI, we performed independent modeling (after
completing the inversion) on the estimated models from each iteration. For our LWI
with pattern-based deblending, we used the deblended data at each iteration of the
LWI. Figure 2 shows the convergence of the deblended data from each algorithm to
the true unblended data. The blue curve shows the convergence of blended LWI
and the red shows the convergence of LWI with pattern-based deblending. When
comparing the two curves, it is clear that the pattern-based approach demonstrates
superior convergence. Additionally, we observe from the convergence of LWI with
pattern-based deblending that the filtering improves slightly with iteration. This
shows that indeed both inversions (equations 5 and 8) are working together thus
providing faster convergence than conventional blended LWI.

Figure 3 shows the deblended data from both blended LWI and LWI with pattern-
based deblending. Note that while both algorithms successfully deblend the data,
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the difference between the deblended and unblended data shown in Figures 3e and 3f
shows again that using the pattern-based deblending results in deblended data that
is closer to the unblended data. In terms of the signal to noise ratio (SNR) defined
as

_ [|d"]13 )

SNR = 101log (||d“—ddl|§ , (9)
we find that the deblended data obtained from blended LWI has an SNR of 7.10 dB
whereas the deblended data obtained from LWI with pattern-based deblending has
an SNR of 10.65 dB. This amounts twice the increase in SNR from our proposed
algorithm.

In spite of this increased performance, when compared to direct imaging of blended
data, our proposed algorithm is more computationally demanding due to the need
for the independent modeling of the shots. However, our algorithm requires ap-
proximately the same computational cost as traditional waveform inversion, as the
data-space deblending step is negligible when compared to the compuational cost of
an iteration of waveform inversion.

CONCLUSION

We presented a new algorithm for directly imaging simultaneous source blended data
that uses a computationally inexpensive data-space deblending step at each iteration
of the waveform inversion. This data-space deblending step is performed using a
pattern-based approach that requires that we independently-model the source wave-
fields. Filters then are estimated on these independently-modeled data and then are
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Figure 3: Comparison of deblended data obtained from blended LWI and LWI with a
pattern based approach. (a) Two blended shots, (b) the true unblended data, (c) the
deblended shot obtained via linearized modeling after 30 iterations of blended LWI.
(d) The deblended shot after 30 iterations of LWI with a pattern-based approach, (e)
the difference between (b) and (d) and (f) the difference between (c) and (d). Note
in panel (e) that there remains signifiant residual noise due to slow convergence in
fitting the data. [CR]
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used to deblend the blended data at each iteration of the waveform inversion. We
showed for a linearized waveform inversion example on the Marmousi model that
introducing the pattern-based deblending at each iteration resulted in an inverted
subsurface model with fewer artifacts and deblended data with more reliable ampli-
tudes. For future work, we plan to move beyond the linearized-waveform inversion
example and solve the full-waveform inversion problem with pattern-based deblend-
ing.
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