
Multicomponent deblending of marine data using

a pattern-based approach

Joseph Jennings, Robert G. Clapp, Biondo Biondi and Shuki Ronen

ABSTRACT

We present the theory and initial results for deblending multicomponent simul-
taneous source data using a pattern-based approach based on multidimensional
prediction-error filters (PEFs). In using this pattern-based approach, we pro-
vide a method for PEF estimation that makes use of the directional information
recorded on the horizontal geophone components in order to improve the source
separation on the hydrophone. We provide synthetic numerical examples and
an example from a FreeCableTM data set to demonstrate that using PEFs esti-
mated on all data components results in better separation than using only the
hydrophone component.

INTRODUCTION

In traditional seismic acquisition, a wait time is introduced between shots to re-
duce the possibility of overlap. Simultaneous source acquisition removes this con-
straint, therefore introducing overlap between shots and reduces the total survey time
(Beasley et al., 1998). In order to obtain high-quality subsurface images, this overlap
must be properly dealt with in processing/imaging simultaneous source (“blended”)
data.

One way to view these blended data is that in the common-shot domain the blended
data consist of signal and a sum of coherent noise sources (Berkhout, 2008). View-
ing the deblending problem in this way helps us to think of using methods known as
pattern-based approaches used for separating signal and coherent noise (Abma, 1995).
Pattern-based approaches separate signal and noise using the fact that the multidi-
mensional spectra of the signal and noise differ. These approaches have been suc-
cessfully used in multiple removal, ground-roll attenuation and other coherent noise
removal applications (Manin and Spitz, 1995; Brown et al., 1999; Guitton, 2005). In
spite of their success, perhaps the most challenging part of working with pattern-based
approaches is that they require a model of the patterns of the signal and the noise.
With these models, prediction-error filters (PEFs) are estimated and used as proxies
for the multidimensional spectra of the signal and noise. While for some coherent
noise removal problems there exist systematic methods for obtaining these signal and
noise models, no such method exists for modeling the interfering noise sources for the
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deblending problem. Because the focus of this work is on incorporating multicom-
ponent data to improve a pattern-based approach, for all examples here we assume
ideal models for both the signal and the noise.

While these pattern-based approaches typically use PEFs estimated in the time-offset
(t− x) space, incorporating patterns from the geophone components of multicompo-
nent data has the potential to improve the signal and noise separation. Unlike the
hydrophone component which is an omni-directional sensor, the geophone components
offer directional (polarity) information about the coherent noise. This is especially
true for blended data where the horizontal geophone components provide useful pat-
terns for the interfering source depending on the relative positions of the two sources
(Jennings and Ronen, 2017).

In order to leverage the directional information offered by the multicomponent data
typically acquired during marine simultaneous source surveys, we extend the pattern-
based approach to incorporate multicomponent data and use this additonal informa-
tion to improve the deblending on the hydrophone. We estimate non-stationary PEFs
on the hydrophone and geophone components simultaneously, providing patterns over
time and offset and the directional information from the multicomponent data. On a
1D synthetic example, we show that using the geophone data allows for separation of
signal and noise where it would be otherwise impossible using only the hydrophone
data. In 2D, we show that using non-stationary PEFs estimated on the multicompo-
nent data provides faster convergence for deblending blended data. Lastly, we demon-
strate on a FreeCableTM dataset acquired in the Mediterranean sea (Haumonté et al.,
2016) that the usage of PEFs estimated on multicomponent data provides better
source separation on the hydrophone component than using the hydrophone alone.

THEORY

For a simple case in which the blended data consists of three shots, the blended data
can be expressed as

d̃ = ds
1 + ds

2 + ds
3, (1)

where d̃ is the recorded blended data, ds
1 is the shot of interest and ds

2 and ds
3 are the

interfering shots (note that while all derivations here are done assuming three shots,
the theory extends to more than just three shots). The superscript s indicates that
these shots may be time-shifted. The goal of simultaneous source deblending is to
recover ds

1, ds
2 and ds

3 from d̃. We can write this mathematically as the minimization
of an objective function of the form

J(ds
1,d

s
2) =

1

2
||ds

1 + ds
2 + ds

3 − d̃||22. (2)

Directly minimizing equation 2 will not result in a separated ds
1 and ds

2 due to the
fact that it is ill-posed. We need additional constraints on ds

1 and ds
2 in order to

deblend the data. A pattern-based approach will provide constraints derived from
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the multidimensional spectra of ds
1 and ds

2. Obtaining the multidimensional spectra
of the data requires estimating non-stationary PEFs on models of both ds

1 and ds
2

which we denote as d̂s
1 and d̂s

2. This process of PEF estimation can be written as the
following regressions

0 ≈ r1 = D̂s
1f1, 0 ≈ r2 = D̂s

2f2, 0 ≈ r3 = D̂s
3f3, (3)

where D̂s
1f1, D̂s

2f2 and D̂s
3f3 indicates the convolution of d̂s

1, d̂s
2 and d̂s

3 with the un-
known filter coefficients f1, f2 and f3 respectively and r1, r2 and r3 are the prediction-
error residuals for f1, f2 and f3 respectively. These fitting goals essentially state that
we desire to find filters f1, f2 and f3 that can optimally predict our data. Note that
in order for these filters to remain PEFs, we require that the first coefficient be set
to unity. To enforce this, we introduce a masking matrix during the optimization
for the filter coefficients that allows all other coefficients to be adjustable except for
the first sample. Upon solving these regression equations, we obtain non-stationary
multidimensional PEFs that contain the approximate inverse spectra of d̂s

1, d̂s
2 and

ds
3. (Claerbout, 2014).

With these PEFs, we then form convolution operators F1, F2 and F3 and use these
operators as constraining terms in the following objective function to obtain estimates
of d1 and d2

J(ds
1,d

s
2,d

s
3) =

1

2
||ds

1 + ds
2 + ds

3 − d̃||22 +
1

2
||F1d

s
1||22 +

1

2
||F2d

s
2||22 +

1

2
||F3d

s
3||22. (4)

Note that the first term in equation 4 is the same as stated in equation 2 and attempts
to minimize the error between our estimate for the blended data and the true blended
data. The additional three terms act as constraints in order to enforce the separation
of the shots. Due to the fact that F1, F2 and F3 contain the inverse spectra of d̂s

1,
d̂s

2 and d̂s
3 respectively they effectively regularize the estimated ds

1, ds
2 and ds

3 so that
they contain the spectra of d̂s

1, d̂s
2 and d̂s

3 respectively.

One key factor in the success of the pattern-based approach just described is that it
will perform better for higher dimensional data. This is because while some events
may not be separable in temporal frequency, their spectra may differ greatly in spatial
frequency (dip). Additionally, we record multicomponent data that contain informa-
tion on the polarity of certain events which provide even more information in order
to differentiate the signal from the noise. In order to capture this information, we
make the assumption that one component can be treated as a linear combination
of the other. We do this by creating a multichannel filter with multiple inputs (the
different components) and a single output (the prediction-error on the hydrophone).
For example, if we choose to estimate a PEF on the vertical and hydrophone com-
ponents, the filter will attempt to use samples from the vertical component to make
a prediction on the hydrophone component. By making this assumption the PEF is
able to capture directional patterns contained on the geophone components and we
show that this improves deblending of the hydrophone component.
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RESULTS

Synthetic examples

We first tested our pattern-based approach using PEFs estimated on multicomponent
data on a simple synthetic example that contained the blended direct arrivals of
two events. In order to test the use of the directional information recorded on the
horizontal components, we positioned one source cross-line to the line of receivers and
the other inline with the line of receivers. For our homogeneous model, this resulted
in two direct arrivals that are highly polarized on the horizontal components. Figure
1 shows the multicomponent blended data. Note that because of the polarization of
the direct arrival, the Y-component does not even appear blended (Figure 1a). It is
this information that we desire that the PEF can use from the multicomponent data
to improve the deblending of the shots.

(a) (b)

(c)

Figure 1: Blended direct arrivals from a homogeneous 2D model. (a) Y-component of
particle velocity, (b) X-component of particle velocity and (c) hydrophone component.
Note that while the hydrophone contains both events, because of the polarized nature
of these direct arrivals, the Y-component did not record the inline shot and the cross
line shot is much weaker on the X-component. The blue line indicates the position
of the trace for which we performed the 1D example (Figure 2). [ER]
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To test this, we extracted one trace from the location of the blue line shown on
the blended data in Figure 1. We selected this trace since the signal and noise
have 100% overlap, but exhibit different polarization on the horizontal components.
Figure 2 shows the results of the signal and noise separation of this single trace. The
top row shows that while using just the hydrophone data resulted in an inverted
ds

1 and ds
2 that satisfy equation 1, they are not the correct signal and noise as is

evident by the mismatch between the estimated (red curve) and true (blue curve) data.
This was expected because the complete overlap of the requires more information
for separation. The PEF estimated on the multicomponent data uses the different
polarizations to separate the single traces of ds

1 and ds
2.

We then tested our approach using all traces seen in Figure 1. We found that while
both single and multicomponent approaches were able to deblend the shots, using the
multicomponent approach exhibited faster convergence. Figure 3 shows the result of
the deblending inversion after 20 iterations of minimizing equation 4 using a conjugate
gradient solver. Figure 4 shows the comparison of the model residual for both ds

1 and
ds

2.

Field data example: FreeCableTM data from the Mediter-
ranean sea

We then tested our approach on a field data set that was acquired in 2014 by Kietta
in the Mediterranean sea (Haumonté et al., 2016). These data were acquired with a
FreeCableTM technology that consists of a cable that that is suspended in the water
column and equipped with four-component receivers. This acquisition setup allows
for an ideal test of our PEFs estimated on multicomponent data as the receivers
have nearly perfect coupling to the medium and the data also are free of elastic wave
propagation effects. As these data were not blended, we synthetically blended them
assuming two source vessels. Figure 5 shows the acquisition geometry for one blended
shot and Figure 6a shows the resulting blended data recorded on the hydrophone.
We then deblended these shots using a pattern-based approach. Figure 6b shows
the deblended crossline shot using just the hydrophone component to perform the
deblending and Figure 6c shows the same result but used the horizontal components in
addition to the hydrophone component to deblend the data. When comparing Figures
6b and 6c with the unblended data shown in Figure 6d, it is clear that using the
horizontal components in addition to the hydrophone component removed more of the
interfering shot. This is also evident in Figure 7 which shows the differences between
the deblended and unblended data for both single (Figure 7a) and multicomponent
approaches (Figure 7b).

Defining the signal to noise ratio (SNR) as follows,

SNR = 10 log10

(
||d0||22
||d0 − d||22

)
, (5)

where d0 is the unblended data and d is the deblended data, we find that using

SEP-172



Jennings et al. 6 Multicomponent PEF deblending

(a) (b)

(c) (d)

Figure 2: Results of the signal and noise separation of one trace of the blended data
(the blue line in Figure 1) using just the hydrophone data (top row) and using all data
components (bottom row). Panels (a) and (c) show the comparison of the estimated
(red curve) and true (blue curve) ds

1. Similarly panels (b) and (d) show the same
comparison but for ds

2. Note that as expected, there is a mismatch between the true
and estimated d1

s and d2
s for panels (a) and (b) because of the 100% overlap in using

just the hydrophone data. However, using the horizontal components (panels (c)
and (d)) allows for good recovery of ds

1 and ds
2 (the red and blue curves completely

overlap). [ER]
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(a) (b)

(c) (d)

Figure 3: Top row: deblending results after 20 iterations of inversion (equation 4)
using only hydrophone component. Bottom row: results of hydrophone deblending
after 20 iterations using multicomponent data. [ER]

(a) (b)

Figure 4: Comparison of hydrophone component model residuals (||ds
true − ds

iter||22)
for (a) the separated inline shot and (b) the separated cross line shot. Blue curve
curve represents single component convergence. Red curve indicates multicomponent
convergence. The use of all data components allows for faster convergence to the
deblended data. [ER]
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Figure 5: The locations of the two
sources (red stars) and receivers
(blue circles) that resulted in the
blended data shown in Figure 7a.
Note that because one shot is in
the inline direction, and the other
the cross line direction the po-
larization information recorded on
the horizontal components can be
used for improving the source sep-
aration. [CR]

Figure 6: Deblending of the Mediterranean sea data. (a) The blended data, where
the direct arrival resulted from the inline shot and the reflections resulted from the
cross-line shot. (b) The result of deblending using only the hydrophone component.
Note that significant residual interference remains. (c) The deblended data obtained
using both the hydrophone and horizontal components. While residual interference
remains, it has been significantly reduced when compared to the single component
approach. (d) The unblended data included for comparison. [CR]
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the hydrophone data alone results in an SNR of 11.65 dB (Figure 6b) and using the
hydrophone and horizontal components gives an SNR of 16.17 dB (Figure 6c).

Figure 7: Differences between
deblended and unblended data.
(a) Difference between deblended
data using just the hydrophone
component and the unblended hy-
drophone data (difference between
Figure 6b and Figure 6d). (b) Dif-
ference between deblended data
using hydrophone and horizontal
components and unblended data
(difference between Figure 6c and
Figure 6d). [CR]

CONCLUSION

We extended the pattern-based approach for signal and noise separation to incor-
porate multicomponent data and applied it to the simultaneous source deblending
problem. We showed that using the geophone components allowed for better sepa-
ration of the hydrophone data on both synthetic and field data examples. Because
the pattern-based approach requires models of the signal and noise, we used the sig-
nal and noise themselves for each of the examples shown. For future work, we plan
to investigate the performance of both approaches in the absence of accurate signal
and noise models. Additionally, we plan to investigate imposing additional sparsity
constraints in order to take advantage of the success of sparse inversion techniques
(Abma et al., 2015).
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