
Multi-parameter waveform inversion on GPUs: A

pipeline approach

Huy Le, Robert G. Clapp, and Stewart A. Levin

ABSTRACT

We adopt a pipeline approach to accelerate 3D time-domain finite-difference
waveform inversion codes using graphics cards (GPUs), without having to do
domain decomposition. The key designs include streaming through the volume
one block at a time and propagating this block as many time steps as possible
while it is on the device. This approach allows us to process an arbitrarily large
volume with a single GPU, which is particularly suitable in a cloud environment
where fast inter-nodal connection is not guaranteed. Moreover, two parameters,
block size and number of updates, give developers flexibility to adapt to available
resources at hand. The most significant advantage that the pipeline approach of-
fers, in our opinion, is the ability to compute subsurface offset gathers on GPUs.
In this paper we describe our implementation on the pseudo-acoustic anisotropic
wave equations and show that the pipeline technique achieves nearly linear scaling
with number of GPUs.

INTRODUCTION

The majority of GPU implementations of seismic modeling and migration codes are
based on the conventional domain decomposition technique when memory require-
ment exceeds GPU’s limit. This technique, though relatively easy to implement, put
great demands on hardware resources, especially when the industry is now moving
toward multi-parameter settings such as elasticity and anisotropy. Extended domains
used in waveform inversion methods such as Wave Equation Migration Velocity Anal-
ysis (WEMVA) stress this problem even more.

Johnsen and Loddoch (2014) present a particularly interesting approach that can
overcome the problem of GPU memory limit. In their design, the wave propagation
process is implemented as a pipeline that streams through the computational volume.
By dividing this volume into small blocks and taking advantage of the finite difference
stencil structure to update these blocks as many time steps as GPU memory allows,
the host-device communication can be completely overlapped with computation. This
makes it possible for one single GPU to process an arbitrarily large volume. In a way,
the pipeline approach can be considered as an out-of-core algorithm in which CPU
memory is used as bulk memory.

SEP–172



Le et al. 2 Pipeline algorithm for GPUs

Outside of GPU context, similar algorithms have been applied to array processors
and vector computers when CPU memory was not enough for large-scale problems.
Levin (1993) introduces this algorithm in solving Laplace’s equation. Graves (1996)
uses it in simulations of earthquakes. Etgen and O’Brien (2007) apply to 3D acoustic
finite difference modeling. Here we implement the pipeline algorithm to the pseudo-
acoustic anisotropic wave equations and determine that it not only scales well with
number of GPUs but also allows us to compute extended images on device.

PIPELINE ALGORITHM

Single GPU implementation

Figure 1a depicts how a computational volume is divided into small blocks along an
axis (z in this case). The number of depth slices in each block is at least equal to
half of the stencil length so that three consecutive blocks contain all necessary data
to compute spatial derivatives in the middle block. For finite difference schemes that
are second-order in time, updating this middle block also requires a velocity block
and a block of wavefield at the previous time step.

Figure 1b schematically shows how the pipeline algorithms works. At each itera-
tion of the pipeline, one velocity block and two wavefields blocks at two consecutive
time steps are transfered from CPU to GPU. The compute kernel updates the wave-
field blocks as many time steps as possible using the blocks that already exist on
GPU. This kernel is implemented in a similar fashion to Micikevicius (2009) using
a 2D front of thread blocks that advances throuh depth slices to process derivatives
in horizontal directions while derivative in the vertical direction is handled by an ar-
ray of registers local to each thread. Once GPU memory is exhausted, the wavefield
blocks at the two most current time steps are tranfered back to CPU. When it reaches
the bottom blocks, the pipeline continuously feeds in the updated blocks for another
round of time steppping. Note that spatial derivatives of the top and bottom blocks
require data that is outside of the computational domain, where we assume zeros.

Figure 4a shows a performance comparison of pipeline approach and a CPU code
on the scalar acoustic wave equation with second order in time and 8th order in
space. The computational volume is 1000 × 1000 × 500. The optimal performance
is measured when the whole volume fits in a single K80 GPU (12 GB memory) so
that no domain decomposition or host-device transfer is needed. The CPU code is
optimized by explicit blocking, parallized with Intel Thread Building Blocks (TBB)
library, and vectorized with Intel SIMD Program Compiler (ISPC). We observe that
the pipeline algorithm achieves more than double the performance of the CPU code
and is very close to the optimal performance. The reason for sub-optimal performance,
besides overheads in host-device communication, is the fact that the pipeline takes
a finite number of iterations to initialize and drain. The total number of iterations
is NT

NUPDATE × NBLOCK, where NT is the number of time steps, NUPDATE is

SEP–172



Le et al. 3 Pipeline algorithm for GPUs

the number of updates per host-device transfer, and NBLOCK = NZ
BLOCK SIZE is

the number of blocks. In our implementation, it takes NUPDATE + 5 iterations
to initialize and drain. Whether the initialization and drainage times are negligible
depends on volume’s size, NZ, and number of time steps, NT.

X
Y

Z

block i
v

block i
t=0

block i
t=2

block i+1
t=1

block i
t=1

block i-1
t=1

time

(a)

CPU GPU

transfer in update transfer out

block6
v

block6
t=0

block6
t=1

block5
v

block5
t=0

block5
t=1

block4
v

block4
t=0

block4
t=1

block3
v

block3
t=0

block3
t=1

block2
v

block2
t=0

block2
t=1

block1
v

block1
t=0

block1
t=1

block0
v

block0
t=2

block0
t=3

block5
v

block5
t=0

block5
t=1

block4
v

block4
t=0

block4
t=1

block3
v

block3
t=0

block3
t=1

block3
t=2

block2
v

block2
t=0

block2
t=1

block2
t=2

block2
t=3

block1
v

block1
t=0

block1
t=1

block1
t=2

block1
t=3

block0
v

block0
t=0

block0
t=1

block0
t=2

block0
t=3

(b)

Figure 1: (a) Division of the computational volume in blocks of half-stencil-length
size. (b) Pipeline algorithm works by streaming through the volume block by block
and update as many time steps as possible. Two updates are shown in this figure.
[NR]

Parameter tuning

Two adjustable parameters are the number of depth slices per block, BLOCK SIZE,
and number of update, NUPDATE. The number of depth slices per block has to be at

least half the length of the stencil, BLOCK SIZE ≥ k
2, where k is the order. Increasing

BLOCK SIZE reduces the redundancy in the computation of vertical derivative and
the host-device transfer overheads, at the expense of GPU memory. The redundancy
is the ratio between the number of grid points accessed and the number of grid points

processed, k+BLOCK SIZE
BLOCK SIZE . With k = 8, the redundancy is 3, 2, and 1.5 respectively

for BLOCK SIZE = 4, 8, 16.

The number of updates, NUPDATE, is bounded below by the cost of host-device
transferring and is bounded above by GPU memory. We have implemented the
pipeline algorithm for the pseudo-acoustic wave equations and experimented with
diferent numbers of updates. Table 1 shows GPU memory usage. Figure 4b shows
the performance result. The algorithm’s performance improves as NUPDATE in-
creases and approaches an asymptote after 8 updates. This is when the compute
time completely overlaps host-device IO.

SEP–172



Le et al. 4 Pipeline algorithm for GPUs

Number of updates GPU Memory (GBs)
2 0.736
4 1.024
8 1.6
16 2.752
32 5.056
64 9.664

Table 1: GPU Memory for the pseudo-acoustic wave equations for different number
of updates.

Multiple GPU implementation

The easiest and most efficient way to extend the algorithm to multiple GPUs is to
replicate it on all devices, in which the output wavefield and velocity blocks of one
device are transfered to the next device for more updates. Figure 2 sketches an
implementation on two GPUs. Note the additional transfer between GPUs. Now the

total number of iterations is NT
NUPDATE×NGPU ×NBLOCK and the pipeline takes

more iterations to initialize and drain, NGPU × (NUPDATE + 5). Figure 4c shows
that the pipeline algorithm achieves nearly linear scaling with number of GPUs.

CPU

GPU0

GPU1

transfer in update transfer out

block11
v

block11
t=0

block11
t=1

block10
v

block10
t=0

block10
t=1

block9
v

block9
t=0

block9
t=1

block8
v

block8
t=0

block8
t=1

block7
v

block7
t=0

block7
t=1

block6
v

block6
t=0

block6
t=1

block5
v

block5
t=0

block5
t=1

block4
v

block4
t=0

block4
t=1

block3
v

block3
t=0

block3
t=1

block2
v

block2
t=0

block2
t=1

block1
v

block1
t=0

block1
t=1

block0
v

block0
t=4

block0
t=5

block10
v

block5
v

block10
t=0

block5
t=2

block10
t=1

block5
t=3

block9
v

block4
v

block9
t=0

block4
t=2

block9
t=1

block4
t=3

block8
v

block3
v

block8
t=0

block3
t=2

block8
t=1

block3
t=3

block8
t=2

block3
t=4

block7
v

block2
v

block7
t=0

block2
t=2

block7
t=1

block2
t=3

block7
t=2

block2
t=4

block7
t=3

block2
t=5

block6
v

block1
v

block6
t=0

block1
t=2

block6
t=1

block1
t=3

block6
t=2

block1
t=4

block6
t=3

block1
t=5

block5
v

block0
v

block5
t=0

block0
t=2

block5
t=1

block0
t=3

block5
t=2

block0
t=4

block5
t=3

block0
t=5

Figure 2: Pipeline algorithm for 2 GPUs. [NR]

Application to imaging and inversion

At the heart of any waveform inversion method is the computation of the objective
function’s gradients, which is the zero-lag cross-correlation of the source wavefields
and the receiver wavefields. To avoid storing a 4D wavefield, we adopt random bound-
ary condition (Shen and Clapp, 2015) by doing one extra propagation. As a result,

SEP–172



Le et al. 5 Pipeline algorithm for GPUs

the source and receiver wavefields can be propagated simutaneously on two pipelines
and the gradients are formed on the fly (Figure 3).

The biggest benefit of the pipeline approach is in the computation of extended
images. Due to the need for huge memory storage for these images, it is almost
imposible for conventional domain decomposition methods to perform the extended
imaging condition on device. Previous numerical experiments show that it takes 8
updates to overcome host-device IO, which means 1.6 GB of GPU memory for one
propagation pipeline (i.e. 3.2 GB for both source and receiver wavefields). The
K80 GPU is equiped with 12 GB memory. This opens the possibility to compute
extended images on GPUs. In fact, our implementation with 32 subsurface offset lags
for the pseudo-acoustic anisotropic wave equations requires 8 GB of GPU memory.
Note that even though the host-device communication cost increases significantly to
accommodate these extended images, the number of updates, NUPDATE, need not
increase because each update now takes more time performing propagations of source
and receiver wavefields and imaging condition.

Source wavefields

transfer in update transfer out

block7
v

block7
t=nt-1

block7
t=nt-2

block6
v

block6
t=nt-1

block6
t=nt-2

block5
v

block5
t=nt-1

block5
t=nt-2

block4
v

block4
t=nt-1

block4
t=nt-2

block3
v

block3
t=nt-1

block3
t=nt-2

block2
v

block2
t=nt-1

block2
t=nt-2

block1
v

block1
t=nt-1

block1
t=nt-2

block0
v

block0
t=nt-4

block0
t=nt-5

block6
v

block6
t=nt-1

block6
t=nt-2

block5
v

block5
t=nt-1

block5
t=nt-2

block4
v

block4
t=nt-1

block4
t=nt-2

block4
t=nt-3

block3
v

block3
t=nt-1

block3
t=nt-2

block3
t=nt-3

block3
t=nt-4

block2
v

block2
t=nt-1

block2
t=nt-2

block2
t=nt-3

block2
t=nt-4

block2
t=nt-5

block1
v

block1
t=nt-1

block1
t=nt-2

block1
t=nt-3

block1
t=nt-4

block1
t=nt-5

block0
v

block0
t=nt-1

block0
t=nt-2

block0
t=nt-3

block0
t=nt-4

block0
t=nt-5

(a)

Receiver wavefields

imaging

block7
v

block7
t=nt-1

block7
t=nt-2

block6
v

block6
t=nt-1

block6
t=nt-2

block5
v

block5
t=nt-1

block5
t=nt-2

block4
v

block4
t=nt-1

block4
t=nt-2

block3
v

block3
t=nt-1

block3
t=nt-2

block2
v

block2
t=nt-1

block2
t=nt-2

block1
v

block1
t=nt-1

block1
t=nt-2

block0
v

block0
t=nt-4

block0
t=nt-5

block6
v

block6
t=nt-1

block6
t=nt-2

block5
v

block5
t=nt-1

block5
t=nt-2

block4
v

block4
t=nt-1

block4
t=nt-2

block4
t=nt-3

block3
v

block3
t=nt-1

block3
t=nt-2

block3
t=nt-3

block3
t=nt-4

block2
v

block2
t=nt-1

block2
t=nt-2

block2
t=nt-3

block2
t=nt-4

block2
t=nt-5

block1
v

block1
t=nt-1

block1
t=nt-2

block1
t=nt-3

block1
t=nt-4

block1
t=nt-5

block0
v

block0
t=nt-1

block0
t=nt-2

block0
t=nt-3

block0
t=nt-4

block0
t=nt-5

(b)

Figure 3: Pipeline algorithm for computing the gradients: (a) source wavefield
pipeline and (b) receiver wavefield pipeline. [NR]

CONCLUSIONS

We have implemented a pipeline algorithm for 3D time-domain finite-difference wave-
form inversion on GPUs and showed that this algorithm scales well with number of
GPUs. This algorithm also allows us to process a large volume using a small amount
of memory, which makes possible to compute extended images on GPUs. Further-
more, the pipeline approach is advantageous to conventional domain decomposition
techniques in cloud environments where inter-nodal connection might be slow.

SEP–172



Le et al. 6 Pipeline algorithm for GPUs

CPU Pipeline 1 GPU Optimal
0.0

0.5

1.0

1.5

2.0

2.5

3.0

GC
el

ls/
s

1.000

2.220
2.380

(a)

2 4 8 16 32 64
Number of updates

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

GC
el

ls/
s

0.579

1.003

1.790 1.816 1.828 1.834

(b)

1 2 4 8
Number of GPUs

0

2

4

6

8

10

12

14

GC
el

ls/
s

1.828

3.389

6.471

12.350

(c)

Figure 4: Performance reports. (a) Comparison of CPU, pipeline, and optimal codes
for isotropic scalar wave equation. (b) Performance of pipeline algorithm with dif-
ferent numbers of update for 1 GPU. (c) Performance of pipeline algorithm with
different numbers of GPUs. [CR]

SEP–172



Le et al. 7 Pipeline algorithm for GPUs

REFERENCES

Etgen, J. T. and M. J. O’Brien, 2007, Computational methods for large-scale 3D
acoustic finite-difference modeling: A tutorial: Geophysics, 72, SM223–SM230.

Graves, R. W., 1996, Simulating seismic wave propagation in 3D elastic media using
staggered-grid finite differences: Bulletin of the Seismological Society of America,
86, 1091–1106.

Johnsen, T. and A. Loddoch, 2014, High frequency elastic seismic modeling on GPUs
without domain decomposition: Presented at the GPU Technology Conference.

Levin, S. A., 1993, High performance computing: Scientific Computing and Compu-
tational Mathematics (SCCM) 240 Lecture Notes: Stanford University.

Micikevicius, P., 2009, 3D finite difference computation on GPUs using CUDA: The
2nd Workshop on General Purpose Processing on Graphics Processing Units, Ex-
panded Abstracts, 79–84.

Shen, X. and R. G. Clapp, 2015, Random boundary condition for memory-efficient
waveform inversion gradient computation: Geophysics, 80, R351–R359.

SEP–172


