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ABSTRACT

The main challenge inherent to full waveform inversion (FWI) is its inability
to correctly recover the Earth’s subsurface seismic parameters from inaccurate
starting models. This behavior is due to the presence of local minima in the FWI
objective function. To overcome this problem, we propose a new objective func-
tion in which we modify the nonlinear modeling operator of the FWI problem
by adding a correcting term that ensures phase matching between predicted and
observed data. This additional term is computed by demigrating an extended
model variable, and its contribution is gradually removed during the optimiza-
tion process while ensuring convergence to the true solution. Since the proposed
objective function is quadratic with respect to the extended model variable, we
make use of the variable projection method. We refer to this technique as full
waveform inversion by model extension (FWIME). We provide a theoretical de-
scription of our method and we illustrate its potential on two synthetic examples
for which FWI fails to retrieve the correct solution. First, by inverting data
generated in a borehole setup. Then, by inverting diving waves recorded with a
standard surface acquisition geometry. In both cases, we purposely choose a very
inaccurate initial model and we show that FWIME manages to recover the true
solution.

INTRODUCTION

FWI has the potential of inverting all model scales and providing high resolution sub-
surface images but it is greatly hampered by its sensitivity to the quality of the initial
model, commonly known as cycle-skipping (Virieux and Operto, 2009). To overcome
this issue, multiple methods have been developed based on adding optimization pa-
rameters or constraints to relax the condition that predicted and observed data should
lie within a quarter of a wavelength from each other (Van Leeuwen and Herrmann,
2013; Biondi and Almomin, 2014; Warner and Guasch, 2014; Huang and Symes,
2015). Biondi and Almomin (2014) use an extended model approach to avoid the
cycle-skipping issue, but the originally proposed method, based on a nested-scheme
algorithm, heavily relies on the user to tune the many inversion parameters employed
in the optimization process.

Following their work, we propose a new formulation also relying on an extended
Born modeling operator to correct for substantial mismatches between observed and
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predicted data. However, there are four main differences. First, we do not sepa-
rate our model parameter into a background (low-wavenumber) and a strictly high-
wavenumber perturbation. Secondly, during our inversion process, we aim at com-
pletely removing all the energy present in the extended model perturbation and we
attach no physical meaning to it. Therefore, we do not need to apply any scale mixing
or wavenumber filtering of any sort during our inversion. Thirdly, the use of the vari-
able projection method to compute the adequate extended model perturbation allows
us to better control the phase alignment of the data residuals (Golub and Pereyra,
1973; Rickett, 2013; Huang and Symes, 2015). Finally, our formulation reduces the
number of optimization parameters to only one, the tradeoff between the data-fitting
and the model regularization terms.

We illustrate the potential of this new technique on two synthetic examples where
transmission data are inverted and where FWI fails to converge towards the true
model. In the first example, we invert data recorded in a borehole setup. In the second
one, we invert direct and diving waves recorded in a surface acquisition geometry. For
the FWIME scheme, we do not follow a multiscale approach (Bunks et al., 1995) and
all frequencies in the data are used simultaneously.

FWIME THEORY
Objective function formulation

In our formulation, we propose to minimize the following objective function

~ 1 N ~ obs 2 62 ~
@.(m,p) = 5 [|f(m) + Bm)p — 4| + 5 DB, 1)

where f is the wave-equation operator, m is the velocity model, d°® represents
the observed data, B denotes the extended Born modeling operator, and p is an
extended perturbation. Possible extensions include time-lags, subsurface offsets, or
shot records (Biondi and Almomin, 2012, 2014; Huang and Symes, 2015). D is an
invertible version of the differential semblance operator (DSO) that enhances the non-
physical extended energy of p (Symes and Kern, 1994), and is linear with respect to
p. € is the tradeoff parameter between the data-fitting and the regularization terms.
The subscript in ®. indicates that € is a fixed parameter throughout the inversion.
Since . is quadratic with respect to p (for a fixed m), we decide to use the variable
projection method to minimize equation 1, which corresponds to minimizing the
following objective function

om) = 2 |eom) + Bowpm) - |+ 5 D om[2. (@)

2
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where p?* is an extended perturbation, defined as the minimizer of the objective
function @, defined by

- 1
(I)e,m (p> - 5

Assuming that the Hessian matrix of @, is invertible, p%* is given by

B (m) = [B*(m)B(m) + D*D] 'B*(m) (4™ — £(m)). (4)

where * denotes adjoint operators. Note that p%* also depends nonlinearly on m.

The data residual component (first term) on the right side of equation 2 is a modified
FWI objective function where an additional term B(m)p%*(m) is used to ensure
the phase alignment between modeled and observed data. During the optimization
process, we gradually reduce the contribution of this additional term by adding a
regularization term on the right side of equation 2 (which pushes the Ly-norm of
p2*(m) to zero). Therefore, finding the global minimizer of this equation is equivalent
to finding the global minimizer of the conventional FWI objective function defined

by

Deva(m) = 3 [[F(m) — a2 (5)

FWIME gradient

Equation 2 is minimized using a gradient-based descent method and we show in
Appendix A that its gradient is given by

V. (m) = |B*(m) + T ()] (£(m) + B(m)p'(m) - d*) (6)

where B* is the adjoint of the non-extended Born modeling operator and T* is
the adjoint of the tomographic operator that depends on both m and the optimal
perturbation p%* (Sava and Biondi, 2004; Biondi and Almomin, 2014). The first
component of the FWIME gradient in equation 6 (referred to as the Born gradient)
is similar to the conventional FWI gradient but with a modified data residual. In
addition, the second component (referred to as the tomographic gradient) may update

regions of the model wavenumber spectrum missed by the first one (Barnier et al.,
2018).
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Effect of ¢ on the FWMIE objective function

We analyze the theoretical behavior of the FWIME objective function for two extreme
cases where € = 0 and € — +00. We support this analysis by numerical examples
proposed in the next section.

Case when e =0

When € = 0, the data objective function should (by construction) be approximately
constant and equal to zero. This behavior is due to the fact that using an extended
perturbation allows us to find p%* that accurately predicts the data that the nonlinear
modeling f(m) has not been able to predict (Symes, 2008). In the specific case
where we do not apply any regularization (e = 0), the data matching/misfit is almost
identical (and equal to zero) for all models. However, the computation of p2" is
achieved by an iterative method (linear conjugate gradient) and is truncated after a
finite number of iterations, which may result in a non-perfect matching of the data

residual in equation 4.

Case when € — +o00 and connection to the FWI objective function

So far, we have not been able to mathematically prove that FWIME converges to the
true solution regardless of the accuracy of the starting model (while using gradient-
based descent methods). This is still under investigation. However, if we claim that
our method is more robust than conventional FWI, we should ensure that conver-
gence of FWI to the true solution also implies convergence of FWIME. We prove in
Appendix B that the FWIME objective function converges (pointwise in m) towards
the FWI objective function when € tends to infinity. Therefore, whenever FWI con-
verges to the true solution, FWIME should also converge to the true solution (for a
high enough e-value).

Choice of ¢

For all the numerical examples shown in this report, our choice of e-values are based on
a trial and error approach, which lacks efficiency for field data applications. There-
fore, we are currently researching an automatic and robust method to select the
optimal value for the trade-off parameter e (the unique user-adjustable parameter of
our FWIME workflow). As we show throughout this report, this parameter greatly
affects the shape of the FWIME objective function, making its estimation a crucial
step to ensure the success of our method.

Given an initial model m;,;;, one sufficient condition for either FWI or FWIME
problems to converge to the true solution (using a gradient-based descent method)
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is that the linearization of the modeling operator (about the initial model estimate
m;,;;) is accurate. For FWI, that would imply

dObS = f(mtrue) ~ f(mznzt) + F(minit)(mtrue - mimt)’ (7)

where F is the Jacobian operator of the modeling operator f. The &~ symbol
indicates that the higher-order terms in equation 7 do not necessarily vanish, but do
not introduce any local minima in the objective function. Our goal is not to quantify
the accuracy to which equation 7 should be satisfied, because we have no control on it.
For conventional FWI (and for a given dataset), the shape of the objective function is
fixed. If the condition in equation 7 is not satisfied, the only way to recover the true
model is by either changing the data (e.g., adding lower-frequency energy), improving
the acquisition geometry, or improving the accuracy of our initial guess.

In our proposed method, the trade-off parameter € provides an additional degree of
freedom that may allow us to satisfy the FWIME-equivalent of equation 7 regardless
of the initial model. We first recast equation 2 into a single-term objective function,

2.(m) = _ [lg(m) ~ DI, 0
where
g! (m) f(m) + B(m)p (m)
g.(m) = = , 9
g?(m) D p(m)
and

D - (d;bs> | (10)

In the case of FWIME, equation 7 is expressed by

D= ge(mtrue) ~ ge(mimt) + Ge(mimt)(mtrue - mim't)7 (11>

where G, (the Jacobian operator of g.) is defined by

Og. (m)
Oom
G(m) = (12)
s opt
p 9P (m)
om
1 = opt
The derivations of Og(m) nd P (m) are shown in Appendix C.
Oom om
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Finally, given a true model my,,. and an initial model m;,;;, we are currently
investigating a proof of existence of an e-value and a set of models (that include
m;,,;;) for which equation 11 holds. Our approach is to study the full FWIME Hessian
operator and show that it can be made positive with an adequate choice of .

Computational cost of FWIME

The main computational cost (and bottleneck) of FWIME remains the variable pro-
jection step when the FWIME objective function (equation 2) is evaluated. For each
evaluation of equation 2, p?%*(m) must be computed by minimizing ®. ,, in equation 3.
This is equivalent to performing a least-squares reverse time migration (LSRTM) with
an extended model (i.e., iteratively inverting the Hessian matrix of ®.,,). We are
currently investigating ways to accelerate the convergence of the variable projection
step. More specifically, we are implementing the approach proposed in Hou and Symes
(2015) where the authors provide a computationally efficient method of approximat-
ing the inverse Hessian matrix of of ®. », for subsurface offsets extension. We are also
working on developing this approximation for time-lag extension.

NUMERICAL EXAMPLES

We apply FWIME and conventional FWI on two synthetic problems in which noise-
free data are generated using a two-way acoustic isotropic finite-difference scheme.
When applying the FWIME workflow, we inject the full data bandwidth without
taking a multiscale approach and we use nonlinear conjugate gradient to solve equa-
tions 2 and 5. In both examples, we use a time-lag extension for p. The size of the
extended axis is case dependent and determined by trial and error.

Inversion of borehole data

This simple transmission experiment is designed to illustrate the basic mechanisms
of our method. We place sources in a vertical borehole every 50 m and receivers in
the other vertical borehole every 10 m. The distance between the two boreholes is 1
km. The true velocity model is assumed to be uniform and equal to 2.5 km/s. We
use a source wavelet containing frequencies ranging from 2.5 Hz to 35 Hz.

We sample the FWIME and FWI objective functions (equations 2 and 5) for uni-
form velocity models ranging from 2.0 km/s to 3.0 km/s by increments of 0.05 km/s.
For each model, we compute the FWIME objective functions for five e-values ranging
from 0 to 1.0 x 107* (Figure 1). As expected, the FWI objective function presents
local minima (dashed blue curve in Figure 1(a)). However, for certain e-values, the
FWIME objective function is monotonically decreasing towards the true solution. For
these e-values, FWIME managed to remove all local minima and guarantees global
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convergence for gradient-based methods when inverting for a model parametrized by
a single scalar value (only allowing spatially uniform models). Figure 1(b) shows the
breakdown of each component of the total FWIME objective function for e, (solid
green curve in Figure 1(a)). We observe that the data component is monotonically de-
creasing towards the true solution (solid black curve in Figure 1(b)) whereas the model
displays a non-monotonically decreasing behavior (solid blue curve in Figure 1(b)).

Additionally, we observe that for e = 0, the FWIME objective function is approx-
imately flat and equal to zero (magenta curve in Figure 1). This observation confirms
that even for very inaccurate velocity models m, the optimal extended perturbation
P (equation 4) manages to capture the components present in the observed data
d°* that were not modeled by the nonlinear operator f(m), thus setting the data-
fitting term in equation 2 to zero (up to numerical precision and number of iterations
of linear conjugate gradient to minimize Equation 3). Conversely, we can observe
in Figure 1 that when ¢ increases, the FWIME objective function converges towards
the FWI one, which illustrates the pointwise convergence property mentioned in the
previous section.

Figure 2(a) shows the convergence curves (solid lines) for a FWIME workflow
applied using a uniform starting velocity model equal to 2.0 km/s. Throughout this
inversion, we do not impose the inverted models to be uniform in space. We observe
that all components of the FWIME objective function converge to zero. On the
same plot, we superimpose the FWI objective function evaluated at each iteration of
FWIME (dashed blue line). This curve is not the result of an inversion process, but
simply the values that the FWI objective function would have taken for this sequence
of inverted models. These observations show that the FWIME optimization path is
insensitive to the local minima present in the conventional FWI objective function.
In fact, conventional FWI starting from the same initial model fails to converge to the
true solution (Figure 2(b)). This analysis is also confirmed by the average velocity
of the inverted models from the two optimization schemes (Figure 2(c)). We choose
this model metric because of the inherent uncertainty in the conventional traveltime
tomography problem (Squires et al., 1994).

Inversion of direct arrivals and refracted waves

We invert synthetic data generated by a laterally invariant velocity model whose
profile is shown in Figure 4(a) (dashed pink curve). The model is 12 km wide, 2.4
km deep, and does not contain any reflector. The generated data are therefore solely
composed of direct arrivals and refracted energy (i.e., diving waves) (Figure 3(a)).
We use a grid spacing of 30 m x 30 m for our finite-difference scheme, we place 400
receivers at the surface every 30 m and 198 sources every 60 m. Our initial model
m;,;; is spatially uniform and set to 2.0 km/s (red curve in Figure 4(a)). In this
example, we assume that the only coherent energy in the data lies within the 3-12 Hz
frequency range.
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Figure 1: (a) FWIME (solid lines) and FWI (dashed blue line) objective functions
for uniform velocity models and for increasing € values (¢y = 0, ¢ = 3.0 x 1079,
€ = 1.0 x107% €3 = 5.0 x 1075, ¢4 = 1.0 x 107%). (b) FWIME objective function
components for € = €. The total FWIME objective function (green curve) is identical
to the one in Figure 1(a) (green curve). It is the sum of the data component (black
curve) and the model component (light blue curve). [CR|]
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Conventional FWI approach

We first conduct a conventional time-domain FWI workflow for two different sets of
frequency bands. For each band, we perform 100 iterations of nonlinear conjugate
gradient. In the first band, we use energy from 3-5 Hz, which corresponds to what
would be the first step of a multiscale approach. In the second band, we simultane-
ously use all the available frequencies in the data. Figures 4(a) and (b) show three
inverted vertical profiles for each FWI workflow. The profiles are extracted at x = 3
km, x = 6 km, and z = 9 km, respectively. In both cases, conventional FWI fails to
recover the correct velocity model for any depth greater than 0.4 km.

FWIME approach

We now apply our FWIME algorithm to the same problem by using the full 3-12 Hz
frequency bandwidth, and we follow the workflow described in the previous section.
We guide the reader through the first iteration of our algorithm. First, we set € to
5.0 x 107° on the basis of trial-and-error, and we keep its value constant during the
entire optimization scheme. We then compute the optimal extended perturbation
p°?' by minimizing the objective function shown in equation 4 (variable projection
step) using 35 iterations of linear conjugate gradient. Figure 5(a) show the zero
time-lag cross-section of p”*. We observe that the linear optimization process has
spread energy into the deeper parts of the section in the form of horizontal layering.
Figure 5(b) displays a time-lag common image gather (CIG) extracted in the middle

of the section, at = 6 km. As expected, the energy is well focused at zero-lag for the
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Figure 2: (a) Convergence curves for the FWIME workflow using € = ¢;. The solid
curves show the total, data, and model objective functions plotted in red, green
and magenta, respectively. The dashed blue line corresponds to the values of the
conventional FWI objective function evaluated at each iteration. (b) Convergence

curve for conventional FWI. (c) Inverted average velocity as a function of iterations
for FWIME (solid red curve) and conventional FWI (dashed blue line). [CR]
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Figure 3: Shot gathers gerenated by a source located at * = 0 km. (a) Observed
data, d°®*. (b) Predicted data computed with the initial velocity model, f(m;,;). (c)
Initial FWI data residual rpwy = f(my,; ) — d®. (d) Initial FWIME data residuals
(after computation of '), rewve = f(m) + B(m)p%*(m) — d°. [CR]
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shallow part of the model where the initial velocity is close to the true one. However,
as we move deeper, the initial velocity model becomes increasingly inaccurate, and
the coherent energy gradually moves away from the zero-lag axis. This illustrates the
importance of using an extended model perturbation in order to capture events in
the data that would have been lost otherwise (in this case, the refracted energy).
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Figure 4: Vertical velocity profiles extracted at three horizontal positions from FWI
inverted models after 100 iterations. (a) Inverted model profiles using a frequency
band of 3-5 Hz. (b) Inverted model profiles using a frequency band of 3-12 Hz. [CR]
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Figure 5: (a) Zero time-lag cross-section of the optimal extended perturbation at the
first iteration of FWIME. (b) Time-lag CIG of the of the optimal extended pertur-
bation at the first iteration of FWIME, extracted at x = 6 km. [CR]

The optimization of p%* is the most computationally intensive step of our work-
flow, and it is crucial as it plays a double role in the gradient computation. On one
hand, it is demigrated in order to generate the correcting term in the data residual,
B(m)p?(m). Figure 3(d) shows the FWIME data residual obtained at the first
iteration after computation of the optimal model perturbation. For this specific shot
position, most of the direct arrivals have been matched but a portion of the diving
waves is still present. This is due to the presence of the regularization term since
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e # 0. Note that this data residual is then injected in the Born and tomographic
adjoint operators to compute the first gradient (equation 6). On the other hand,
p2* is also used by the tomographic operator itself. So far, we have observed that
the quality of the tomographic gradient is quite sensitive to the accuracy with which
we solve for the optimal extended perturbation (i.e., the number of iterations in the

variable projection step).
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Figure 6: First velocity search directions. (a) Born component of the first search
direction. (b) Tomographic component of the first search direction. (c¢) Total search
direction. (d) First FWI search direction for the 3-5 Hz frequency band. [CR]

Figures 6(a)-(d) show the Born, tomographic, and total first search directions of
our FWIME workflow. The total search search direction seems promising and it is
mostly dominated by the tomographic component. Figure 6(d) shows the first FWI
search directions for the 3-5 Hz frequency band. We can clearly see that the FWIME
search direction has a more balanced amplitude and its phase is accurate up to a
much deeper part of the model (approximately 1.2 km). By performing a truncated
Gauss-Newton step of the FWI workflow, we would probably improve the amplitude
balancing of the search direction in Figure 6(d), but the incorrect phase shift occurring
in the very shallow parts would remain.

We conduct 10 iterations of our FWIME workflow followed by 100 iterations of
conventional FWI. Figure 7(a) shows three inverted profiles (extracted at = 3 ki,
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Figure 7: (a) Vertical inverted profiles after 10 iterations of FWIME extracted at
x =3 km, x =6 km, and z = 9 km. (b) Vertical inverted profiles after 10 iterations
of FWIME followed by 100 iterations of conventional FWI, extracted at x = 3 km,
x =6 km, and x = 9 km. [CR]
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Figure 8: Inverted models using a 3-12 Hz frequency bandwidth. (a) Inverted model
after 100 iterations of conventional FWI. (b) Inverted model after 10 iterations of
FWIME. (c) Inverted model after 10 iterations of FWIME followed by 100 iterations
of FWL. (d) True model. [CR]
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x = 6 km, and x = 9 km) after 10 iterations of FWIME. The FWIME workflow
managed to capture the long wavenumber components of the model up to a depth of
approximately 1.2 km. Furthermore, our inability to recover deeper parts of the model
is likely stemming from a lack of offset range in our acquisition geometry, and not from
a cycle-skipping issue. We then use the FWIME inverted model as the initial model
for a conventional FWI workflow using the full frequency bandwidth. Figure 7(b)
shows the inverted profiles after 100 iterations of conventional FWI. Figures 8(a)-(d)
show the 2D-panels of the inverted models for FWI, FWIME, and FWIME followed
by FWI. We can observe that once FWIME captured the long wavelength component
of the model, FWI was able to accurately recover the true model without the need
to adopt a multi-scale approach.

CONCLUSIONS

We develop a new method that addresses the cycle-skipping issues inherent to con-
ventional FWI. We modify the nonlinear modeling operator of the FWI problem by
adding a correcting term that ensures phase matching between predicted and ob-
served data, and we gradually reduce its contribution over iterations by adding a
regularization term controlled by a single parameter. This formulation mitigates the
need for the user to tune many parameters during the inversion process or to follow
a multiscale approach as in FWI. We show its potential and success on two synthetic
transmission problems where FWI fails to recover the true model.
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APPENDIX A

We derive the gradient expression in equation 6. We define

rg(m) = f(m)+B(m)p?'(m) - d°* (13)
r,(m) = Dp'(m). (14)

The gradient of &, is given by

om

v, (m) = (8‘“d<m))*rd<m> e (arm(m))*rmm» (15)
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and we have

() - () - ()

O O )>
— B*(m)+ T (m (8popt ) (16)
where T*(m) = (a]z—frr:l)f)?t(m)> . Similarly,
Oy (m) \ " opF (m)\" _,
<zm1> = (‘&:‘)D- (17)

Equation 15 becomes

Vo)~ [B(m) TG+ () B e + 2 () D,

om om

_ [B*(m) + T*<m>}rd(m) + (%g;_;(:@) [B*(m)rd(m) + e2D*rm<m>] (18)
Since p2* satisfies equation 4, we have
[B*(m)B(m) + ¢ D*D|p*'(m) = B*(m)(d°® — f(m)). (19)

Therefore,

B*(m)ry(m) + €D'r,,(m) = B*(m)(E(m) + B(m)p*(m) — d°*) + 2D Dp* (m)
— |B*(m)B(m) + DD p* (m) — B* (m)(d*** — £(m))

= 0. (20)
Finally, equation 15 reduces to
Vd(m) = [B*(m) + T*(m)} (f( ) + B(m)p (m) — dobs) . (21)

Note that the fact that equation 19 is satisfied allows us to avoid the expensive
[ 9P (m)
Oom

computation o
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APPENDIX B

We show that the FWIME objective function converges pointwise in m towards the
FWI objective function (equation 5) when € — +o0.

2
1. We first prove that Vm, lim €§|]Df)°pt(m, €)||3 =0, and

2. we conclude that Vm, lim ®(m,e¢) = Ppwi(m),

€—00

where ® is the FWIME objective function. The optimal extended perturbation p°P*
is given by

p7'(m,e) = [B*(m)B(m)+ eD*D]” B*(m) (4 — f(m)) (22)
= 5 [5B (m)B(m) + D*D] "B (m) (4 — F(m))

I - * > * *
6—2B (m)B(m) + D*D ~ D*D. (23)
Therefore,
~ 0 1 * —15% obs
p”'(m,e) ~ 6—2[D D} B*(m) (d b f(m)) (24)
1.

where q(m) = [D*Drlﬁ*(m) (d°** — f(m)). Assuming that g(m) is bounded,
we can deduce that for any m,

e [[p?(m,¢)|[3 — 0, and that
€E— 00
2

€ ~
o SIDp(m, )3 — 0.

From equations 2 and 5,
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(ID(m, 6) — (I)FWI(HI) = (25)

1 N ~ obs 62 ~ 1 obs
5 If(m) + B(m)bop(m) —d 13 + §HDpopt(m)H§ = 5l[f(m) —d >3-

Moreover,

£ (m) + B(m)Brp (m) — 43 = ~ (26)
[ (m) — A3 + [T (m)Bopn (m)] 3 +2 (£(m) — d*)" B(m) By (m).

B (m, )3~ 0 implies that [B(m)p(m, )3 — 0, and by the Canchy-

Schwarz inequality,

‘ (f(m) — d°**)" B(m)p* (m, ¢)| < [[f(m) — d*”[|z |B(m)p™ (m,¢)ll.  (27)
Therefore,

o (f(m) —d°*)"B(m)p°'(m,e) — 0, and

€E—00

o [|f(m) + B(m)Bop: (m, €) — A3 — [|f (m) — d°>||3 .0

Finally, we can deduce that

Vm, lim ®(m,e€) = Ppywi(m). (28)

E— 00

APPENDIX C

Here, we derive the expression of the FWIME linearized forward modeling operator
(Jacobian matrix of g!) that we refer to as G!. Tt is given by

G/(m) = B(m) + Tgort(m) + BP(m), (29)

_ Op'(m)

where P (m) . The main difficulty is to compute P.(m) (or its effect

when applied to a model perturbation). We differentiate each side of equation 19
with respect to m, and we define
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e B= " ([B*(m)B(m) + “D"D]p/(m) ). and

« F— i(B*<m)(d°bs - f(m))).

E can be expressed by

E = i([é*(m)ﬁ(m)+8D*Dhagpt<m))

— 0 [ n)B(m) + @D D]pT (m) + Hy,, Po(m),  (30)

where Hg_, = [B*(m)B(m) +e2D*D] is the Hessian matrix of @ (equation 3).
Therefore,

E = W guyport + B* () Tyors(m) + H, P, (m), (31)

where W is the wave equation migration velocity analysis (WEMVA) operator
(Biondi et al., 1999) extended in time-lags. Similarly,

F = Wons_gm) — B"(m)B(m). (32)

Combining equations 31 and 32, we can write

Hs, . P(m) = W_,, — B*(m)T o (m) — B*(m)B(m), (33)

where r4 = f(m) + B(m)p®' — d°"® are the FWIME objective function data
residuals. Therefore, the application of G, to a model perturbation Am is given by

G!(m)Am = (B(m) + T gon (m)) Am + B(m)P.(m)Am, (34)

P.(m)Am is the solution of the following linear system,

HCPE,mX =Y, (35)
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where y is expressed by

y = W_,,Am — B*(m) (Tﬁgm(m) + B(m)) Am. (36)

Equation 35 can be solved using a linear conjugate gradient scheme.
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