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ABSTRACT

We explore the feasibility of a deep learning approach for tomography by compar-
ing it with the current velocity prediction techniques used in the industry. This is
accomplished through quantitative and qualitative comparisons of velocity mod-
els predicted by a Machine Learning (ML) system and those of two variations of
full-waveform inversion (FWI). Additionally, we compare computational aspects
of the two approaches. The results show that the ML-based reconstructed models
are competitive to the FWI-produced models in terms of selected metrics, and
widely less expensive to compute.

INTRODUCTION

Velocity model building is a key step during seismic processing and interpretation,
current industry tools of choice are tomography and full-waveform inversion (FWT).
An alternative was presented in Araya-Polo et al. (2018), where the inverse problem
is solved with a novel machine learning (ML) method. This approach has multiple
advantages with respect to the classical methods. In principle, the main cost is the
one-time upfront training of a neural network. Once the network is trained, velocity
model prediction costs are negligible allowing cheap exploration of multiple scenarios.
While the quality of model predictions from the ML scheme are highly dependent on
the labeled data used to train the network, this reliance on labeled data also frees the
trained model from human and methodological biases.

Until now, direct comparisons between this new ML prediction scheme and other
velocity prediction methods have not been made. Our contribution here is to com-
pare qualitatively and quantitatively the reconstructed model generated by the ML
approach and by variations of the well-established FWI approach.

MACHINE LEARNING TOMOGRAPHY

In this section a brief summary of Araya-Polo et al. (2018) is introduced. The basic
idea of using a machine learning approach for velocity estimation is to replace the
following expression:
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J(m) = ||dm(m) - dobSHga (]‘)

where m is the optimal earth model that minimizes J(m), d,, is a data vector that
is modeled from a non-linear modeling operator f(m), and dys is the recorded data
vector, with a machine learning approach commonly expressed as:

N
. o1
0= argmelnN;L(W,T(Xiag))a (2)

where T'(X, 0) is the tomography operator, parameterized by the coefficients vector
0, X is the input to the tomography operator, and its output is the reconstructed
velocity model V. In machine learning terminology, X is known as the input feature
and V is known as the label. The loss function L(V},Vi) measures the difference
between the ground truth velocity model and its reconstructed version. The loss
function employed in this work is the squared error L(V;,V;) = (V; — V;)2, which is
frequently used in regression problems. Replacing the generic loss function with the
squared-error loss, we can express the optimization problem in Equation 2 as
0 w1y Vi — T(X;,0))? 3
—argmelnNZ(i— (Xi,0))". (3)

i=1

This familiar regression problem can be solved with a gradient descent approach
which iteratively updates the coefficients of . Both equations 2 and 3 can be seen as
inverse problems, but the solution of the systems are reaching through very different
approaches. The former is a deterministic optimization problem where the latter is a
learning process in which a statistical mechanism helps minimize the loss function.

The novelty of the work presented in Araya-Polo et al. (2018) is that the tomo-
graphic operator T'(X,#) is implemented as a deep neural net (DNN) composed of
layers of weighted nodes parameterized by #. The input to the network is connected
to the input layer which is followed by a varying number of hidden layers. The inputs
of the hidden layer are activated by the outputs of the previous layer and eventually
the output of the network is computed at the output layer. The output vector is a
prediction of an earth model that would have modeled the input feature vector X.
These networks are trained with examples per the statistical-learning approach in
which the correct output (label) is known for a given input, and the weight parame-
ters in the nodes of the network update due to the minimization of the error between
the prediction and true value. Expressing the tomography operator as a DNN;, it can
be written as

T(X7 0) = fout(f3(f2(f1(X7 91)7 62)7 93)'90Ut)7 (4>

where f; is a layer within the DNN parameterized by the vector 6;, respectively.
Figure 1 illustrates this formulation and the workflow that moves from feature space

to model prediction and Figure 2 shows the workflow used to train the weights of the
DNN.
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Figure 1: Prediction workflow. [NR]

Arguably the most crucial step in the DNN tomography formulation is the choice
of input (X) used for the first layer of the DNN. It is necessary that we select a
feature that reduces the input size but also amplifies the relevant changes in the data
caused by the model parameters we wish to estimate. Velocity semblance (Taner
and Koehler, 1969) was chosen by Araya-Polo et al. (2018) as the input feature to
the DNN. This choice was made as velocity semblance gives a measure of apparent
velocity with depth and is commonly the first step in estimating the velocity from
reflection seismic data.

Ground-truth Simulated
Velocity Models Seismic Data

Label

Figure 2: Training workflow. [NR]
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BASELINE VELOCITY ESTIMATION TECHNIQUES
Full Waveform Inversion

In exploration geophysics, FWI is a topic of intense study and is at the forefront of
earth model building from seismic data (Virieux and Operto, 2009). Despite numer-
ous limitations (e.g., high computational cost, starting model sensitivity, unwanted
convergence to local minimum) FWI is regarded as an area of development that may
rectify the gap between low and high wavenumber earth model building and represent
an all-inclusive solution to seismic exploration. For this reason we have chosen it as
a baseline method to compare the predictions of the ML approach. Of course there
are many other velocity prediction techniques used in the oil and gas industry that
could be compared to the ML approach. In particular, inverting the Dix equation at
CMP locations may be a more comparable method than FWI since it also brings the
data into semblance space. But, we anticipate a 1D Dix inversion paired with lateral
smoothing will be vastly outperformed by ML and FWI.

FWI is a nonlinear data fitting problem described in the iconic work of Tarantola
(1984) which reformulates the exploding reflector concept of Claerbout (1971) as a
local optimization problem. Minimizing the difference between observed and modeled
seismic data with respect to some earth model can be written in the form of Equation
1 where f(m) is the forward nonlinear wave equation modeling operator that maps
the earth model space, m, into the data space, d,,, for a set of seismic experiments.
This problem can be solved with a variety of gradient descent methods in which the
model is updated iteratively from the gradient of the objective function J at the
current model iteration m;:

mjy1 = My + Q;S;j. (5)

The next model, m;;1, is found by summing the current model, m;, to the search

direction, s;, scaled by a step length, a;. There are many ways to compute the search

direction, s;. Here we will implement the nonlinear conjugate gradient method in
which:

sj = sj-1+ BVJ(my), (6)

where s;_; is the previous search direction and (3 is the conjugate direction coeffi-
cient. Furthermore, V.J(m;) is the adjoint of the wave equation operator linearized
around the current model iteration applied to the difference between the modeled and
observed data.

Multi-scale Full Waveform Inversion
The high nonlinearity of FWI creates many local minimum of the objective func-
tion in Equation 1. These local minimum prevent the convergence of methods like

conjugate gradient from reaching reasonable solutions unless beginning from models
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fairly close to ground truth. Many methods exist and extensive research continues to
find ways to avoid these convergence issues. A highly effective and widely accepted
method is that of Bunks et al. (1995) which is referred to as Multiscale FWI. This
technique decomposes the FWI problem by scale and performs conventional FWI
with progressively higher bandpasses of the source wavelet and observed data.

COMPARISON SETUP

To compare the velocity model predictions of ML, and FWI approaches, four synthetic
seismic surveys are created and used as inputs for three velocity prediction method-
ologies: conventional FWI, Multiscale FWI, and a DNN. The intent is to keep the
input data consistent in order to create a fair comparison between each method. Be-
low describes the data generation, the parameters of the three experiments, and the
quantitative methods used to compare model results.
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Figure 3: Ground-truth velocity models. The numbering is as they appear in Table
1. [CR]

Synthetic Seismic Data

The synthetic models used to generate the seismic data are 1.8 kilometers in the
x direction and 1.4 kilometers in the z direction with grid cell discretization of 10
meters. The models parameter used is pressure wave velocity that increases with
depth and contains salt bodies of varying shape and size. The velocities range from
2.0 km/s to 4.5 km/s.

The data itself is generated from 19 shots at the surface with 40 meter spacing in
the z direction beginning at 520 meters. The shot wavelet is a 15 Hz peak Ricker.
144 receivers located at the surface record pressure data. They begin at 180 meters
in x with 10 meter spacing. The wave propagation modeling assumes an acoustic,
constant density earth and uses second order approximation in time and eighth order
in space. Figure 3 illustrates the four models used to compare each method. Note,
the data was generated on 1.8 x 1.4 km model but the velocity predictions were made
on a 1.0 x 1.0 km subset of the original models.
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Experiments

The first experiment is conventional FWI. 1000 iterations of nonlinear conjugate gra-
dient are performed using all frequencies of all modeled shots. The starting model was
a linear velocity gradient from 2.0 km/s to 4.5 km/s. A variation of this experiment
is also conducted in which 200 conjugate gradient iterations are performed using the
predicted model from the DNN as the starting model for FWI. The second exper-
iment is Multiscale FWI which performed 150 conjugate gradient inversions over 5
bandpasses of the all modeled shots. The first 4 bandpasses of the data were smoothly
tapered at 4Hz, 8Hz, 16Hz, and 32Hz. The fifth inversion used all frequencies. The
starting model for the 4Hz inversion was a linear velocity gradient from 2.0 km/s to
4.5 km/s. Each progressively higher bandpass inversion uses the final model from the
previous bandpass inversion. The third experiment results are obtained by exposing
the trained neural network to unseen data, in our case, to unseen semblance cubes
from velocity models created by our pseudo-random velocity model generator.

Comparison Metrics

In terms of quantitative metric for model quality comparison, we decided to recourse
to the widely accepted standard metric in image dominated fields, the Structural
Similitude Index Metric (SSIM) (see Wang et al. (2004)). SSIM differs from tradi-
tional objective metric since it is based on structural degradation rather than error or
general distortion of the images. We also use Mean-Square-Error (MSE) and Signal-
to-Noise ratio (SNR) as valid metrics since we know the ground-truth (GT) model
used to generate the input data. We compute SNR as found in Johnson and Dudgeon
(1992) using the correlation coefficient p as follows:

B cov(lgr, I)
 stddev(Igr) * stddev(1,)

2

SNR = 10 x 1og10(<1f—pQ)) (8)

p (7)

RESULTS

We perform the comparative analysis on four seismic datasets generated from the
velocity models in Figure 3. The comparison is limited to four datasets because of
the high computational cost of FWI. In fact, retrieving one Multiscale FWI result
takes more time than training the DNN used for the ML approach. After the upfront
cost of creating the trained DNN, a single model prediction can be made almost
instantaneously. This speaks to the computational cost of ML compared to FWI.

Three of the four compared models contain salt bodies and one model is a simple
layer-cake model. Our selection process was not random, as interest on salt body
detection is pervasive to the industry. Figure 4 shows the comparison between the
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results of the DNN prediction, Multiscale FWI, and conventional FWI for model
0. When comparing the results of the three approaches, we observe that both the
DNN prediction and Multiscale were able to recover the original velocity model with
good accuracy while the conventional FWI approach cycle-skipped and was not able
to recover a reasonable velocity solution. Additionally, the difference plots (third
column) show that the multiscale approach performs best at resolving the interfaces
between the layers. In fact, in general we find that the output of the DNN is smoother
than the velocity estimated via Multiscale FWI. This likely due to the fact that
when calculating the input semblance cubes, a smoothing occurs which limits the
maximum frequency in the semblance cube. Multiscale FWI, however attempts to
match modeled and predicted data that may have a broader range of frequencies.

Possible our most interesting result can be drawn from model 0* which uses the
DNN result as the starting model for conventional FWI. This example beats all other
conventional FWI attempts and directly competes with the Multiscale FWI results
with performing only 15% the number of the iterations.

Ground-Truth DL Result MS FWI Result FWI Result

SSIM | MSE [SNR[dB]| SSIM | MSE [SNR[dB]| SSIM [ MSE [ SNR [dB]
model 0 0.66170 [ 19070.4 | 13.8877 | 0.84702 | 12149.2 | 16.2797 [ 0.49666 | 16510.5.0 | 7.2143
model 0¥ - - - - - 0.82215 | 12761.2 | 15.6734
model 1 0.72079 | 14682.3 | 14.8517 | 0.84896 | 13764.1 | 15.3158 | 0.48856 | 275104.0 | 7.1058
model 2 0.78219 | 7250.57 | 18.0263 | 0.87302 | 6094.7 | 19.1497 | 0.32245 | 400733.0 | 6.0398
model 3 0.76253 | 15402.4 | 14.6351 | 0.84241 | 18620.7 | 13.9951 | 0.41005 | 452631.0 | 3.9613

Table 1: Metrics summarizing results for deep learning prediction (DL), multi-scale
FWI (MS FWI) and standard FWTI for all models shown in Figure 3. In each metric
category for each respective model, the best experiment result is bold. For example,
for model 3 the best SSIM result was from MS FWI while the best MSE and SNR
results came from DL. Model 0* uses the reconstructed model by DL as the initial
velocity model for FWIL.

CONCLUSION

With respect to our three metrics, the DNN reconstructed models are competitive
with the results Multiscale FWI. This demonstrates potential for use ML methods for
velocity estimation applications in exploration seismology. Furthermore, the training
of the DNN and the mode predicting take a fraction of FWI runtime, therefore opening
real possibilities for multi-scenario analysis and effective uncertainty quantification
efforts.

SEP-172



Farris

Ground-truth (GT)

model 0
4500
200 4000
7
5 400 3500
kil
£ 60011 3000
~
800 2500
1000 2000
0 250 500 750 1000
x [meters]
Ground-truth (GT)
model 0
0 4500
200 i 4000
7
§ 400 3500
ki
E 600 {1 3000
~
800 2500
1000 2000
0 250 500 750 1000
x [meters]
Ground-truth (GT)
model 0
0 4500
200 4000
£ 400 3500
1]
£ 60013 3000
N
800 2500
1000 2000
0 250 500 750 1000

x [meters]

DL

o 4500
200 4000 —,
9
400 3500 £
2z
600 3000 §
Q
800 2500 ~

1000 2000

0 250 500 750 1000
x [meters]
MS FWI

4500
4000 —,
9
3500 £
2
3000 8
Q
2500 ~

2000

0 250 500 750 1000
X [meters]

0 4500
200 4000 —,
v
400 3500 £
2
600 3000 g
Q
800 2500 ~
1000 2000

0 250 500 750 1000
x [meters]

200

400

600 3

800

1000

0-

200

400

600

800

1000 -
0

GT-DL

250 500 750 1000

x [meters]

GT - MS FwI

250 500 750

x [meters]

250 500 750 1000

x [meters]

Neural Network vs. FWI

Error histogram

1.0
B
60 - rose
20
S
10 = 50 4
o 8 (062
5 404 g
-10 5 g
-208 301 F0.4 &
-302
—40 201
r0.2
10 4
0 - 0.0
-40 -20 0 20
Velocity error [%]
Error histogram
1.0
801 l Ho.8
30
2
20 & 60 4 Lo »
10 2 2
@ ]
0 X s
-108 40 4 Loa &
—208
-30 20 1 Lo.2
0- - 0.0
-20 0 20
Velocity error [%]
Error histogram
1.0
70
60 r0.8
30
20 % 50
10 5 0.6 g
0 5 40 g
oz g
-20 8 30 F0.4 &
-302
-40 201
r0.2
104 .
-0.0

=25 0 25
Velocity error [%]

Figure 4: Comparison of tomography results from the DL and FWI for model 0.
Leftmost column shows ground-truth (label), second from left shows the prediction
from the DL (top), the Multiscale (MS) FWI result (middle) and the standard FWI
result (bottom). Third column from left shows the difference between the ground
truth and the prediction as a percentage of the velocity error. The last column shows
the percentage of velocity errors for each sample binned and plotted in a histogram
form. When comparing the prediction of the DNN to the MS FWI result, we observe
that the DNN has difficulty in resolving sharp interfaces. Also note that a MS FWI
approach was necessary to avoid cycle skipping that is apparent with the conventional

FWI result. [CR]
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