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ABSTRACT

We implement a wave equation based time-domain inversion that recovers an
earth model from sparse seismic data and avoids pitfalls of other popular wave
equation based solutions. This method iteratively solves for an optimal wavefield
through Wavefield Reconstruction Inversion (WRI) that is used to update the
earth model using gradiometry. We show examples of both WRI and gradiometry
that illustrate their feasibility as individual inverse problems. Finally, we combine
the methods into a joint solution and demonstrate that the optimal wavefield
retrieved by WRI can be used as the input of gradiometry for updating the earth
model in the direction of the true earth solution by gradiometry.

INTRODUCTION

Estimating elastic earth parameters is a topic of interest in the geophysical com-
munity for a variety of reasons, including imaging of deep geological layers, ground
shaking earthquake hazard predictions, groundwater monitoring, and mineral explo-
ration. The field of exploration seismology employs many inversion techniques that
aim to estimate these earth parameters. These methods typically suffer from high
computational costs, nonlinearities, and sensitivity to initial models.

A novel inversion scheme that alternately minimizes a data misfit term and a wave
equation misfit term was introduced by Van Leeuwen and Herrmann (2013), De Rid-
der and Maddison (2017), and De Ridder et al. (2017). The scheme first reconstructs
an estimate of the wavefield that fits (in a least-squares sense) both a wave equation
(given an estimate of the medium parameters) as well as recorded data. This wavefield
is then used to update the earth model parameters with a wave equation inversion
employing gradiometry to measure wavefield gradients (Curtis and Robertsson, 2002;
Langston, 2007a,b; De Ridder and Biondi, 2015; De Ridder and Curtis, 2017). When
the estimate of earth parameters is held constant, the reconstruction of the wavefield
becomes a linear problem with respect to the wavefield. Likewise, when the wavefield
is held constant the gradiometry inversion becomes linear with respect to the earth
model parameters. In this manner, the inversion scheme iteratively solves two linear
inverse problems ultimately finding an optimal earth model and wavefield that match
recorded data and obey some wave equation.
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This technique is attractive because neither WRI nor gradiometry require forward
or adjoint wave propagation. This property frees the entire method from the stability
issues assosciated with wave propagation, allowing much coarser discretization in
time compared to other wave equation based velocity estimation techniques such
as Full Waveform Inversion (FWI) (Tarantola, 1984). The linearity of WRI and
gradiometry also enable the solution to be found over multiple shots at once. Beyond
computational advantages, the hope is that the competing data misfit and the wave
equation misfit terms allow the inversion to avoid local minumum that plague other
techniques.

The past implementations of this alternating inversion scheme focused on fre-
quency domain formulations where the discretized Helmholtz equation is factorized
to obtain a direct inverse solution for wavefields. This factorization will become un-
feasible due to computational cost when applied to three dimensional problems. Here
we solve the alternating inverse problems in the time domain using a linear conju-
gate gradient algorithm. We show inversion results with a synthetic experiment that
assumes a constant density, acoustic, and isotropic earth model.

GRADIOMETRY

Here we wish to solve a wave equation inversion for earth model parameters using
a given wavefield. We employ wavefield gradiometry to measure the spatial and
temporal gradients of the wavefield in order to solve for some earth parameters (e.g.
p-wave velocity, s-wave velocity, density, anisotropy). Here, we work with a two-
dimensional acoustic isotropic wave equation to solve for the background slowness
model given an observed pressure wavefield. The example illustrates that we can
recover Gaussian anomalies given a known pressure wavefield.

Theory

Begin with the two-dimensional acoustic isotropic wave equation in the time domain:

s(x)2∂
2p(x, t)

∂t2
−52p(x, t) = f(x, t), (1)

where x denotes the vector representing the two dimensional space-domain, t denotes
time, s(x) denotes the slowness model, p(x, t) denotes the pressure wavefield, and
f(x, t) denotes the source function. To simplify the problem furthur, we assume the
source is outside of the model domain, yielding:

s(x)2∂
2p(x, t)

∂t2
= 52p(x, t). (2)

This can be written as a simple linear system:

Am = d, (3)
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where:

A =
∂2p(x, t)

∂t2
, (4)

m = s(x)2, (5)

d = 52p(x, t). (6)

Note that the operator A relates the spatial and temporal derivatives of the wave-
field linearly with the slowness squared. Given a background wavefield, an optimal
slowness squared can be found by solving the minimization problem:

arg min
m

Φ(m) =
1

2
||Am− d||22. (7)

Example

We solve the gradiometry problem, expressed as a minimization problem in equa-
tion 7, and obtain a slowness model given a known wavefield. The wavefield is dis-
cretized and the temporal and spatial derivative are approximated by finite difference
operators of 2nd- and 10th-order of accuracy, respectively. Given a wavfield, we
construct the A matrix and d. The minimization problem is solved with a linear
conjugate-gradient algorithm (Aster et al., 2005).

The true slowness squared model is shown on the left in Figure 1. The model
is 2.0x2.0 km and has 10 m grid spacing, it is composed of a background slowness
squared of 1 s2/km2 and contains four Gaussian anomalies. Two shots were propa-
gated through this model in which their positions were outside of the model domain
(in order to obey the assumption in equation 2) using a wavelet containing 2 Hz to
15 Hz. The right of Figure 1 illustrates a snapshot of the wavefield at 2.0 s. The
wavefield is sampled every 0.01 seconds to avoid temporal aliasing.

For this example, the wavefield, p(x, t), sampled with 10 m spacing and is known
throughout the domain. We start the conjugate-gradient scheme with a constant
slowness squared starting model, shown on the left in Figure 2, and performed a total
of 500 conjugate gradient iterations. The model after the first conjugate gradient
update is shown on the left in Figure 2. The final model is shown on the right of
Figure 2 and the normalized objective function values are shown in Figure 3 with log
scale.

Gradiometry recovers the true slowness squared model almost perfectly. This
example illustrates that when the wavefield is known in the entire domain, we can
recover the true Earth properties using wavefield gradiometry.

WAVEFIELD RECONSTRUCTION

Wavefield Reconstruction Inversion (WRI) aims to reconstruct an optimal wavefield
given: a set of observations of the unknown true wavefield, a background earth model,
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Figure 1: Slowness squared model with Gaussian anomalies (left) and snapshot of
two shots propagating through the model at 2.00 seconds (right). [CR]

Figure 2: Slowness squared model after the first linear conjugate gradient iteration
(left) and after 500 conjugate gradient iterations (right). [CR]

Figure 3: Normalized objective function values over 500 gradiometry conjugate gra-
dient iterations plotted in log scale. [CR]
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source functions, and boundary conditions. This wavefield is reconstructed inside a
domain, fully sampled for all discrete grid points in time and space. In general, the
medium parameters of the earth are not known. Given an estimate of the medium
parameters, WRI finds an optimal wavefield that matches the observed wavefield
while simultaneously obeying the wave equation in a least-squares sense.

Here, we again work with a two-dimensional acoustic isotropic wave equation and
show the feasibility of reconstructing the wavefield from a set of observations and
background slowness model. The example illustrates that we can recover a wavefield
that traveled through a slowness model with four Gaussian anomalies.

Theory

Similar to gradiometry, we begin with the two-dimensional acoustic isotropic wave
equation, assume the source function is zero, and rewrite the equation as an operator
acting on the wavefield:

s(x)2∂
2p(x, t)

∂t2
−52p(x, t) = f(x, t), (8)

s(x)2∂
2p(x, t)

∂t2
−52p(x, t) = 0, (9)[

s(x)2 ∂
2

∂t2
−52

]
p(x, t) = 0 (10)

H(s)p = 0, (11)

Nore that this formulation of the wave equation differs from that of gradiometry. In
fact, the operator is now linear with respect to the wavefield, p, and nonlinear with
respect to the earth slowness model, s. If equation 11 is satisfied, the wavefield obeys
the wave equation, given an earth model, in the entire domain.

In WRI we want to find a wavefield that obeys the wave equation while simul-
taneously matching an observed wavefield, d. In realistic applications, d will have
sampling that more sparse than p. For example, d may be recorded on some sparse
grid or from receiver lines. We use the operator K that transforms p to the sampling
of d.

Given a background slowness model, s, and a set of wavefield observations, d, a
wavefield can be found in least-squares sense, by minimizing:

arg min
p

Φε(p) =
1

2
||Kp− d||22 +

ε2

2
||H(s)p||22, (12)

Example

We solve the wavefield reconstruction formulation, expressed as a minimization prob-
lem in equation 12, to solve for an optimal wavefield from a sparse observed wavefield
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and a known slowness squared model. This WRI example uses the same setup as the
gradiometry example described previously. We also assume to know the true slowness
model, s, and observed the true wavefield every 50 meters. Figure 4 shows snapshots
of the observed wavefield, d, at various time steps. The observations at 50 meters
were chosen to ensure spatial aliasing with the slowness model and wavelet used in
the example.

We start the conjugate gradient algorithm from a zero estimate of the wavefield.
Figure 5 shows snapshots of the reconstructed wavefield, p, after 2000 conjugate gra-
dient iterations. WRI recovers an optimal wavefield that matches observations of a
true wavefield and obeys the wave equation in our domain of interest. The optimal
wavefield minimizes both terms in a least-squares sense, and contains minimal arti-
facts when compared to the true wavefield seen in Figure 6. The normalized objective
function values for all iterations are shown in Figure 7 with log scale. This wavefield
has a spatial sampling sufficiently dense to be affective as an input of gradiometry.

Figure 4: Snapshots of the observed wavefield at 1.00 s, 1.62 s, and 2.25 s. The spatial
sampling is 50 m to emulate a realistic geophone spacing from a 2D seismic survey.
[CR]

Figure 5: Snapshots of the optimal wavefield after 2000 conjugate-gradient iterations
of WRI at 1.00 s, 1.62 s, and 2.25 s. The spatial sampling is 10 m which is high
enough to use in a gradiometry inversion. [CR]

ALTERNATING INVERSION SCHEME

By alternating between WRI and gradiometry, each solved by conjugate-gradient al-
gorithms, an earth model can be recovered from a set of observations of the wavefield
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Figure 6: Snapshots of the true wavefield at 1.00 s, 1.62 s, and 2.25 s. [CR]

Figure 7: Normalized objective function values over 2000 WRI conjugate gradient
iterations plotted in log scale. [CR]

using an estimate of the medium parameters as starting model. We start the scheme
with WRI to find an optimal wavefield over the entire model domain, from the obser-
vations and the starting model. Using this optimal wavefield, we perform wavefield
gradiometry to find a new earth model. With the new earth model, we again solve
WRI to find a new optimal wavefield, and proceed iteratively. This process is for-
malized in Algorithm 1 and is repeated for n iterations to find a final estimate of the
reconstructed wavefield in the entire domain and of the earth model.

Algorithm 1 Alternating Gradiometry and Wavefield Reconstruction

1: given some observed wavefield, d
2: given a starting earth model, s0

3: i = 0
4: while i < n do . for n iterations
5: pi ← WRI ← d, si . invert for optimal wavefield
6: si+1 ← gradiometry ← pi . invert for new earth model
7: i = i+ 1
8: end while
9: return sn . final earth model
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Example

This example shows ten iterations of alternating WRI and gradiometry (Algorithm 1
for n=10). Using the same setup as the gradiometry and WRI examples above, we
begin with only the sparsely sampled observed data every 50 meters and an initial
slowness squared model guess that is constant. We perform 2000 conjugate gradient
iterations of WRI. The optimal wavefield solution is displayed on left side in Figure 8.
This wavefield and the constant starting model are then used as the inputs to gra-
diometry. The right of Figure 8 shows the squared slowness model after 500 conjugate
gradient iterations of gradiometry. This model represents the output of the first it-
eration of the alternating WR and gradiometry inversion, and would be input in the
next instance of WRI. The normalized objective function values for every WRI and
gradiometry iteration are displayed in Figure 9. This alternatig scheme is repeated
for ten iterations resulting in a final optimal wavefield and slowness model illustrated
in Figure 10.

Figure 8: After one iteration of Algorithm 1 the optimal wavefield result of WRI sam-
pled at 10 meters (left) and the final earth model when using this optimal wavefield.
[CR]

DISCUSSION AND CONCLUSION

Ten iterations of WRI followed by gradiometry results in an earth model that is
representative of the true model used to create the observed wavefield data. With
sparse data and an incorrect slowness model, WRI recovers a wavefield that obeys that
wave equation and the observations in a least-squares sense with residual errors. But,
the recovered wavefield contains information about the background slowness that can
then be used to update the earth model with gradiometry. The competing objective
function terms in WRI explains the acquisition footprint seen in the obtained slowness
model estimate. Performing further iterations may resolve this footprint as WRI will
be able to more closely rectify the observed data and the wave equation, given a
better estimate for the earth model.
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Figure 9: Normalized objective functions from the first iteration of Algorithm 1.
The objective function of WRI (left) has good convergence when using an incorrect
starting model. The objective function of gradiometry (right) reduces to only 35%.
[CR]

Figure 10: After ten iterations of Algorithm 1 the optimal wavefield result of WRI
sampled at 10 meters (left) and the final earth model when using this optimal wave-
field. Both the wavefield and slowness model are significantly closer to the truth as
compared to the result of the first iteration in Figure 8 [CR]
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This study illustrates initial results of a wave equation inversion scheme in the that
does not require forward or adjoint wave propagation, but can recover background
earth model perturbations using only sparse observed seismic data. The implemen-
tation in the time domain may allow its application to larger and higher dimensional
problems.
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