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ABSTRACT

Convolutional networks, also known as ConvNets, convolutional neural networks
or CNNs, are a specialized kind of neural network for processing data that has a
known, grid-like topology, such time-series data or image data. They have been
successful in practical applications, ranging from face recognition to self-driving
cars, and could be used for processing seismic data. In this paper, I explain how
to build a convolutional network.

INTRODUCTION

Convolutional networks are a specific type of feedforward networks. The theory for
modern convolutional networks was introduced in the 1990s (LeCun et al., 1989).
Thanks to increasing computing power and labeled data volumes, within the last
5 years, convolutional networks have had a dramatic impact on computer vision
(Krizhevsky et al., 2012; He et al., 2015), speech recognition (Dahl et al., 2012; Deng
et al., 2010; Seide et al., 2011; Hinton et al., 2012), and image segmentation (Sermanet
et al., 2013; Farabet et al., 2013; Couprie et al., 2013; Cireşan et al., 2012). Herein,
I cover the basic theory for feedforward networks, then proceed to the specificities of
convolutional networks.

FEEDFORWARD NETWORKS

Deep feedforward networks, also often called feedforward neural networks, or mul-
tilayer perceptrons (MLPs), are the quintessential deep learning models. The goal
of a feedforward network is to approximate some function f ?. For example, for a
classifier, y = f ?(x) maps an input x to a category y. A feedforward network defines
a mapping f such that y = f(x;θ) and learns the value of the parameters θ that
result in the best function approximation.

Representation learning

Deep feedforward networks allow us to capture non-linearities by applying linear
operators to transformed inputs φ(x), where φ is a nonlinear transformation. The
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strategy of deep learning is to learn φ from our data. This is called representation
learning.

Say we wish to estimate an output y from an input x. A feedforward network
defines a mapping y = f(x;θ,w) = φ(x;θ)>w. We now have parameters θ that
we use to learn φ from a broad class of functions, and parameters w that map from
φ(x) to the desired output. This approach can be very highly generic, by learning
φ from a very broad family of functions φ(x;θ); while allowing us to encode our
domain knowledge by designing families φ(x;θ) that we expect to perform well. The
advantage is that we only need to define the right general function families rather
than finding precisely the right function.

Network architecture

A neural network is typically represented as a collection of units that are connected
in a directed acyclic graph, describing how the functions are composed together (Fig-
ure 1). The output of each layer of units becomes the input of the next layer. For
example, we might have three functions f (1), f (2), and f (3) connected in a chain, to
form f(x) = f (3)(f (2)(f (1)(x))). In this case, f (1) is called the first layer of the net-
work, f (2) is called the second layer, and so on. The final layer of a feedforward
network is called the output layer. The layers located between the input and the
output layer are called hidden units. The mapping function f corresponding to the
network is the result of composing together the functions that are applied at each
layer of units. The depth of a network is the number of layers (omitting the input
layer).

Figure 1: A 3-layer neural network with three inputs, two hidden layers of 4 units
each and one output layer. (Image courtesy of Stanford CS231N). [NR]

Hidden units

In their most commonly used implementation, hidden units can be described as ac-
cepting a vector of inputs x, and computing an affine transformation:

z = W>x+ b
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where W are weights applied to the input and b a bias term, and then applying an
element-wise nonlinear function f(z) called the activation function.

Activation functions

The design of hidden units is an extremely active area of research and does not yet
have many definitive guiding theoretical principles. As of today, the most popu-
lar type of hidden units are rectified linear units (Figure 2) that use the activation
function

f(z) = max{0, z}.

Figure 2: The rectified linear activation function. This activation function is the de-
fault activation function recommended for use with most feedforward neural networks.
[ER]

Applying this function to the output of a linear transformation yields a nonlinear
transformation. However, the function remains very close to linear, in the sense that
is a piecewise linear function with two linear pieces. Because rectified linear units
are nearly linear, they preserve many of the properties that make linear models easy
to optimize with gradient-based methods. These are desirable properties for training
neural networks, as we will see in the following sections.

Other types of activation functions that often appear in literature are the softmax
function, the hyperbolic tangent function, the radial basis functions, the leaky rec-
tified linear unit (Maas et al., 2013) and the maxout unit (Goodfellow et al., 2013).
While they all have their own specificities, I will not cover them here.

Objective function

Event detection, object recognition and image segmentation are all tasks that are
based on an underlying classifier.
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Data loss

Let’s consider a training data set x with N elements, associated with labels y corre-
sponding to the different classes that each training data sample can belong to. The
data-fitting term of the objective function measures the compatibility between the
classifier’s estimations and the ground truth labels. This data loss term L takes the
form of an average over the data losses Li for every training data sample i:

L =
1

N

∑
i

Li.

We abbreviate the output of the neural network for a given input xi as the score s:

s = f(xi;θ).

sj, the score for the the j-th class, is the j-th element of s:

sj = f(xi;θ)j.

For a data sample i, the score for the correct class is syi
. The two most commonly

used objective functions are the softmax classifier and the multi-class support vector
machine (SVM) classifier. While other formulations are possible, I will not cover
them here.

Softmax classifier

The softmax classifier minimizes the cross-entropy between the estimated class prob-
abilities and the ”true” distribution (which in this interpretation is the distribution
where all probability mass is on the correct class):

Li = − log

(
esyi∑

i e
sj

)
.

SVM classifier

The multi-class support vector machine (SVM) loss uses the hinge loss, forcing the
correct class for each sample to a have a score higher than the incorrect classes by
some fixed margin:

Li =
∑
j 6=i

max{0, sj − syi
+ 1}.

A detailed explanation of the SVM classifier is provided in Huot and Clapp (2016).
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Regularization

To avoid overfitting and obtain good generalization results, we add regularization
terms to the neural network architecture. The regularization terms can be added
both at the output level or at the level of a hidden layer. When they are added at the
output level, the objective function J can be expressed as the sum of the data loss
and the regularization terms Γ(θ): J = L + λΓ(θ), where the parameter λ defines
the regularization strength. Common regularization practices are:

• L2 parameter regularization,

• L1 parameter regularization,

• Noise robustness, either by adding random perturbations to the weights or
adding noise to the output layer,

• Early stopping in the gradient based optimization or annealed step size,

• Dropout, a method where only a subset of the unit weights are updated at each
iteration.

As of today, it is common to use L2 regularization combined with dropout applied
after all the layers (Srivastava et al., 2014).

Neural network training

Given the objective function J , the parameters θ of the neural network are then fitted
through an optimization procedure. Due to large data volumes, this task is usually
performed by mini-batch stochastic gradient descent (Bottou, 2012; Bengio, 2012).
The gradient ∇J(θ) is computed using an algorithm known as backpropagation in
neural network terminology.

Forward computation (forward propagation)

We first apply forward computation through the neural network, going through all the
layers from the input layer to the output layer, and compute the objective function.
Let y be the ground truth classes and ŷ the predicted classes. We denote our loss
function L(ŷ,y) describing how well we fit the data. To obtain the objective function
J , we add a regularizer Γ(θ), where θ contains all the parameters (weights and biases
from all the units). For simplicity, here I describe forward propagation for only a
single input example x (Algorithm 1). Practical applications should use a minibatch.
The formulations are based on Goodfellow et al. (2016).
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Algorithm 1 Forward propagation

Require: Network depth, l
Require: W (i), i ∈ {1, ..., l}, the weight matrices of the network
Require: b(i), i ∈ {1, ..., l}, the bias parameters of the network
Require: x, the input to process
Require: y, the target output
1: h(0) = x
2: for k = 1, ..., l do
3: a(k) = b(k) +W (k)h(k−1)

4: h(k) = f(a(k))
5: end for
6: ŷ = h(l)

7: J = L(ŷ,y) + λΓ(θ)

Backward computation (backpropagation)

Using the target y, we can now derive the gradient of the objective function. Using the
chain rule, we can computationally derive the gradients on the activations a(k) for each
layer k, starting from the output layer and going backwards to the first hidden layer.
From these gradients, which can be interpreted as an indication of how each layers
output should change to reduce error, one can obtain the gradient on the parameters
of each layer. The gradients on weights and biases can then be immediately used as
part of a stochastic gradient update or used with other gradient-based optimization
methods (Algorithm 2).

Algorithm 2 Backpropagation

1: After the forward propagation, compute the gradient on the output layer:
2: g ← ∇ŷJ = ∇ŷL(ŷ,y)
3: for k = l, l − 1, ..., 1 do
4: Convert the gradient on the layers output into a gradient into the pre- non-

linearity activation (element-wise multiplication if f is element-wise):
5: g ← ∇a(k)J = g � f ′(a(k))
6: Compute gradients on weights and biases (including the regularization term,

where needed):
7: ∇b(k)J = g + λ∇b(k)Γ(θ)
8: ∇W (k)J = gh(k−1)> + λ∇W (k)Γ(θ)
9: Propagate the gradients w.r.t. the next lower-level hidden layers activations:

10: g ← ∇h(k−1)J = W (k)>g
11: end for
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Training, validation and testing data

During the training, we optimize the weights and biases of each unit in the network.
However, there are many hyper-parameters involved: the gradient step size, the reg-
ularization strength, the width and depth of the network architecture etc. For these
reasons, we separate our data into three subsets: the training data, the validation
data, and the testing data. The network parameters are fitted on the training set,
and the hyper-parameters are tuned according to the results of the trained network
on the validation data. Once the optimal hyper-parameters have been selected, and
the network has been retrained on the training set, the network is applied to the
testing set to measure its performance. When computationally feasible, training and
validation are typically performed by cross-validation.

CONVOLUTIONAL NETWORKS

Convolutional networks are a specialized kind of feedforward network where the hid-
den layers perform convolution operations. First, I describe how the convolution
operator is implemented in the neural network and then the derived properties. Next
I present an operation called pooling, which almost all convolutional networks employ.
Research into convolutional network architectures proceeds so rapidly that a new best
architecture for a given benchmark is announced every few weeks to months, render-
ing it impractical to describe the best architecture. However, the best architectures
have consistently been composed of the building blocks described here.

The convolution operator

In convolutional network terminology, inside a convolution layer, the input is con-
volved with a kernel. The output of this operation is sometimes referred to as a
feature map. The input and the kernel are usually multi-dimensional arrays, or ten-
sors, and the convolution operator is usually performed over more than one axis. To
relate this to the feedforward networks described in the previous section, remember
that discrete convolution can be viewed as multiplication with a sparse matrix.

For instance, if we use a two-dimensional image I as our input, and want to use
a two-dimensional kernel K, we obtain the following output S:

S(i, j) = (I ? K)(i, j) =
∑
m

∑
n

I(m,n)K(im, jn).

Convolution is commutative, meaning we can equivalently write:

S(i, j) = (K ? I)(i, j) =
∑
m

∑
n

I(im, jn)K(m,n).
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Usually the latter formula is more straightforward to implement in a machine learning
library, because there is less variation in the range of valid values of m and n, as the
kernels are typically much smaller than the input.

While the commutative property is useful for writing proofs, it is not usually an
important property of a neural network implementation. Instead, it is interesting to
note that many neural network libraries actually implement cross-correlation, but call
it convolution:

S(i, j) = (I ? K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n).

Properties

Convolutional networks leverages three important ideas that can help improve a ma-
chine learning system: parameter sparsity, parameter sharing and equivariant repre-
sentations.

Parameter sparsity

While traditional feedforward network layers use matrix multiplication by a matrix of
parameters, convolutional networks typically have sparse interactions, by using ker-
nels that are smaller than the input (Figure 3). This significantly reduces the number
of stored parameters. If there are m inputs and n outputs, a matrix multiplication
requires m×n parameters and the algorithms used in practice have O(m×n) runtime.
If we limit the kernel size to k, then the convolution approach requires only k × n
parameters and O(k × n) runtime. For many practical applications, it is possible to
still obtain good performance on the machine learning task while keeping k several
orders of magnitude smaller than m. Indeed, units in the deeper layers may indirectly
interact with a larger portion of the input (Figure 4). This allows the network to ef-
ficiently describe complicated interactions between many variables by constructing
interactions from small building blocks.

Parameters sharing

Parameter sharing refers to using the same parameter for more than one function
in a model. Its is often said that a convolutional network has tied weights, because
the value of the weights in the kernel applied to one input is tied to the value of
the weights applied elsewhere (Figure 5). This means that rather than learning a
separate set of parameters for every location, we learn only one set. This does not
affect the runtime of forward propagation (which is still O(k× n) but it does further
reduce the storage requirements of the model to k parameters.
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Figure 3: Parameter sparsity: We highlight one input unit, x3, and also highlight
the output units in s that are affected by this unit. (Top) When s is formed by
convolution with a kernel of width 3, only three outputs are affected by x3. (Bottom)
When s is formed by full matrix multiplication, connectivity is no longer sparse, so
all of the outputs are affected by x3. (Image courtesy of Goodfelllow et al. (2016))
[NR]

Figure 4: he receptive field of the units in the deeper layers of a convolutional network
is larger than the receptive field of the units in the shallow layers. This means that
even though direct connections in a convolutional network are very sparse, units in
the deeper layers can be indirectly connected to all or most of the input image. (Image
courtesy of Goodfelllow et al. (2016)) [NR]
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Figure 5: Parameter sharing: Black arrows indicate the connections that use a par-
ticular parameter in two different models. (Top) The black arrows indicate uses of
the central element of a 3-element kernel in a convolutional model. Due to parameter
sharing, this single parameter is used at all input locations. (Bottom) The single
black arrow indicates the use of the central element of the weight matrix in a fully
connected model. This model has no parameter sharing so the parameter is used only
once. (Image courtesy of Goodfelllow et al. (2016)) [NR]

In practice, let’s imagine a tiny image segmentation problem using a 100 × 100
grid point seismic image as input, and outputting a 100 × 100 grid point segmen-
tation map. A traditional feedforward network with only one layer would require
108 operations and would have to fit 104 parameters. A convolutional network with
a convolution stencil with 3 elements, would require 3 × 104 operations and would
have to fit only 3 parameters. This shows that convolutional networks require less
memory and computing time and improve statistical efficiency. In practice, how-
ever, one would use multiple stencil kernels, and the parameter space gain between a
feedforward network and a convolutional network is usually of about 25-30%.

Equivariance

By using convolution with parameter sharing, the convolutional layers become equiv-
ariant to translation. This is a desirable property for processing objects with grid-type
topology. For example, when processing images, it is useful to detect edges in the
first layer of a convolutional network. The same edges appear more or less everywhere
in the image, so it is practical to share parameters across the entire image. In some
cases, we may not wish to share parameters across the entire image, for instance when
trying to capture features that should be a function of a small part of the space, but
there is no reason to think that the same feature should occur across all of space. In
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this case, one should define different kernel weights for different regions of the input
space. This is sometimes called unshared convolution or locally connected layers.

Pooling

A typical layer of a convolutional network consists of three stages (Figure 6). In the
first stage, the layer performs several convolutions in parallel to produce a set of linear
activations. In the second stage, often called the detector stage, each linear activation
is run through a nonlinear activation function, such as the rectified linear activation
function. In the third stage, we use a pooling function to modify the output of the
layer further.

Figure 6: The components of a typical convolutional neural network layer. The
convolutional network is made of several building blocks, made of a convolution stage,
a non-linear activation, often called the detector stage, and a pooling stage. [NR]

A pooling function is a form of downsampling that replaces the output of a layer
at a certain location with a summary statistic of the nearby outputs. For example,
the most commonly used max pooling (Zhou and Chellappa, 1988) operation reports
the maximum output within a rectangular neighborhood. Other popular pooling
functions include the average of a rectangular neighborhood, the L2 norm of a rect-
angular neighborhood, or a weighted average based on the distance from the central
pixel. Some theoretical work gives guidance as to which kinds of pooling one should
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use in various situations (Boureau et al., 2010). In all cases, pooling helps to make
the representation become approximately invariant to small translations of the input
(Figure 7).

Figure 7: Max pooling introduces invariance. (Top) A view of the middle of the
output of a convolutional layer. The bottom row shows outputs of the nonlinearity.
The top row shows the outputs of max pooling, with a stride of one pixel between
pooling regions and a pooling region width of three pixels. (Bottom) A view of the
same network, after the input has been shifted to the right by one pixel. Every
value in the bottom row has changed, but only half of the values in the top row have
changed, because the max pooling units are only sensitive to the maximum value
in the neighborhood, not its exact location. (Image courtesy of Goodfelllow et al.
(2016)) [NR]

While pooling over spatial regions produces invariance to translation, if we pool
over the outputs of separately parametrized convolutions, the features can learn which
transformations to become invariant to (Figure 8). This is a strong property that
allows the network to learn representative manifolds of the input data.

CONCLUSION

There are many possible convolutional network architectures to perform different
tasks. Herein I described the building blocks that compose well-performing modern
convolutional networks.
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Figure 8: Example of learned invariances: A pooling unit that pools over multiple
features that are learned with separate parameters can learn to be invariant to trans-
formations of the input. Here we show how a set of three learned filters and a max
pooling unit can learn to become invariant to rotation. All three filters are intended
to detect a hand-written 5. Each filter attempts to match a slightly different orien-
tation of the 5. When a 5 appears in the input, the corresponding filter will match
it and cause a large activation in a detector unit. The max pooling unit then has a
large activation regardless of which detector unit was activated. We show here how
the network processes two different inputs, resulting in two different detector units
being activated. The effect on the pooling unit is roughly the same either way.(Image
courtesy of Goodfelllow et al. (2016)) [NR]
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