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ABSTRACT

We train a 1D convolutional neural network to estimate stratigraphic sequences
from seismic data, and evaluate which frequencies are required to obtain accurate
estimates. While seismic volumes are typically unlabeled data, well logs allow
us to label portions of seismic data with their corresponding geological stratig-
raphy. We boost the training set by generating additional synthetic well logs
using Markov chain modeling. We demonstrate that the estimation accuracies
increase with seismic frequency content, and while accuracies remain fairly low for
frequencies under 50 Hz, we achieve accuracies over 80% when pushing towards
higher frequencies.

INTRODUCTION

Well logs allow us to label portions of seismic data with the corresponding stratigra-
phy. Herein, we are provided with 60 well logs from the Wilcox formation in the Gulf
of Mexico. We preprocess the data to derive the elastic moduli using rock physics
diagnostics in order to generate corresponding seismic traces using convolutional mod-
eling. We then generate additional synthetic wells with similar statistics by Markov
chain modeling to boost the size of the data set. We then proceed to train a 1D
convolutional neural network to estimate the stratigraphy directly from the seismic
data and evaluate which frequencies are required to obtain accurate results.

DATA PROCESSING

Wilcox formation well logs

We were provided with the logs from 60 wells from the Wilcox formation in the
Gulf of Mexico (Figure 1). The data are sampled every 15 cm along the borehole,
and the region of interest spans about 500 m to 1,000 m for each well at a depth of
about 8 km. The provided data values are depth, resistivity, P-wave velocity, S-wave
velocity, gamma ray, neutron porosity and density (Figure 2a). The computed volume
of shale (vshale) attribute is also provided.
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Figure 1: Locations of some of the wells from which the logs were provided. (Image
source: www.offshore-energy.biz) [NR]

Rock physics diagnostics

We use rock physics diagnostics to find a lithology model to match the log data and
consolidate the elastic properties, as described by Mavko et al. (2009) (Figure 3).
The modeled elastic properties are then compared to the log measurements (Fig 2b)
and seem to match the data fairly well, allowing us to fill in any missing values and
remove outliers.

Synthetic seismic generation using convolutional modeling

We then generate synthetic seismic traces from the well log data, using convolutional
modeling to generate common-depth gathers (Figure 2c). The travel times, angles and
offset are computed via ray-tracing, and the amplitudes at each interface are computed
using the Zoeppritz equations. The final reflectivity series are then convolved with
a Ricker wavelet at various frequencies ranging from 10 to 200 Hz. While the higher
frequencies are not realistic, they are computed in order to evaluate which frequencies
are required to obtain accurate estimates with the learning algorithm. We interpolate
the seismic traces to match the sampling rate of the logs to have correspondence
between the seismic data and the stratigraphy labels.

Stratigraphy labeling

The difference between well log resolution (0.3 m) and seismic resolution (about 200
m) makes it difficult to label the seismic data using the vshale log values, for averaging
them over large windows would not be very informative. Therefore, we label the data
by chunks, and divide them into five categories:
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(a)

(b) (c)

Figure 2: (a) Provided well log data for one of the wells. From left to right: Gamma
ray, density, bulk porosity (black) and neutron porosity (blue), P-wave velocity (black)
and S-wave velocity (blue), computed vshale. (b) Rock physics diagnostics. From
left to right: selected clay content lithology model, measured bulk density (black)
vs modeled bulk density (red), P-wave impedance directly computed from the input
data (black) vs modeled P-wave impedance (red), Poisson’s ratio directly computed
from the input data (black) vs modeled Poisson’s ratio (red). The selected lithology
model fits the log data fairly well and is the one we adopted for consolidating the
elastic properties before proceeding to convolutional modeling. (c) Examples of cor-
responding seismic common-depth gathers obtained by convolutional modeling with
a Ricker wavelet at 40 and 60 Hz for different offsets. [CR]
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Figure 3: P-wave velocity plotted versus porosity, color-coded by lithology. The
color scale corresponds to the difference between neutron porosity and bulk porosity,
which is an indicator for clay content. The overlaying curves correspond to different
lithology models (from left to right: Raymer, soft sand, constant cement). From
these plots, the most appropriate model appears to be the one in the center, as the
lithology curves match the data best. [CR]

1. Blocky stratigraphy mostly shale

2. Fine stratigraphy mostly shale

3. Blocky alternations

4. Fine stratigraphy mostly sand

5. Coarse stratigraphy mostly sand

SYNTHETIC WELL LOG GENERATION USING
MULTI-SCALE MARKOV CHAIN MODELING

The loss of resolution when transitioning to seismic data makes our training set too
small to obtain good performance with a neural network, so we boost the data set by
generating additional well logs using Markov chain modeling.

The distribution of vshale is fairly bimodal (Figure 4), so we model the vshale
values using two states, 0 and 1, with a cut-off value at 0.4. By reducing the number
of possible states we increase the value of the statistics to populate the transition
probabilities in the Markov chain.

Figure 5 presents results obtained with different lengths of Markov chains. The
Markov chain using only one previous state generates logs that are too laminated
to be realistic, but longer chains and increased stationary probabilities yield realistic
vshale alternations. A separate Markov chain is constructed for each of the 5 types of
stratigraphy. A macro-level Markov chain then determines the alternations between
these different types.
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We populate the synthetic logs with elastic properties picked out of the total
distribution of elastic properties in the field data for low and high vshale (Figure 6).
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Figure 4: Distribution of the volume of shale over 16 different wells. As its distribution
is fairly bimodal, we decided to use two states to model the volume of shale in the
Markov chain. From the distribution, we set the cut-off value between the two states
at 0.4. [CR]

Data volume

After data processing and synthetic data generation, the data set results in 180,000
samples of field well log data and 500,000 samples of synthetic well log data. It is
then normalized, and split into a training and a test set in a 80:20 ratio.

1D CONVOLUTIONAL NEURAL NETWORK

We train a 1D convolutional neural network over this data set. We define a sliding
detection window of 200 samples along the seismic traces. The neural network has
the following architecture:

• 10× 1 convolution layer with rectified linear unit (ReLu) activation function

• Max pooling 2× 1

• 5× 1 convolution layer with ReLu activation function
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(a) (b)

(c)

Figure 5: Vshale alternation for 5 different types of stratigraphy using Markov chain
modeling. (a) A Markov chain using only one previous state generates logs that are
too laminated to be realistic. (b) This Markov chain uses the 3 previous samples
plus the average over the 10 previous ones, and 20 previous ones. It results in more
realistic alternations. (c) Results from the same Markov chain as used for (b) but with
increased the probabilities for all the stationary modes. It yields different profiles for
the 5 types of stratigraphy, and is the one we used in this study. [CR]
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Figure 6: Elastic properties for a synthetic well of stratigraphic type 2. We populate
the synthetic logs with elastic properties picked out of the total distribution of elastic
properties in the field data for low and high vshale. [CR]

• Max pooling 2× 1

• Fully connected layer with ReLu activation function

• Dropout with a probability of 0.75

• Fully connected output layer

A description of the different components of the convolutional network is provided
in Huot (2018).

On seismic traces with frequencies under 50 Hz, this convolutional neural network
obtains fairly poor accuracies, limited between 35 and 50% (but still superior to
random guessing, which would be 20%, given that we have 5 labeled stratigraphy
types) (Figure 7). Its accuracy increases with increasing frequencies. If we artificially
push to high frequency, we see that this network can actually achieve accuracies above
80% if the frequency content is high enough.

DISCUSSION AND CONCLUSIONS

While the trained convolutional neural network did not achieve good performance
on low frequency seismic traces, the suggests that the methodology might have some
potential for seismic data with higher frequency content. In order to achieve better
accuracy on low frequency seismic data, we would need to incorporate additional
data, such as transitioning to 3D volumes to obtain depositional context.
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Figure 7: On seismic traces with frequencies under 50 Hz, this convolutional neural
network obtains fairly poor accuracies, limited between 35 and 50% (but still superior
to random guessing, which would be 20%, given that we have 5 labeled stratigraphy
types). If we artificially push to unrealistically high frequency, we see that this net-
work can achieve accuracies above 80%. [CR]
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