Jump-starting neural network training for seismic
problems
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ABSTRACT

Deep learning algorithms are immensely data-hungry and rely on large amounts
of labeled data to achieve good performance. However the earth is intrinsically
unlabeled and we are often confronted to fuzzy boundaries, uncertain labels, and
absence of ground truth. Moreover, deep learning models do not always general-
ize well to conditions that are different from the ones encountered during training.
In this context, it can be difficult to leverage deep learning algorithms for seismic
problems. Herein we introduce strategies for overcoming these limitations, using
synthetic data generation and transfer learning to jump-start the training of neu-
ral networks. We present this methodology through two case studies: earthquake
detection using the Northern California Seismic Network (NCSN); and targeted
noise filtering for ambient seismic noise recorded by a fiber optic array underneath
Stanford campus.

INTRODUCTION

Deep neural networks can achieve accurate mappings from inputs to outputs from
large amounts of labeled data. Within the last 5 years, deep learning has had a
dramatic impact on computer vision (Krizhevsky et al., 2012; He et al., 2015), speech
recognition (Dahl et al., 2012; Deng et al., 2010; Seide et al., 2011; Hinton et al.,
2012), and image segmentation (Sermanet et al., 2013; Farabet et al., 2013; Couprie
et al., 2013; Ciresan et al., 2012).

However, these models are immensely data-hungry and rely on huge amounts of
labeled data to achieve their performance. As of 2016, a rough rule of thumb is that
a supervised deep learning algorithm will generally achieve acceptable performance
with around 5,000 labeled examples per category and will match or exceed human per-
formance when trained with a dataset containing at least 10 million labeled examples
(Goodfellow et al., 2016).

One of the challenges with applying deep learning algorithms to seismic problems
is that we are often confronted to limited labeled data. The earth is intrinsically
unlabeled, and we have to deal with uncertain labels, fuzzy boundaries, and absence
of ground truth. Seismic datasets also tend to be unbalanced, as we are trying to
detect rare and sparse events within large amounts of background noise.
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Another problem is that deep learning models do not always generalize well to
conditions that are different from those encountered during training on a carefully
constructed dataset. Seismic field datasets have low signal to noise ratio, and suffer
from missing data and dropouts. They present coherent noise sources and artifacts,
many of which the deep learning model has not encountered during training.

In this study we present how synthetic data generation and transfer learning can
jump-start the training of neural networks in order to overcome these limitations.
We outline reasons why transfer learning warrants our attention and describe dif-
ferent transfer learning scenarios. We then illustrate this methodology through two
case studies: earthquake detection using the Northern California Seismic Network
(NCSN); and targeted noise filtering for ambient seismic noise recorded by a fiber
optic array underneath Stanford campus.

SYNTHETIC DATA GENERATION

When manually labeling the data is infeasible, how can we come up with large volumes
of labeled data? The key idea here is to leverage our domain-knowledge to generate
synthetic data to boost our training data.

The use of synthetically generated training data is pretty common in machine
learning and has been successfully used for various applications, ranging from char-
acter recognition in natural images (de Campos et al., 2009), traffic sign recognition
(Greenhalgh and Mirmehdi, 2012; Hoessler et al., 2007) or handwriting recognition
(Varga and Bunke, 2003), to more elaborate problems such as face recognition (Fanelli
et al., 2011) or protein interactions (Pham and Jain, 2006). Synthetic data generation
is also used for unbalanced classification problems to ensure that each class is suffi-
ciently well represented to obtain a classification system of high generalization perfor-
mance (Fanelli et al., 2011; Zadrozny, 2004). The synthetic training examples do not
per se have to capture all the complexities of the field data. The DeepSketch2Image
project (Seddati et al., 2016) demonstrates it is possible to classify photos even by
training on free-hand doodles.

For physical modeling problems, neural networks are often trained solely on syn-
thetic data, and have had successful results for various applications such as turbulent
flow modeling Ling et al. (2016), or modeling error estimation Trehan et al. (2017).

TRANSFER LEARNING

The ability to transfer knowledge to new conditions is generally known as transfer
learning.

In the classic supervised learning scenario, we train a neural network for a task
and domain A for which we have large amounts of labeled data, and expect it to
perform well on unseen data of the same task and domain. Given some other related
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task or domain B, the classic supervised learning paradigm breaks down when we do
not have sufficient labeled data to train a reliable model.

Transfer learning allows us to deal with this scenario by leveraging the already
existing labeled data of the first task or domain A, storing the knowledge gained in
solving this task, and applying it to our related problem of interest B. This knowledge
transfer can be achieved through various transfer learning scenarios (Pan and Yang,
2010; Yosinski et al., 2014):

e Using the pre-trained network as a fixed feature extractor (Razavian et al.,
2014): We pre-train the convolutional neural network (CNN) on dataset A,
remove the last fully-connected layer, and treat the rest of the network as a
fixed feature extractor for the new dataset B.

e Fine-tuning the pre-trained network: We pre-train the CNN on dataset A, and
fine-tune its weights using dataset B. It is possible to fine-tune all the layers
of the network, or to keep some of the earlier layers fixed (due to overfitting
concerns) and only fine-tune some higher-level portion of the network. This is
motivated by the observation that the earlier features of a CNN contain more
generic features (e.g. edge detectors or color blob detectors) that should be
useful to many tasks, but later layers of the network becomes progressively
more specific to the details of the classes contained in the original dataset.

e Using pre-trained models: Since large modern convolutional networks take 2-
3 weeks to train across multiple GPUs, pre-trained network weights are often
released publicly for others to use.

A description of the different components of a convolutional network is provided in
Huot (2018). Which type of transfer learning to use is a function of several factors, but
typically depends on the size of the dataset for task B and its similarity to the dataset
A. In the following sections, we present some applications of this methodology.

EARTHQUAKE DETECTION USING THE NORTHERN
CALIFORNIA SEISMIC NETWORK (NCSN)

We used the Northern California Seismic Network (NCSN) catalog of earthquake
detections to build a dataset of labeled earthquake and background noise waveforms.
In this study we used data from the following seismic stations (Figure 1):

e BK-SAO, San Andreas Geophysical Observatory, Hollister,

e BK-JRSC, Jasper Ridge Biological Preserve, near Stanford,

e BK-PKD, Bear Valley Ranch, Parkfield,
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Figure 1: Geographical locations of selected seismic stations from the NCSN. [NR]

e BK-CVS, Carmenet Vineyards, Sonoma.

These stations are equipped with 3-component broadband seismometers. For each
station, we extracted the earthquake waveforms from the catalog from 01/01/2008
to 06/01/2016 for events of magnitude > 2.0. The background noise waveforms were
picked at random times for each day in the time period, while ensuring that they did
not overlap with any event from the catalog and did not trigger the STA /LTA (Short
Term Average/Long Term Average) event detection algorithm (with STA window of
3s, LTA window of 45s, and threshold of 6.0).

All the waveforms were bandpassed between 1 and 10 Hz, downsampled to a 20 Hz
sampling rate, and then normalized (Figure 2).
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Figure 2: Example waveforms of (a) earthquakes and (b) background noise recorded
at the BK-JRSC station. [ER]
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To capture the temporal variations of each waveform, we decomposed the signal
into wavelet attributes by applying continuous wavelet transforms (CWT). CWT are
frequently used in pattern recognition to decompose complex patterns into elementary
forms by comparing the input signal to shifted and compressed or stretched versions
of an analyzing wavelet (Mallat, 2008).

We used the Morlet wavelet as the analyzing function and subsequently took the
amplitude of the resulting complex numbers. For each waveform we computed 30
CWT scale factors. At this stage, we subsampled the data by averaging the CWT
scales over windows of 0.5s, and the time windows were then narrowed down to a 15s
detection window. This resulted in 30 x 30 attributes for each waveform (Figures 3a
and 3b). Each attribute was standardized to zero mean and unit variance. Means and
standard deviations were stored for later use when applying the trained algorithm to
new data.

After pre-processing, we ended up with about 2,000 earthquake samples and 3,000
background noise samples for each station. The dataset was then separated according
to a 80:20 ratio into a training set and a test set.

We trained a small CNN with 2 convolutional layers and a fully connected output
layer with a softmax classifier on this dataset. However, as the dataset was fairly
small, the network achieved poor accuracy. We then performed transfer learning
using the the MNIST dataset. The MNIST database (Modified National Institute of
Standards and Technology database) is a large database of handwritten digits that is
commonly used for training various image processing systems (Fig 3c). It is widely
used for training and testing in the field of machine learning. While the classification
of handwritten digits has very little to do with earthquake detection, the basic image
processing performed in the convolutional layers has similar behavior, and acts as
a feature extractor. By pre-training using the MNIST dataset, we can use transfer
learning by copying the weights of the convolutional layers, while leaving out the
classification part. This process allows us to initialize the weights in our earthquake
detection network to a reasonable initial guess.

Using this approach, the network obtained 99.5% accuracy when trained, and
tested on only one of the stations. When mixing all four stations, its accuracy dropped
to 96.8%. Although this result is not as good, it shows that it might be possible to
generalize to more stations.

TRAFFIC DETECTION FOR TARGETED FILTERING
FOR FIBER OPTIC AMBIENT SEISMIC NOISE

Distributed acoustic sensing (DAS) is an emerging technology used to record seismic
data that employs fiber optic cables as a probing system. Recently, a DAS array has
been deployed beneath Stanford campus in the existing fiber optic telecommunica-
tion conduits. As we can so easily use our telecomm infrastructure for continuous,
dense, seismic acquisition, data collected in such a manner will go to waste unless we
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Figure 3: Example waveform attributes computed for (a) earthquakes and (b) back-

ground noise. (c¢) Examples from the MNIST hand-written numbers dataset.
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significantly automate ambient noise processing. In particular, coherent noise sources
inhibit reliable extraction of useful signals (Martin et al., 2016). Herein, we train a
convolutional neural network for detecting traffic noise in order to selectively filter
it out to generate ambient seismic noise fields that are suitable for interferometry
purposes.
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Figure 4: Data recorded by the Stanford DAS array. Ambient noise in urban areas
is far from white or spatially uniform. [ER]

Every 8m of fiber acts as a seismic sensor, and the DAS array generates contiguous
time series that conveniently lend themselves to image processing (Figure 4). We used
a previously trained unsupervised learning approach to identify traffic and background
noise (Huot et al., 2017; Martin et al., 2018). We opted for a detection window of 10
channels by 10 seconds. The windows were downsampled along the time axis, to 10
x 50.

The dataset was fairly small and highly imbalanced, as there were far fewer car
events than background noise. Therefore, we boosted the dataset by generating sim-
plistic synthetic car data (Figure 5¢). All the windows were shuffled to avoid any
time bias and normalized with the same means and standard deviations. The data
sets were then arranged as follows:

e The training data contained 50,000 windows, 50% noise, 50% cars. 80% of these
cars were synthetically generated.

e The testing data contained 10,000 windows, 50% noise, 50% cars, but only real
data.

We then designed a small CNN with 2 convolution layers with long stencils on the
time axis.
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Figure 5: 10 channels x 10 seconds data windows with (a) traffic noise. (b) back-
ground data. (c) simplistic synthetically generated traffic noise. (d) examples of
traffic noise to which the network gave lower classification probabilities. [CR]
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This classifier achieved 99.4% accuracy on this dataset. Out of 5000 cars, 38
obtained a probability score less than 90%, 59 less than 95%. Despite having been
trained using mostly synthetic car data, the network performed well at detecting

traffic noise, even on examples with faint car events or very noisy data portions
(Figure 5d).

DISCUSSION AND CONCLUSIONS

Through two case studies, earthquake detection and traffic noise detection, we intro-
duced strategies to jump-start the training of neural networks when confronted to
limited amount of labeled data and unbalanced datasets. In particular, we demon-
strated that transfer learning and synthetic data generation allow us to leverage
domain knowledge and pre-train the network using simulated data. Going forward,
we aim to apply this methodology to more use cases such as stratigraphy estimation
and seismic imaging.
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