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ABSTRACT

Distributed acoustic sensing (DAS) is an emerging technology used to record seis-
mic data that employs fiber optic cables as a probing system. Since September
2016, a DAS array has been deployed beneath Stanford campus in the exist-
ing fiber optic telecommunication conduits. Because we can so easily use our
telecomm infrastructure for continuous, dense, seismic acquisition, data collected
in such a manner will go to waste unless we significantly automate ambient noise
processing. Herein we present relevant data features for exploratory data analy-
sis and identify coherent noise sources which inhibit reliable extraction of useful
signals. We then train a convolutional neural network for detecting traffic noise
and selectively filter it out to generate ambient seismic noise fields that are suit-
able for interferometry purposes. Further, we use Markov decision processes to
reconstruct the array geometry from the data, which gives us the potential to
extend this type of acquisition to other existing fiber optic networks.

INTRODUCTION

By measuring the speed of seismic waves propagating in the Earth’s near-surface,
we can image the top tens to hundreds of meters of the subsurface. These seismic
velocity images can be interpreted to evaluate earthquake or landslide risk, to find
sinkholes or tunnels, or to track near-surface changes related to drilling activities.

By cross-correlating noise recorded at a selected receiver with noise recorded by
all other receivers in an array, we can extract signals mimicking an active seismic
survey, using the virtual source function method (Shapiro and Campillo, 2004; Lin
et al., 2008; Wapenaar et al., 2010). Thus, when active sources are too costly or
logistically prohibitive, passive seismic can be a good option for near-surface imag-
ing. However, the theory is limited by the assumption of homogeneous uncorrelated
sources (Wapenaar et al., 2010) and non-ideal sources can cause artifacts in extracted
velocities.

Distributed acoustic sensing (DAS) is a new acquisition technology being increas-
ingly adopted in the energy industry for microseismic monitoring (Webster et al.,
2013), hydraulic fracture monitoring (Bakku, 2015), CO, sequestration observation
(Daley et al., 2013), and time-lapse imaging of reservoirs (Mateeva et al., 2013). DAS
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probes a fiber-optic cable with a laser interrogator unit (IU) to repurpose that fiber
as a series of strain sensors. By running fibers in existing telecommunication con-
duits, easy, on-demand, repeatable seismic studies (even in urban areas) will soon be
a reality.

However, no matter how long we average cross-correlations, coherent repeating
noises, even weak ones, can lead to artifacts in virtual-source response estimates
(Martin et al., 2016), but it is currently time consuming and subjective for an expert
to comb through days of passive data and decide how to filter out certain noises.
To this end, herein we use an unsupervised learning approach to quickly explore the
ambient noise field (Huot et al., 2017; Martin et al., 2018) and show how to use
interpreted results to define a targeted noise filtering process using a convolutional
neural network to remove traffic noise from the recorded wave field.

Mapping the recorded data to its spatial coordinates is also a costly and time-
consuming task, requiring tap tests and active surveys. For the Stanford DAS array it
took several weeks of iterating between performing tap tests and manually inspecting
the data to assign locations to channels (Martin et al., 2017), and to this day, the
assigned geometry may not accurately reflect some of the small features deviating
from straight line paths. This manual process is not scalable, and would be a po-
tential bottleneck in broader deployment of urban DAS arrays. In the last section,
we present a methodology combining a convolutional neural network and Markov de-
cision processes, to automatically retrieve the array geometry from the data. This
approach would allow us to extend this type of acquisition to other existing fiber optic
networks.

THE STANFORD DAS ARRAY

We present this methodology in the context of a case study: a figure-eight-shaped
array of 2.4km of fiber optics lying loosely in existing telecommunications conduits
underneath the Stanford University campus (Figure 1). The array detects a wide
variety of seismic noise sources that do not conform to the ideals of existing ambient
noise theory: it sits in a seismically active region, 20km from the Pacific ocean,
7km from the San Francisco bay, with major highways on either side, a variety of
roads with differing levels of traffic near the fiber, regular quarry blasts within 15 km,
plumbing and HVAC systems throughout the site, multiple construction sites near the
array, and foot and bicycle traffic throughout. With over 600 channels continuously
recording 50 samples per second since September 2016, manual inspection of most
data is infeasible, making automation tools critical to extracting the full value from
the data.

In this study, we present data from a subset of 300 channels. The array gen-
erates contiguous time series that conveniently lend themselves to image processing
(Figure 2). However, from a seismological perspective, the data are poorly coupled
with the ground as the fiber is laid in narrow (10-15 cm wide) conduits buried under-
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Figure 1: The fiber optic DAS array, 600 meters along its widest direction, follows
a figure-eight path forming two rectangular arrays under the Stanford University
campus. [NR]

ground, and a handful of channels must pass manholes between adjacent conduits.
The channels in manholes are mostly freely hanging. We preprocessed the data by
detrending and bandpass filtering (0.5 and 20 Hz).

AUTOMATICALLY IDENTIFYING DIFFERENT TYPES
OF SEISMIC NOISE

As manual inspection of large, complex data volumes is infeasible, seismic interpreta-
tion requires new processing tools for event detection, signal classification and data
visualization. Machine learning techniques have recently been introduced for some
seismic applications to automate decisions and speed up processing. Self-organizing
maps (SOM), an unsupervised learning technique, have been used to detect volcano-
tectonic and rockfall events from long-term background variations (Kohler et al.,
2010). Support vector machines (SVM), a supervised learning method, have been
used for earth dam and levee health monitoring and automatic detection of anoma-
lous events (Fisher et al., 2016). Data mining algorithms have been adapted for com-
putationally efficient earthquake detection by similarity search on large scale datasets
(Yoon et al., 2015).

To identify a variety of common wavefield patterns, we performed unsupervised
learning on a subset of the DAS data following the methodology introduced by Huot
et al. (2017) and Martin et al. (2018). We used clustering algorithms on seven days
of data to capture the daily variations in the noise field. Once the main types of pat-
terns are identified and have been grouped into clusters, the trained algorithm can be
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Figure 2: Data recorded by the Stanford DAS array after detrending and bandpass
filtering (0.5 and 20 Hz). Ambient noise in urban areas is far from white or spatially
uniform. In just ten seconds of noise collected around noon local time we can see
significant variation throughout the array. [ER|

applied to new data to classify them within the identified clusters. This approach al-
lows us to automate data exploration with the aim of speeding up the overall ambient
noise workflow and reducing human bias. Seismic noise source identification consti-
tutes the first step toward selective noise removal and preprocessing for interferometry
purposes.

We computed data features over a week of continuous data that capture the tem-
poral and spatial variations of the signal using continuous wavelet transforms (CWT).
The CWT is commonly used in pattern recognition, as it has the ability to decom-
pose complex patterns into elementary forms (Mallat, 2008). The CWT measures the
similarity between a signal and an analyzing wavelet by comparing the input signal
to shifted and compressed or stretched versions of the wavelet.

Common clustering methods for wavelet domain time series include k-means, ag-
glomerative clustering and self-organizing maps (Liao, 2005; K&hler et al., 2010). For
computational efficiency, we selected the mini-batch optimization implementation for
k-means clustering (Sculley, 2010). We experimented with different numbers of clus-
ters and empirically settled on four main clusters (Figure 4), as more clusters merely
yielded subdivisions of these main clusters that were not always more physically in-
terpretable.

By examining cluster counts over time and examining the corresponding CWT
coefficients, it appeared that the largest cluster (blue in Figure 4) corresponded to
ambient background noise. The small red cluster showed diurnal trends and appeared
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Figure 3: Continuous wavelet transform (CWT) coefficients computed over time, on
5 minutes of data. We can distinguish car arrivals as high amplitude streaks over the
CWT coefficients. [CR]
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Figure 4: The different types of identified clusters averaged over the full DAS array
for one day. The largest cluster, plotted in blue, corresponds to ambient background
noise. The small red cluster shows diurnal trends and appears mostly on roads open
to cars, and appears to be due to vehicle noise. [CR]
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mostly on main roads open to cars, so it was interpreted as nearby vehicle noise. The
orange cluster behaved similarly to red but yielded more diffuse CWT coefficients and
was more spread in space. We interpreted it as noise associated with vehicle traffic but
not necessarily showing the particular space-time pattern of nearby, individual cars.
The green cluster is another source of coherent noise with diurnal trends, possibly
linked to construction noise.

TRAFFIC NOISE DETECTION USING A NEURAL
NETWORK

The methodology described in the previous section allows us to automatically detect
traffic noise in the ambient noise field. However, calculating wavelet attributes can be
computationally expensive and is not suited for real-time detection on streaming data.
Therefore, we proceeded to build a neural network for detecting traffic noise. While
training neural networks can be computationally involved, they perform remarkably
fast at run-time and are hence well-suited for event detection problems.
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Figure 5: (a) Examples of data windows containing car traffic noise. (b) Examples
of data windows of background ambient noise. [CR|]

We divided the data into detection windows of 10 channels by 10 seconds, and
labeled each window as ambient or traffic noise using the methodology from the
previous section (Figure 5). The windows were downsampled along the time axis,
resulting in arrays of 10 x 50.

All the windows were shuffled to avoid any time bias and normalized with the
same means and standard deviations. The data sets were then arranged as follows:
50,000 detection windows for the training data, and 10,000 windows for the testing
data.

A basic fully-connected 2-layer softmax classifier achieved poor accuracy on this
data set (55%). In order to leverage the grid-like topology of the DAS data, we
designed a small convolutional neural network:
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1. 5 x 10 convolution layer with rectified linear unit (ReLu) activation function
Max pooling 1 x 2

5 x b convolution layer with ReLu activation function

Max pooling 2 x 2

Fully connected layer with ReLu activation function

Dropout with a probability of 0.5

NS ot W

Fully connected output layer

The network architecture is presented in Figure 6. A description of the different
components of the convolutional network is provided in Huot (2018).
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Figure 6: We used a small convolutional neural network classifier to detect traffic
noise in the DAS data. [ER]

This classifier achieved 99.4% accuracy. Out of 5000 cars, 38 obtained a probability
score less than 90%, 59 less than 95%. Figure 7 presents some examples of car windows
to which the network gave lower probabilities. These examples correspond mostly to
extremely faint cars or very noisy data portions.

When comparing with existing literature, other seismic event detectors (Fisher
et al., 2016; Rubin et al., 2012; Ruano et al., 2014; Lan et al., 2005) reported accuracies
ranging between 74% and 94% with traditional geophones and using other detection
methodologies. In particular, (Lan et al., 2005) focuses on moving ground targets
and achieves about 80% accuracy.

SELECTIVE FILTERING WITH CONTINUOUS
WAVELET TRANSFORMS

We then used the classifier to build an automated targeted noise filtering process
to remove traflic noise from the recorded wave field. For each window with detected
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Figure 7: Examples of data windows containing traffic noise to which the network
gave lower classification probabilities. [CR|]
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Figure 8: A comparison of data over five minutes of data with many examples of cars
(a) before and (b) after muting out detected cars. [CR]
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traffic noise, we mute out the high amplitude scales among the CW'T scales computed
over time. We then performed inverse CWT over time to reconstruct the signal. A
comparison of data with many examples of cars before and after muting out detected
cars (Figure 8) shows that not all types of noise were removed, but the impact of cars
was reduced.

GEOMETRY MAPPING USING MARKOV DECISION
PROCESSES

Mapping the recorded data to its spatial coordinates is a costly and time-consuming
task, requiring tap tests and active surveys. This manual process is not scalable, and
would be a potential bottleneck in broader deployment of urban DAS arrays. In this
section, we explore the possibility of retrieving the array’s geometry directly from the
recorded data.

Using the geometry information inferred by tap tests as labels, we trained a con-
volutional neural network to determine whether each portion of data corresponds to
a straight portion of the fiber, a turn, or a manhole. We used the first half of sensors
as training data and the second half as test data. We trained the neural network
over a day of continuous data, divided into overlapping windows of 5 channels over
20 seconds. The labels were discretized, with turning angles ranging from 0 to 180°
divided into 10° bins, and an additional label for manholes. We used the VGG-net
architecture and pre-trained weights as convolutional neural network classifier (Si-
monyan and Zisserman, 2014), and mapped each portion of the data to a normalized
probability of being a straight line, a turn or a manhole. While the accuracy obtained
on the test data was fairly low (73%), the misclassification was often due to incorrect
turning angle.

With uncertain labels, geometry mapping is a challenging task, and the number of
possible geometry mappings increases. Moreoever, the angle labels for the classifier
only range from 0 to 180° because there is no way of telling directly from the data
whether the fiber is turning left or right. To overcome this problem, we built a Markov
decision process to reconstruct the array geometry.

Markov decision processes (MDP) provide a mathematical framework for mod-
eling decision making in situations where outcomes are partly random and partly
under control of a decision maker (Bellman, 1957). They are used in a wide area of
disciplines, including robotics, automatic control, and artificial intelligence.

More precisely, a Markov decision process is a discrete time stochastic control
process. At each step, the process is in some state s, and the decision maker may
choose any action a that is available in state s. The process responds at the next
time step by randomly moving into a new state s’, and giving the decision maker
a corresponding reward R,(s,s’). The probability that the process moves into its
new state s’ is influenced by the chosen action. Specifically, it is given by the state
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transition function P,(s,s’). Thus, the next state s’ depends on the current state s
and the decision maker’s action a.

For our application, we used an MDP to map the geometry of the array, starting at
the first receiver channel, and determining the relative positions of all the contiguous
channels until reaching the last channel. The successive states in the MDP represent
the channels along the fiber. We constrained the mapping by defining a guiding path:
a list of coordinates defining an initial guess as to where the fiber lies, with a certain
error margin. We then defined the MDP as follows:

e States: Coordinates (z,y) of current position, and (dz,dy) of current direction
e Starting state: initial position, initial direction
e Actions: Go straight, turn, or manhole

e Transition probabilities: Probabilities computed by the aforementioned convo-
lutional neural network classifier. When turning, we set an equal probability
for turning left or right. We added a small exploration probability (0.1) to all
turn directions, and normalized all the probabilities.

e Reward function: We considered several options for defining the reward func-
tion. If the total number of turns and manholes is known, we can define the
reward function as a metric of how close the total number of turns and manholes
is to their actual number. If we know that the fiber follows a loop pattern, we
can define the reward function as the distance between the computed position
of the last channel and the initial position. In our case, we defined the reward
function as the mean square error distance between the computed path and the
initial guiding path.

e End state: We defined to end states: the MDP reaches the last channel, or the
path went out of the bounds of the error margin around the guiding path.

We solved the MDP using the value iteration algorithm (Bellman, 1957). An
example of one the realizations is presented in Figure 9. While there still remains
uncertainty in the mapping process, this methodology generates approximate map-
pings at low cost, since human input is limited to defining the guiding path. The
proposed solution using a convolutional neural network and an MDP can compute
the mapping of the channels within a minute, while it originally took several weeks
of manual labor, iterating between performing tap tests and manually inspecting the
data (Martin et al., 2017), to assign locations to the Stanford DAS array channels.
Moreover, to this day, the manually assigned geometry may not accurately reflect
some of the small features deviating from straight line paths. For future applications,
we plan on adding additional functionalities to the MDP, such as the possibility of
constraining the mapping process further by defining which receiver channel corre-
sponds to manholes and sharp turns, in order to adapt the proposed algorithm to
DAS arrays for which this information is available.
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Figure 9: While there still remains uncertainty in the mapping process, the Markov

decision process generates approximate mappings at low cost (yellow), since human

input is limited to defining the guiding path (green). Background image courtesy of

Google Maps. [CR]

DISCUSSION AND CONCLUSIONS

We employed unsupervised and supervised learning techniques to characterize seismic
data recorded by a fiber optics array deployed underneath the Stanford University
campus. We used wavelet attributes for exploratory data analysis, used clustering
algorithms to distinguish between different types of noise, automatically separating
noise generated by cars from incoherent background noise without requiring any in-
formation related to the geometry of the array. We then trained a convolutional
neural network classifier to speed up the detection process and build a automated
targeted filtering workflow to generate wavefields that are suitable for interferome-
try. We demonstrated it was possible to retrieve an approximate geometry of the
array directly from the data using Markov decision processes, with little human in-
put. This approach opens up the possibility of extending this type of acquisition to
other existing fiber optic networks.
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