
5/9/2018 Examples

http://localhost:8889/nbconvert/html/notebooks/Examples.ipynb?download=false 1/13

Synthetic model building for training neural networks in
a Jupyter notebook

Robert G. Clapp

Abstract
Neural networks require tens of thousands of correctly labeled datasets, something that does not exist in
reflection seismology. Synthetic data can be used to help fill this data gap. In this paper I describe an update to
a synthetic model generator aimed at producing realistic labeled datasets for training neural nets.

Introduction
Synthetic data can be used to help train neural networks . In a previous work I described a simple basin
modeling approach to create realistic synthetics . In this paper I extend that work, rewriting the modules in C++,
binding to python with pybind , and using python to create the modules. I will be reviewing the basic synthetic
generation modules. I then will describe how to use the python interface. I will finish by talking about the types
of synthetic models I am generating and future plans for expansion of the code.

Running the code
The basic idea of the synthetic model generator is to describe a series of geologic events such as deposition,
faulting, emplacement, and compression. Each event is described by a series of parameters that attempt to
simulate the geologic event.
The original version of the synthetic model generator was written in Fortran. To build a model meant
writing/generating parameters file hundreds of lines long. Changing a single parameter required regenerating the
entire model.

This new version keeps the same idea of building a model from a series of geologic events. The code is
rewritten in C++ and parallelized using Thread Building blocks . Each module is wrapped using pybind11 into
the python module pySyntheticGen, which in turned is wrapped in the pure python module syntheticGen.

To start a new model we import the syntheticGen module, the full self-doc can be found in the appendix. We
initialize the model by describing the size of the domain in x and y. For our first example we will create a small
model with 300 samples in x and y.

In [1]: import pySepVector
import syntheticModel
mod=syntheticModel.geoModel(nx=300,ny=300) SEP-172

5/9/2018 Examples

http://localhost:8889/nbconvert/html/notebooks/Examples.ipynb?download=false 2/13

The most basic module is deposition. The deposition model adds a layer with a given parameter value (such as
velocity). We can also decide to add spatial variations and interbed layers. In this case we will add two different
layers. The first layer with an average velocity of 2700 m/s, a thickness of 100 samples. We will allow
interbedding, where the velocity can vary by 30%. In addition we will allow variation as a function of space.

In [2]: %matplotlib notebook
from latex_envs.latex_envs import figcaption
import Cubeplot
mod.deposit(prop=2700,thick=100,var=.3,dev_pos=.1,layer=25,dev_layer=.3,
layer_rand=.3,band2=.01, band3=.01)
figcaption("An example of using the deposition module.", label="fig:depo
sition")
b=Cubeplot.plot(mod.getProp("velocity"))

We can choose to introduce a compressional event. A compressional event produce an anticline-syncline
pattern in the current model We can decide the angle of compression, the amount of uplift, and how much we
want the pattern to vary spatially.

Caption: An example of using the deposition module.

Clapp 2 NN Jupyter notebook

SEP-172

5/9/2018 Examples

http://localhost:8889/nbconvert/html/notebooks/Examples.ipynb?download=false 3/13

In [3]: %matplotlib notebook

mod=syntheticModel.geoModel(nx=300,ny=300)
mod.deposit(prop=2700,thick=100,var=.3,dev_pos=.1,layer=25,dev_layer=.3,
layer_rand=.3,band2=.01, band3=.01)
mod.squish(max=150,random_inline=2.,random_crossline=3.,aziumth=40.,wave
length=.2)
mod.deposit(prop=2400,thick=50,var=.3,dev_pos=.1,layer=25,dev_layer=.2,l
ayer_rand=.3)
figcaption("An example of using the compressional module.", label="fig:c
ompress")

c=Cubeplot.plot(mod.getProp("velocity"))

We can also add faults. Fault planes can be thought of as the surface of cylinder. Everything inside the cylinder
rotates in one direction, everything outside the other direction. The further away the cylinder's focus, the more
the fault looks line a plane. The bigger the angular rotation the more fault throw. The fault is centered at a given
location, as we move away from that location along the cylinder the rotation lessens. We expect less rotation as
we move away from the cylinder's edge.

Caption: An example of using the compressional module.

Clapp 3 NN Jupyter notebook

SEP-172

5/9/2018 Examples

http://localhost:8889/nbconvert/html/notebooks/Examples.ipynb?download=false 4/13

In [4]: %matplotlib notebook
mod=syntheticModel.geoModel(nx=300,ny=300)
mod.deposit(prop=2700,thick=100,var=.3,dev_pos=.1,layer=25,dev_layer=.3,
layer_rand=.3,band2=.01, band3=.01)
mod.fault(begx=.5,begy=.5,begz=.5,daz=800,dz=700,azimuth=10,theta_die=12
, theta_shit=7,dist_die=.4,perp_die=.4)
mod.deposit(prop=2400,thick=20,var=.3,dev_pos=.1,layer=25,dev_layer=.2,l
ayer_rand=.3)
figcaption("An example of using the fault module.", label="fig:fault")

d=Cubeplot.plot(mod.getProp("velocity"))

We can add Gaussian anomalies into our model by describing their location and amplitude.

Caption: An example of using the fault module.

Clapp 4 NN Jupyter notebook

SEP-172

5/9/2018 Examples

http://localhost:8889/nbconvert/html/notebooks/Examples.ipynb?download=false 5/13

In [5]: %matplotlib notebook
mod=syntheticModel.geoModel(nx=300,ny=300)
mod.deposit(prop=2700,thick=100,var=.3,dev_pos=.1,layer=25,dev_layer=.3,
layer_rand=.3,band2=.01, band3=.01)
mod.gaussian(vplus=-1000.,var=40.)
mod.deposit(prop=2400,thick=20,var=.1,dev_pos=.1,layer=25,dev_layer=.2,l
ayer_rand=.3)
figcaption("An example of using the Gaussian module.", label="fig:gauss
ian")

d=Cubeplot.plot(mod.getProp("velocity"))

We can add river channels to our model by describing the beginning location and angle. We can add partial fill into
the river channels and have their location move as a function of depth in a logical meandering stream pattern.

Caption: An example of using the Gaussian module.

Clapp 5 NN Jupyter notebook

SEP-172

5/9/2018 Examples

http://localhost:8889/nbconvert/html/notebooks/Examples.ipynb?download=false 6/13

In [6]: %matplotlib notebook
mod=syntheticModel.geoModel(nx=300,ny=300)
mod.deposit(prop=2700,thick=200,var=.3,dev_pos=.1,layer=25,dev_layer=.3,
layer_rand=.3,band2=.01, band3=.01)
mod.erodeRiver()
mod.deposit(prop=2400,thick=1,var=.1,dev_pos=.1,layer=25,dev_layer=.2,la
yer_rand=.3)
figcaption("An example of using the erode river module.", label="fig:ri
ver")

d=Cubeplot.plot(mod.getProp("velocity"),slice1=2)

We can emplace salt. The salt is created by putting random sized perturbations within in a given area. Random,
relatively low wavenumber, conductivity is then assigned. The heat equation is used to merge the perturbations.

Caption: An example of using the erode river module.

Clapp 6 NN Jupyter notebook

SEP-172

5/9/2018 Examples

http://localhost:8889/nbconvert/html/notebooks/Examples.ipynb?download=false 7/13

In [7]: %matplotlib notebook
mod=syntheticModel.geoModel(nx=300,ny=300)
mod.deposit(prop=2700,thick=200,var=.3,dev_pos=.1,layer=25,dev_layer=.3,
layer_rand=.3,band2=.01, band3=.01)
mod.implace(ntSteps=50)
mod.deposit(prop=2400,thick=20,var=.1,dev_pos=.1,layer=25,dev_layer=.2,l
ayer_rand=.3)
figcaption("An example of using the implace module.", label="fig:implac
e")

d=Cubeplot.plot(mod.getProp("velocity"))

Caption: An example of using the implace module.

Clapp 7 NN Jupyter notebook

SEP-172

5/9/2018 Examples

http://localhost:8889/nbconvert/html/notebooks/Examples.ipynb?download=false 8/13

How good do the synthetics need to be?
Training a neural network at some level is just solving a non-linear inversion problem. The key to solving a non-
linear problem is finding the neighborhood the solution lives in. One way to think about pre-training and
transferring learning is that it is attempting to get the network into generally the correct neighborhood. This
hypothesis can lead to several interesting questions.

Can we build an initial network that generally understands seismic migrated volumes?
Do we need to have different networks for different geologic basins?
Can we slowly navigate into the correct neighborhood by training with a series of more realistic
synthetic datasets?

This third question leads us to a potential solution for our lack of data problem. Creating geologic models is
relatively cheap (minutes on a single machine). Finite difference modeling/migration is expensive hours/days on
10s of machines for a single dataset. A possible approach is to create hundreds of synthetic migrated
volumes by calculating impedances and then convolving with a wavelet. A smaller set of modeled/migrated
datasets can then be used to further improve the network. Such an approach would also help with the first two
questions. For example, synthetics mimicking different basins can be generated to create basin specific
networks.

Packaging
There are several ways to use the syntheticGen code. You can clone the code from Stanford's School of
Earth and Environment's gitlab site . Building the code requires several other packages that also publicly
available from that website. You can find all of the dependencies by looking in the docker sub-folder. You can
download the latest version inside a docker from rgc007/synthetic-gen. This docker is accessible through
a Jupyter notebook . Finally, there should be a link off the sep website where you found this paper to bring up
an interactive document.

Future plans
There are several different modules that could be improved upon. The salt generation still does not consistently
provide realistic salt geometries. The deposition model could benefit from using a similar heat equation
approach to output different sediments rather than smoothing random numbers. Adding the abilities to do
turbidites, emplacement, and other geologic features would also be useful improvements.

Finally, it might be useful to rewrite some of the code to run on GPUs. The shear number of models that will be
needed for some machine learning problems will make speed of model generation even more important.

Clapp 8 NN Jupyter notebook

SEP-172

5/9/2018 Examples

http://localhost:8889/nbconvert/html/notebooks/Examples.ipynb?download=false 9/13

Conclusion
Synthetic data can be used to help train neural networks. Simplified basin modeling is one approach to creating
synthetics. To improve the codes eases of use the C++ base code is wrapped in python interfaces. A Jupyter
notebook is used to further enhance the code's accessibility.

Bibliography
Clapp, Robert. 2018. Geologic Synthetic Model Generator. http://zapad.stanford.edu/SEP-
external/syntheticModel (http://zapad.stanford.edu/SEP-external/syntheticModel).

Clapp, Robert G. 2014. Synthetic Model Building Using a Simplified Basin Modeling Approach. SEP.
http://sepwww.stanford.edu/public/docs/sep155 (http://sepwww.stanford.edu/public/docs/sep155).

Jakob, Wenzel, Jason Rhinelander, and Dean Moldovan. 2016. “pybind11 — Seamless Operability between
C++11 and Python.” https://github.com/pybind/pybind11 (https://github.com/pybind/pybind11).

Kluyver, Thomas, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger, Matthias Bussonnier, Jonathan
Frederic, Kyle Kelley, et al. 2016. “Jupyter Notebooks-a Publishing Format for Reproducible Computational
Workflows.” In ELPUB, 87–90.

Le, Tuan Anh, Atilim Giineş Baydin, Robert Zinkov, and Frank Wood. 2017. “Using Synthetic Data to Train Neural
Networks Is Model-Based Reasoning.” In Neural Networks (IJCNN), 2017 International Joint Conference on,
3514–21. IEEE.

Merkel, Dirk. 2014. “Docker: Lightweight Linux Containers for Consistent Development and Deployment.” Linux
Journal 2014 (239): 2.

Reinders, James. 2007. Intel Threading Building Blocks: Outfitting C++ for Multi-Core Processor Parallelism.
O’Reilly Media, Inc.

Van Baarsen, Jeroen. 2014. GitLab Cookbook. Packt Publishing Ltd.

Apppendix

Clapp 9 NN Jupyter notebook

SEP-172

5/9/2018 Examples

http://localhost:8889/nbconvert/html/notebooks/Examples.ipynb?download=false 10/13

In [8]: help(syntheticModel.geoModel)

Clapp 10 NN Jupyter notebook

SEP-172

5/9/2018 Examples

http://localhost:8889/nbconvert/html/notebooks/Examples.ipynb?download=false 11/13

Help on class geoModel in module syntheticModel:

class geoModel(builtins.object)
 | Methods defined here:
 |
 | __init__(self, **kw)
 | Create a new geomodel
 | nx - (100) Number of samples in x
 | ox - (0.) First sample in x
 | dx - (4.) Sampling in x
 | ny - (100) Number of samples in y
 | oy - (0.) First sample in y
 | dy - (4.) Sampling in y
 | dz - (4.) Sampling in z
 | basement - (4000.) Basement property
 | nbasement - (50) Initial number of samples in the basement
 | properties - (['velocity']) Properties to model
 |
 | compact(self, **kw)
 | Compact layers
 | compact - [0.] Compact layers
 |
 | deposit(self, **kw)
 | Deposit a layer
 | base_param - ["velocity"] Base param to base all other properti
es
 | band1 - [.60] Bandpass parameter axis 1 property dependent vs.
band1=
 | band2 - [.05] Bandpass parameter axis 2 property dependent
 | band3 - [.05] Bandpass parameter axis 3 property dependent
 | ratio - [.4] Base ratio of property to main property
 | var - [.0] Variance from main parameter
 | layer_rand - [.5] Randomness variation within layer
 | layer - [9999.] Layer Base value
 | prop - [1.4]
 | dev_layer - [0.]
 | dev_pos - [0.]
 | thick - [0.]
 |
 | erodeBowl(self, **kw)
 | Erode a bowl shape
 | center2 - [.5] Create a bowl fractional amount into model2
 | center3 - [.5] Create a bowl fractional amount into model3
 | width2 - [.01] Width of bowl fractional to length of axis 2
 | width3 - [.01] Width of bowl fractional to length of axis 3
 | depth - [.01] Depth of bowl fractional to length of axis 1
 | fill_depth - [.01] Fill depth of bowl fractional to length of a
xis 1
 | fill_prop - [.3] Fill value, dependent on model parameter
 |
 | erodeFlat(self, **kw)
 | Erode a flat surface
 | depth [.1] Fractional depth (axis 1) to slice off
 |
 | erodeRiver(self, **kw)
 | Erode a river shape
 | start2 - [.5] Position (relative to axis length) to start river

Clapp 11 NN Jupyter notebook

SEP-172

5/9/2018 Examples

http://localhost:8889/nbconvert/html/notebooks/Examples.ipynb?download=false 12/13

 | start3 - [.0] Position (relative) to start river
 | dist - [1.4] Length (relative) of river
 | azimuth - [0.] Angle for river
 | fill_prop - [0.] Fill value for deposition for river chanel
 | fill_depth - [0.] Fill dpeth for river chanel
 | nlevels - [1] Number of river chanel bends to layout
 | wavelength - [.01] Wavelenth multiplier for random river path
 | waveamp - [.01] Wave ampitude multiplier
 | thick - [.3] Thicknewss of river chanel
 |
 | fault(self, **kw)
 | Fault model
 | azimuth - [0.] Azimuth of fault
 | begx - [.5] Relative location of the begining of fault x
 | begy - [.5] Relative location of the begining of fault y
 | begz - [.5] Relative location of the begining of fault z
 | dz - [0.] Distance away for the center of a circle in z
 | daz - [.01] Distance away in azimuth
 | perp_die- [0.1] Dieoff of fault in in perpdincular distance
 | deltaTheta-[.1] Dieoff in theta away from the fault
 | dist_die- [0.] Distance dieoff of fault
 | theta_die- [0.01] Distance dieoff in thetat
 | theta_shift-[.1] Shift in thetat for fault
 | dir - [.1] Direction of fault movement
 |
 | gaussian(self, **kw)
 | Add a gaussian anomaly
 | center2 - [.5] Relative position of anomaly axis2
 | center1 - [.5] Relative position of anomaly axis1
 | center3 - [.5] Relative position of anomaly axis3
 | vplus - [1.] Value of anomaly to add
 | var - [.1] Relative variance of anomaly
 |
 | getHyper(self)
 |
 | getMinMax(self, prop)
 |
 | getProp(self, prop)
 | Get model propertt
 |
 | implace(self, **kw)
 | Add feature to model
 | emplace - [True] Whether or not emplace a body into the model
 | prop - [4500.] Value to set body
 | center1,center2,center3 [.5] Relativel location of center of an
omaly
 | axis1,axis2,axis3 - [.3] Relative axes for anomaly
 | azimuth - [0.] Rotation azimuth for body
 | pctRemove - [30.] Percentage of points to remove
 | conform - [True] Conform model arroudn shape introduced
 | down_decrease - [True] Decrease below anomaly
 | down_dist - [0.] Distance down to change model
 | ntSteps- [50] Number of time steps
 | down_amount [0.] Down amount
 |
 | parseParams(self, ks, typ, intM, floatM, stringM, boolM)
 | Internal function to parse parameters

Clapp 12 NN Jupyter notebook

SEP-172

5/9/2018 Examples

http://localhost:8889/nbconvert/html/notebooks/Examples.ipynb?download=false 13/13

 |
 | squish(self, **kw)
 | Squish a model
 | aziumth - [0.] Azimuth for squishing
 | max - [50.] Maximum shift in z
 | wavelength- - [1.] Wavlength scaling
 | random_inline - [.5] Random inline
 | random_crossline - [.5] random crossline
 |

Data descriptors defined here:
__dict__
dictionary for instance variables (if defined)
__weakref__
list of weak references to the object (if defined)

Clapp 13 NN Jupyter notebook

SEP-172

