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ABSTRACT

The theory and the applications of prediction error filters are well known. Most of
the time, however, they are built to be stationary (not varying in space and time)
and therefore, they carry some global statistical information of the signals. Hence,
these filters cannot be expected to be optimal in a nonstationary environment.
Here I address the problem of designing a nonstationary prediction error filter
(PEF) using a gradient adaptive lattice and recursive least-squares filters. Their
one- and two-dimensional applications (deconvolution) to nonstationary signals
show better whitening properties compared to conventional stationary PEFs.

INTRODUCTION

Signals recorded on seismic records are not stationary. The frequency content of
the seismic waves change as they propagate through the subsurface because of the
anelastic attenuation and scattering. At the same time recorded data is nonstationary
in space because different events have different slopes that change with time as well.
That is why it is natural to try to find filters that adapt to the local characteristics
of the signals.

Prediction error filters arise from the theory of linear prediction, which deals with
the problem of estimating the future samples of the signal using a linear combination
of its previous samples weighted by sought-for filter coefficients. The error of this
prediction turns out to be white (not correlated), while the filter has the inverse
spectrum of the signal (that allows estimation of the original signal). Consequently,
one of the most common applications of these filters is deconvolution — the process that
tries to widen the spectrum by removing the convolutional effects of the bandlimited
signal. Having the information of the original signals, these filters can also be used
for multidimensional interpolation.

There are different ways of finding a PEF, all based on minimizing the norm of
the prediction error. Probably the very first successful way of solving this problem
was based on an efficient way of solving normal equations (finding the inverse of
a Toeplitz matrix) using the Levinson-Durbin algorithm (Claerbout, 1985). This
problem can also be approached using optimization theory tools such as methods
of steepest descent, conjugate gradient, etc (Claerbout, 2014). While being very
efficient and stable, the gradient-based methods, however, require significant effort to
be implemented in a nonstationary environment. On the other hand, it turns out that
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the methods based on the original Levinson-Durbin recursion are very fast, efficient
and easily adjusted to account for nonstationarity.

One of these filters considered herein is called the lattice predictor filter and arises
from the Levinson-Durbin algorithm. It is well studied in the electrical engineering
society, it can be easily extended to be adaptive and it is known to be the most efficient
structure to give orthogonal (not correlated) forward and backward prediction errors.

Another popular adaptive algorithm is called recursive least squares (RLS) that
essentially is a way of adaptively finding the inverse correlation matrix (coming from
the normal equations) as the data streams through the filter.

LATTICE FILTER

The lattice filter can be understood from the point of view of the Levinson-Durbin
recursion. The filter coefficients are updated in a following way:

ool ]

m—1

where a,,_; is the prediction-error filter of order (m — 1) and size m on the pre-
vious iteration, aZ | has the same coefficients in the reverse order, K,, are reflec-
tion coefficients and a,, is the updated prediction-error filter of order (m) and size
m + 1. Let us consider the action of the PEF of order m to the input u,,;; =
[u(n),u(n — 1),...,u(n — m)] of size m + 1 and with corresponding lags equal to
[0,1,...,m]. This produces a forward prediction error of order m:

Jm (n> = agmum—i-l (n)

Looking at the terms in the Equation 1 separately:

s O alo) = [y 0] |, ) | =l o) = foca)

[O aﬁfl} Upyi1(n) = [0 am_l} [um(n 7 1)] = aﬁ{lum(n —1)=bp_1(n—1).

Therefore, to estimate the forward prediction error f,,(n) (where m represents
the filter length m + 1 at time n), we need the forward prediction error f,,_1(n) at
time n corresponding to the lower filter of order m — 1 and backward prediction error
bym—1(n — 1) at the previous sample n — 1:

fn(1) = fnr () + Kby (n = 1),

bin(n) = by1(n — 1) + Ky frn_1(n) (2)
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For this procedure and the resulting filter to be stable (and minimum-phase)
the prediction-error power should be decreasing or at least stay the same. Update
equations for the prediction-error of the Levinson recursion (Yilmaz, 2001) show that
this requires the reflection coefficients |K;| < 1 at every iteration ¢ = 1,...,m.

To find the coefficients K,,, we should find the minimum of objective function:
En(n) = |[£n(n)[[* + |[bm(n)]*,

where f,,(n) and b,,(n) are now the vectors containing the forward and backward
prediction errors of m-order accumulated up to the n-th sample.

Ep(n) = ||fn(n)|[* + [bm(n)]|* =
= |[f-1(n) + Kinbm-1(n — 1)”2 + [[bp-1(n—1) + Kmfm—l(n)||2 =
= ([t ()|* + [ora ()| P) (1 + K3 + 4K,uby, i (n = Df, i (n).

Taking the derivative of the previous expression with respect to K,,:

oE,,

G = 2Kl 2 (I + b1 (1)) + 4By (0 = 1)fcs ()

Therefore, the optimal K, minimizing the power of forward and backward errors
can be chosen by equating the derivative to zero:

2b,,_y(n — D1 (n)

Kp=— .
|1 ()2 + [Py ()2

What this says is that the reflection coefficients (controlling the PEF and the
prediction error) are computed based on all the previous samples. The idea for
making this process adaptive is to introduce a ”forgetting” parameter 0 < [ < 1
for the denominator estimate at a current sample n to become (taking single-pole
average):

Em-1(n) = [[fn-1(n)]]* + |[br—1 ()] )
= BEm-1(n— 1) + (1 = B)(fa_1(n) + 05,_1(n)).
Treating the numerator in the same manner and allowing reflection coefficients to

depend on the sample number K,,(n) it is possible to obtain the following recursive
formula (Haykin, 2002):

1-p
Kn(n) = Kn(n = 1) = =———=(fm-1(0)bm(n) + by —1(n = 1) fin(n)),  (4)
Em,l(n)
which is similar to the update equations of the normalized LMS algorithm (Paleologu
et al., 2008). This allows the algorithm to respond accordingly depending on the
powers of forward and backward errors. If the errors are small (E(n) is small) then
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the step-size (1 — 8)/E(n) is large and the filter adapts rapidly and if the errors are
large, the step-size is small and the filter doesn’t respond to variations as quickly.

To imitate nonstationarity, I created a simple single trace with four damped si-
nusoids with four distinct frequencies increasing with time (Figure 5a). We can see
that after filter is applied, the signal has indeed been compressed, the amplitudes,
however, are not really reliable. The effect of forgetting parameter 3 is also obvious
— the smaller its value, the more adaptive the filter is, which results in overfitting
(Figure 1d).
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Figure 1: Lattice filter applied to single nonstationary trace (with a filter size m = 5,
p—forgetting parameter): (a) — original trace, (b) — 8 = 0.9, (¢) — = 0.5, (d) —
g =0.1. [ER]

I then applied this filter to the field stacked data on Figure 2. Again, after
filtering, we can see increased resolution. However, we have to be careful again with
the forgetting parameter so as to not create ”fake” reflections.

Multidimensional lattice filter

Lattice filters are implicitly solving the problem of finding the inverse of the auto-
correlation matrix of the signal involved in the normal equations of linear prediction.
Therefore, as PEF's they are carrying information of the signal spectra. Multidimen-
sional filters are similar and probably even more important for the real applications.

Extending lattice filters to two dimensions is not a trivial task. There have been
several successful attempts of solving this problem (e.g. (Parker and Kayran, 1984)).
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Figure 2: Lattice filter applied to raw stack (with a filter size m = 5, f—forgetting
parameter): (a) — original stack, (b) - 8=0.9, (c) - 8 =0.7. [ER]

SEP-172



Akhmadiev 6 Adaptive PEF

If in the one-dimensional case there are two fields involved (forward and backward
prediction errors), in 2D there are even more fields that need to be updated (4 in
case of a 2x2 quarter-plane filter). Naturally, the reflection coefficients now become
vectors depending on the filter size. Finding optimal values for them in this case
involves a matrix inversion at every lattice stage m and at every sample n. However,
it was shown in (Kayran, 1996) that the problem of finding multidimensional lattice
filter may be solved using one-dimensional lattice approach.

The first step is to locally order the 2D signal into a 1D array (Figure 3). In this
case, ordering corresponding to an assymetric plane was used. After this, the first
iteration of the algorithm is to combine all the neighboring pairs within this 1D vector
to give the first estimate of the forward and backward errors at all the points. The
second iteration combines the pair of points jumping across one sample, the third —
jumping across two samples, etc. We iterate until the jump is equal to the whole
filter length. To make this filter adaptive, the reflection coefficients are updated by
the same Equation 4.
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Figure 3: Ordering of 2D signal into 1D array: (a)-quarter-plane model, (b)-
assymetric plane. FEvaluating the prediction error at the 0-th sample (shown by
black circle) involves previous samples (shown in white circles). Numbers correspond
to ordering of the samples involved in calculations. [NR]

The result of applying a 2D lattice filter of size 2x3 on the stacked data is shown
in Figure 4. Two-dimensional prediction error filters destroy the correlation in two
dimensions, which is why the continous reflections are suppressed. However, because
the dip of the events is changing in space and time, crossing events are harder to
predict. By changing the forgetting parameter it is possibe to control the adaptiveness
of the filter and significantly remove the correlated (in space and time) events. Making
this parameter even smaller than shown in the figure removes most of the events,
making the output white noise. Increasing the filter size might also help in predicting
more slopes, because it will be capturing more spatial information.
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Figure 4: 2D lattice filter applied to raw stack (with filter size m; = 2,mq
p—forgetting parameter): (a) — original stack, (b) — = 0.99, (c) - f =0.92. |
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RECURSIVE LEAST-SQUARES (RLS) FILTER

The recursive least-squares algorithm is a general extension of the least-squares method
that allows computation of adaptive filters as the data streams through the filter. It
is known to have better convergence properties (towards optimal Wiener solution)
than the least-mean square (LMS) algorithm due to the intrinsic use of the inverse
correlation matrices.

The first step to allow RLS filter adaptation is to introduce a forgetting parameter
0 < A <1 in the error-norm estimate at a given sample n:

n

E(n) =) A"[e(i)?

i=1

= 3 waG) ) o)
= 3 i) — Wi

where d(i) is the desired response at i-th sample, y(i) = w’ (n)u(i) is the output of
adaptive filter w(n) = [wo(n), w1 (n), ..., Wy _ 1(n)] estimated at sample n acting on
the past m input samples u(i) = [u(@) (z —1),...,u(i —m+1)]T.

Because of the ill-posed nature of the problem, a regularization term is included
in the cost function as follows

ZA” eI + 0N [w(n)|[.

Finding the zeroes of derivative of this cost function with respect to the filter co-
efficients w leads to normal equations with an autocorrelation matrix R(n), and
cross-correlation x(n) of the desired output d(7) with the input vector u(i):

R(n)w(n) = x(n),

Z A ) 4+ 6A™,

- Z A"t (i)d(i)

It is straightforward to see now that adding the regularization term has essen-
tially the effect of adding white noise to the data and makes the correlation matrix
diagonally dominant to assure its stable inverse. It is also easy to note the following
recursion relations (Haykin, 2002):

R(n) = AR(n — 1) +u(n)u’(n),
x(n) = Ax(n — 1)u(n)d(n).
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Computing the optimal filter weights requires the inverse correlation matrix R™!(n) =
P(n). An efficient way of finding it is using the previously shown recursion and the
Woodbury matrix inversion lemma. The resulting formulas are:

P(n) =A""'"P(n—1) - X'k(n)u’ (n)P(n — 1),
(n) = A P(n — 1)u(n)

1+ A tu”(n)P(n — 1)u(n)

w(n) = w(n —1) + k(n)[d(n) —u’ (n)w(n —1)] = w(n — 1) + k(n)¢(n).

= P(n)u(n), (6)

Here, £(n) is the a priori estimation error — the error at a current sample n
estimated using the old filter weights from the previous sample n— 1; k(n) is the gain
vector that is the input u(n) transformed by the inverse correlation matrix P(n). We
see that the filter weights are updated by adding in a priori prediction error scaled

by k(n).

The equations 6 constitute the RLS algorithm. We start off from the initial filter
w(0) = 0 and initial correlation matrix R(0) = 0I. Then, after choosing the forgetting
parameter A ,the algorithm proceeds to giving the prediction errors.
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Figure 5: RLS filter applied to single nonstationary trace (with a filter size m = 5,
forgetting parameter A = 0.9 and initialization constant J: (a) — original trace, (b) —
d =100, (¢) -6 =10, (d) -6 =1. [ER]

We applied the RLS filter to a single nonstationary trace (Figure 5). Here, we
observe different results by choosing different initialization constants d. Apparently,
decreasing it leads to faster convergence, however in the high signal-to-noise environ-
ment this might lead to instabilities.
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Applying the filter to the raw stacked data (Figure 6) increased resolution through-
out the whole section since the filter was changing along the time axis and adapting
to the changes in the signal.

Adding filter coefficients in the spatial direction leads to suppressing spatially
correlated events (mostly reflections). Ideally the output of the PEF should be un-
correlated white noise. This can be achieved by modifying the forgetting parameter
and making the filter adapt faster.

CONCLUSION

Prediction error filters are powerful tools for capturing statistical information about
the signals. I have implemented nonstationary versions able to adapt to local (multidi-
mensional) changes of the waves. Gradient adaptive lattice and recursive least-squares
prediction-error filters have shown to be efficient and fast. However, their stability,
parametrization and whitening properties are yet to be investigated.
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Figure 6: 1D RLS filter applied to raw stack (with filter size m = 5, forgetting
parameter A\ and initialization constant 6 = 10: (a) — original stack, (b) — A =1, (c)
~ A =0.9). [ER]
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Figure 7: 2D RLS filter applied to raw stack (with filter size m; = 2,my = 3,
forgetting parameter A\ and initialization constant 6 = 10: (a)- original stack, (b) —
A=0.99, (c) - A=0.9). [ER]
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