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ABSTRACT

In this report I show how linearized waveform inversion with velocity updating
can correct the estimated reflectivity amplitude in the presence of residual in-
accuracies in the velocity field, in contrast to conventional linearized waveform
inversion.

INTRODUCTION

Linearized waveform inversion with velocity updating (LWIVU) (Cabrales-Vargas
et al., 2016, 2017; Cabrales-Vargas, 2017) was proposed as an alternative to con-
ventional linearized waveform inversion (LWI) when small velocity inaccuraries in
the velocity model affect the amplitudes in the estimated reflectivity image. In this
report I refer to LWI as the least-squares migration process performed in model space
(Valenciano et al., 2006; Tang, 2011) to differentiate it from the well known method
performed in data space (Nemeth and Schuster, 1999; Schuster, 2017).

In the following section I provide a succint review of LWIVU with the up-to-date
features. Next, I describe the preliminar steps for the synthetic examples shown
afterwards. Finally, I present the conclusions and discuss future steps.

BRIEF REVIEW OF LWIVU

Definition

We first assume that the subsurface properties model, m, can be express as the
summation of a background component, b, and a reflectivity component, r,

m = b + r,

which we can separate into low-wavenumber components (background), b0, r0, and
high-wavenumber components (perturbation), ∆b, ∆r:

b = b0 + ∆b,

r = r0 + ∆r.

SEP–172



Cabrales 2 LWIVU amplitudes

Assuming smooth transitions in the subsurface model we can drop the background
reflectivity component, r0, (Barnier and Almomin, 2014), obtaining

m = b0 + ∆b + ∆r. (1)

I indistinctly refer to ∆r both as “the reflectivity” or “the perturbation in the reflec-
tivity” throughout this report. Henceforth, the subsurface model represents slowness
squared, m = s2.

Now consider the full-waveform inversion (FWI) misfit function, Φ(m), given by:

Φ(m) =
1

2
‖L(m)− dr‖22, (2)

where L(m) is the non-linear acoustic wave propagation operator, and dr represents
the recorded data.

We can locally linearize the FWI objective function by locally fitting a quadratic
function, and update the model towards the corresponding minimum given as m =
m0 + δm, where m0 is the current model, and δm is an updating increment that
satisfies ‖δm‖ << ‖m0‖. Expanding the gradient of the FWI objective function in
Taylor’s series around m0 we obtain

∇Φ(m) = 0 ≈ ∇Φ(m0) + H(m0)δm,

where H represents the FWI full Hessian. The gradient, ∇Φ(m), vanishes because
it is evaluated at a minimum. The last expression represents the Newton’s equation,
typically cast as

H(m0)δm = −∇Φ(m0). (3)

Each FWI iteration demands solving equation 3 to find δm, representing a linear
minimization problem.

According to Biondi et al. (2015), the FWI full Hessian can be expressed as the
summation of the FWI Gauss-Newton Hessian, HGN (henceforth referred to as “the
Hessian”), and the wave-equation migration velocity analysis (WEMVA) operator,
W,

H = HGN + W. (4)

On the other hand, let us assume that in the Newton’s equation the current model
is given by the most background model, m0 = b0, while the update term encom-
passes the perturbations in the background and in the reflectivity, δm = ∆b + ∆r.
Substituting these expressions and equation 4 into equation 3 we obtain[

HGN(b0) + W(b0)
][

∆b + ∆r
]

= −∇Φ(b0). (5)

The right-hand side term of equation 5 can be obtained by evaluating ∇Φ(m) at b0:

∇Φ(b0) =

[
dL(b0)

dm

]′[
L(b0)− dr

]
, (6)
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where ′ represents the adjoint of the operator inside the square parentheses. Note
that ∆d = dr −L(b0) is the perturbation in the data (Barnier and Almomin, 2014),
i.e., the recorded data after removing direct waves. The derivative of L with respect
to model parameters evaluated at b0 constitutes the Born modeling operator, hence
the adjoint operator represents migration. Thus,

∇Φ(b0) = −∆rm,

where I represent the migration image as ∆rm to regard it as the first estimation of the
perturbation in the reflectivity, ∆r. Substituting the last expression into equation 5,
dropping the dependance on b0 to simplify notation, expanding and re-acommodating
terms, we obtain [

HGN∆r + W∆b
]

+
[
HGN∆b + W∆r

]
= ∆rm. (7)

The first term in the left-hand side of equation 7 is usually employed in conventional
LWI to minimize ‖HGN∆r −∆rm‖22. The second term translates perturbations in
the background into perturbations in the image. I preserve this term to correct
the reflectivity for the inaccuracies in the slowness squared field, and disregard the
following ones which presumably account for nonlinear effects such as multi-scattering.
Therefore, the LWIVU method is based on the fitting goal HGN∆r−W∆b−∆rm ≈
0, corresponding to the objective function

Φ(∆r,∆b; b0) =
1

2

∥∥HGN∆r−W∆b−∆rm

∥∥2

2
− λ2

2

∥∥W∆b + ∆rm

∥∥2

2
, (8)

where the second term maximizes the stacking or energy power of the migrated image
as a function of ∆b (note the minus sign), and λ is a parameter that allows one to
control the influence of such term. Note that I flipped the sign of the W∆b term to
obtain the correct sign of the anomaly. This strategy does not affect the result.

My goal is to obtain a better estimation of the reflectivity, ∆r, in comparison
to conventional LWI. By incorporating inaccuracies in the slowness squared field
as perturbations in the migration image by means of WEMVA, W∆b, the current
migration image, ∆rm, is improved. Thus, the perturbation in the reflectivity is fitted
to such an improved migration image during the inversion process.

Data space and model space

It is important to identify the data space and the model space in LWIVU. The latter
is obviously constituted by the subspaces spanned by the perturbations ∆r and ∆b.

To identify the data space, let us first obtain the gradient, i.e., the derivative of the
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LWIVU objective function with respect to the model parameters. From equation 8,

∇Φ =

[
∇∆rΦ
∇∆bΦ

]
=

[
H′[H∆r−

(
∆rm + W∆b

)]
−W′[H∆r−

(
∆rm + W∆b

)]
− λ2W′[∆rm + W∆b

]]

=

[
H′ 0
−W′ −λ2W′

] [
H∆r−

(
∆rm + W∆b

)
∆rm + W∆b

]
. (9)

The rightmost term in equation 9 shows the application of the “adjoint” matrix to
the residual vector. Quotes stand because true forward and adjoint operators cannot
be explicitly obtained. Such residual vector has both components in the domain of
the migration image. In fact, the term H∆r projects reflectivity onto such a domain,
and W∆b constitutes a perturbation in the image as previously mentioned.

We can further factorize the residual to obtain[
H′ 0
−W′ −λ2W′

] {[
H −W
0 W

] [
∆r
∆b

]
−

[
∆rm

−∆rm

] }
=

[
0
0

]
. (10)

Note that from equation 10, if the initial model, [∆r0 ∆b0]
T , is set to zero, the

input data for LWIVU become

d =

[
∆rm

−∆rm

]
, (11)

which simply consists of the migration image and its negative. Therefore, the data
space is composed by two subspaces of the migration image domain.

EXPERIMENT SETUP

I performed a numerical experiment to test how LWIVU potentially corrects ampli-
tudes when small velocity inaccuracies remain. In the following I use velocity in the
plots for better understanding, although the subsurface model is formally defined in
terms of slowness squared.

I built a two-layer model with two Gaussian velocity anomalies of opposite polarity
shown in Figure 1a, which represents the true slowness squared model, m. The
anomalies in velocity are shown Figure 1b. The minimum and maximum velocities
of the anomalies are −50 and 50 m/s, corresponding to a 2% variation with respect
to the upper layer (2000 m/s.) The premise of the method is that the inaccuracies
of velocity (or slowness squared) are small enough that solely alter the amplitude
of the events, not their position, thus justifying the linearity of LWIVU. I obtained
the background slowness squared field, b, by smooting the reflector and keeping the
anomalies. The corresponding reflectivity, ∆r, is obtained by subtracting b from m
(see equation 1.) The most background model, b0, can be obtained by removing the
Gaussian anomalies, ∆b, from b. Note that ∆b represents the anomalies in slowness
squared (Figure 9b), not in velocity.
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I synthesized the perturbation in the data, ∆d = S
[
L(m) − L(ms)

]
, where ms

represents slowness squared at the surface employed to model direct waves for their
removal from L(m), and operator S samples the wavefield at the surface. These
data constitute the input shot gathers that carry information about the anomalies. I
also synthesized a second dataset, ∆d0 = S

[
L(m0)− L(ms)

]
, where m0 = b0 + ∆r

incorporates the edge of the reflector, but not the anomalies. Finally, all imaging
processes —reverse-time migration (RTM), point-spread functions (PSF), and the
inversions, have b0 as input background model.

For the Gauss-Newton Hessian stage of LWIVU, I precompute the Hessian using
a PSF layout (Tang and Lee, 2015; Fletcher et al., 2016) obtained by applying Born
forward modeling followed by Born adjoint modeling (RTM) to spikes seeded every 15
gridpoints in model space (Figure 2.) Interpolating values of the PSFs corresponding
to specific lags (distances with respect to the central point) we can construct columns
of the Hessian (for instance, picking the central values of the PSF and interpolating we
estimate the diagonal of the Hessian). Its application during the inversion becomes
a fast, matrix-like, multiplication (Cabrales-Vargas et al., 2017). I employed the
diagonal and six-lag off-diagonal terms (for a total of 13 × 13) to approximate the
Hessian.

The current LWIVU implementation works with the out-of-core solver recently
developed in the Stanford Exploration Project by Biondi and Barnier (2017). Adjoint
Born modeling and WEMVA incorporate random boundary conditions (RBC) to
reduce memory requirements at the expense of extra wavefield propagations (Clapp,
2009; Shen and Clapp, 2011). RBC are incorporated into WEMVA as explained
in Cabrales-Vargas (2017). The WEMVA stage of LWIVU is implemented in non-
extended domain by maximizing the energy of the migration image.

NUMERICAL RESULTS

All the inversions shown in this report were run for 10 iterations.

Figures 3a and 3b show zooms around the reflector of conventional RTM images
of the two-layer model using as input data ∆d and ∆d0, respectively. Note the small
disturbances on the amplitude of the reflector in Figure 3a, between x = 9000 m and
x = 13000 m, despite the fact that the reflector appears to be completely flat in both
cases. Figure 4 shows the amplitude extractions at the peak of the reflector revealing
that the anomalies have a significant impact.

Figure 5 shows LWI images obtained using as input the migration images of Fig-
ure 3. Their corresponding amplitude extractions are compared with the reflectivity,
∆r, in Figure 6. Similar to the RTM case, we observe amplitude distorsions caused
by the anomalies. There are amplitude-based seismic attributes (e.g. Chopra and
Marfurt, 2007) that can be sensitive to such amplitude distorsions. They can po-
tentially mask real geologic features or even portray false ones. The consequence in
either case is a foul interpretation.
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(a)

(b)

Figure 1: ]
(a) Two-layer velocity model with (b) Gaussian anomalies. The peak amplitudes of

the anomalies are, from left to right, -50 and 50 m/s approximately. This model
constitutes the true subsurface model from where the perturbation of the data is
computed. The Gaussian anomalies are centered at (x = 10000m, z = 750m) and

(x = 12000m, z = 1250m), and are barely visible in the upper layer. [ER]
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Figure 2: .
]Point-spread functions for the estimation of the Gauss-Newton Hessian [CR].
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(a)

(b)

Figure 3: ]
(a) RTM image using ∆d. (b) RTM image using ∆d0. Both images were computed

using b0 as background model, and are plotted at the same scale.[CR]
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Figure 4: ]
Amplitude extractions at the peak of the reflector from RTM images in Figure 3.

Amplitudes are normalized. [CR]
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(a)

(b)

Figure 5: ]
LWI images computed using as input RTM images in (a) Figure 3a, and (b)

Figure 3b. The images are plotted at the same scale. [CR]
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Figure 6: ]
Amplitude extractions at the peak of the reflector from LWI images in Figure 5,

compared with the true reflectivity. Amplitudes are normalized. [CR]
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Figure 7 shows the result of the reflectivity component of LWIVU in comparison
with conventional LWI. Both images have as input the RTM image computed with
∆d. The LWIVU computation also requires ∆d as input for the WEMVA operator.
The parameter λ was set to 2.5. Note that the disturbances in the amplitude are
only apparent in the the LWI image. The corresponding amplitude extractions are
compared with the true reflectivity in Figure 6, and include the amplitude extraction
on the LWI image obtained from the RTM image of Figure 3b, in turn computed with
∆d0. Note that the LWIVU amplitude is almost completely corrected for the effects
of the anomaly. Moreover, it gets closer to the true reflectivity, possibly because the
inaccuracies in the model introduced by smoothing were partially corrected during
the WEMVA stage (yet, it is improbable that any of the inversions can exactly match
the reflectivity, for the data were synthesized using non-linear modeling instead of
Born modeling). Finally, Figure 9 shows the LWIVU perturbation of the background
compared with the true anomalies in slowness squared, where we confirm that the
LWIVU ∆b approximately matches the anomalies.

CONCLUSION AND FUTURE WORK

The numerical experiments shown in this report demonstrate that LWIVU can correct
amplitude distorsions introduced by small anomalies in the background model, where
we understand by “small” a maximum of ±5% deviation from the true values in order
to avoid cycle skipping of the WEMVA operator. Although such distorsions are not
likely to affect the interpretation at oil & gas play- and prospect-scale exploration,
the detailed assessment of the amplitudes during reservoir characterization can be
misled.

More complex models have to be tested with LWIVU. I currently experiment with
the Sigsbee A model. At the same time I prepare the necessary components (Born
modeling, RTM, WEMVA, etc.) for the 3-D version of the method.

Equation 8 has an unusual structure: The difference of two objective functions.
One consequence is that, as aforementioned, it is not possible to obtain the forward
and the adjoint of the Hessian/WEMVA composed operator because of the minus
sign preceeding λ2. Such minus sign can cause that the objective function becomes
non-quadratic, at least in the general case.

If the situation just described proves to be an issue, one alternative is switch-
ing from maximization of stacking (or energy) power to differential semblance opti-
mization (DSO) (Symes and Carazzone, 1991). The corresponding LWIVU objective
function is

Φ(∆r,∆b; b0) =
1

2

∥∥H∆r−W∆b−∆rm

∥∥2

2
+
λ2

2

∥∥D
[
W∆b + ∆rm

]∥∥2

2
. (12)

where D constitutes the DSO operator. Note that the minus sign is no longer because
minimization of the DSO term, not maximization, is sought. We can obtain the
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(a)

(b)

Figure 7: ]
(a) LWIVU reflectivity image compared with (b) LWI image. The images are

plotted at the same scale. [CR]
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Cabrales 14 LWIVU amplitudes

Figure 8: ]
Amplitude extractions at the peak of the reflector from the LWIVU reflectivity

image (Figure 7a) and the LWI image (Figure 7b), compared with the true
reflectivity. Amplitudes are normalized. [CR]
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(a)

(b)

Figure 9: ]
(a) Perturbation in the background obtained during LWIVU compared with (b) the
true slowness squared anomalies. Gridding lines facilitate comparison. The images

are plotted at the same scale. [CR]
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corresponding normal equations:[
H′ 0
−W′ λW′D′

] {[
H −W
0 λDW

] [
∆r
∆b

]
−

[
∆rm

−λD∆rm

] }
=

[
0
0

]
.

Note that this time the matrix-like operators are truly adjoint of each other, unlike
equation 10. The caveat of this approach is that equation 12 ought to be implemented
in extended domain (subsurface offset), whereas equation 8 operates in non-extended
domain.
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