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Practical issues in anisotropic full waveform inversion

Huy Le

ABSTRACT

In the previous report, SEP 163, I demonstrated the potential of using the second-
order pseudo-acoustic anisotropic wave equations for full waveform inversion with sim-
ple examples. In this report, I investigate some practical issues that anisotropic full
waveform inversion implemented with this system of equations faces. These issues are
parameter sensitivity, parameterization, and null space. Firstly, to take into account
differences in sensitivity of different anisotropic parameters, I suggest a simple normal-
ization technique. This normalization results in dimensionless parameters that better
reflect sensivity to recorded data. Secondly, a number of parameterizations, including
stiffness coefficients, velocities, and Thomsen’s parameters, are tested on the BP 2007
synthetic model. I found that parameterizations with one velocity and two Thomsen’s
parameters gave the best results in terms of reduction in the objective function. Lastly,
to mitigate the null space problem, I regularize the inversion with steering filters based
on the migrated image’s dip information.

INTRODUCTION

Full waveform inversion (FWI) is a powerful technique to obtain both the long-wavelength
(background) and the short-wavelength (reflectivity) components of a velocity model by
minimizing the difference between the observed data and the modeled data. Successful
applications of FWI generally require low-frequency and long-offset data, particularly diving
waves, in order to solve the cycle skipping problem. When processing long-offset data, it
is necessary to incorporate anisotropy to account for the dependence of seismic velocity on
propagation direction. Studies have shown that FWI with anisotropy leads to better results
(Barnes et al., 2008; Lee et al., 2010).

Anisotropic FWI poses more challenges compared to isotropic FWI. These challenges
come from the increase in the number of unknown parameters. An anisotropic medium is
characterized not only by velocity but also by anisotropic parameters that describe how
velocity changes with direction. The first challenge is to account for different sensitivities,
units, and magnitudes among these different parameters. The second challenge is to find a
suitable parameterization. Multiple parameters are required for anisotropy and there are a
number of equivalent sets of them. Another challenge in anisotropic FWI is the extension of
the problem’s null space, which is a direct consequence of increasing number of parameters.
In this report, I propose some solutions to these challenges.

Because the earth supports elastic wave motions, one will have to use elastic wave
equations in order to handle the amplitude and kinematics of seismic waves. However, in
the context of parameter estimation, a large number of unknowns in elastic FWI poses many
difficulties, both theoretically and computationally. Consequently, acoustic wave equations
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2 Le SEP–165

have been commonly used and have shown successes in many FWI applications (Gholami
et al., 2013b; Warner et al., 2013). Although acoustic anisotropy is not realistic, the resulting
equations may accurately describe the kinematics of waves in anisotropic media. This work
adopts a time-domain method that was developed by Le (2016) in the previous report for
anisotropic FWI. This method is based on the second-order pseudo-acoustic wave equations
in transverse isotropic media (VTI) (Duveneck and Bakker, 2011):{

∂2
t p = c11∂

2
xp+ c13∂

2
zq + fx,

∂2
t q = c13∂

2
xp+ c33∂

2
zq + fz.

(1)

p and q are the normal stresses in the x-direction and z-direction, fi are the sources, and
cij are the density-normalized stiffness coefficients.

Define x to be the location vector, xr to be the receiver location, and m to be the
vector of model parameters. The modeled pressure field is defined as the average stress,
d(x, t; m) = 1

2(p + q). The FWI objective function can be defined as the l2-norm of the
difference between the modeled data and the observed data, d0(xr, t):

χ(m) =
1
2
‖d(xr, t; m)− d0(xr, t)‖22. (2)

Following the adjoint state method presented in Fichtner (2011), the gradients of the
objective function with respect to model parameters are computed as cross-correlations of
the adjoint wavefields, p1 and q1, and the forward modeling wavefields, p and q:

gc11 =
∫ T

0
p1∂

2
xpdt, (3a)

gc13 =
∫ T

0
(p1∂

2
zq + q1∂

2
xp)dt, (3b)

gc33 =
∫ T

0
q1∂

2
zqdt. (3c)

The adjoint wavefields are solutions to the adjoint equations:{
∂2
t p1 = ∂2

x(c11p1 + c13q1) + 1
2(d− d0)δ(x− xr),

∂2
t q1 = ∂2

z (c13p1 + c33q1) + 1
2(d− d0)δ(x− xr).

(4)

BALANCING THE GRADIENTS

There are several ways to parameterize the subsurface and the inversion problem. One
common way is to use velocity and Thomsen’s anisotropic parameters (Thomsen, 1986).
The stiffness coefficients, cij , are related to vertical P-velocity, vz, ε, and δ, by:

c11 = v2
z(1 + 2ε), (5a)

c13 = v2
z

√
1 + 2δ, (5b)

c33 = v2
z . (5c)
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The gradients of the FWI objective function with respect to vz, ε, and δ, can be easily
computed from equations 3 by chain rules:

gvz = 2vz(1 + 2ε)gc11 + 2vz
√

1 + 2δgc13 + 2vzgc33 , (6a)

gε = 2v2
z(1 + 2ε)gc11 , (6b)

gδ =
v2
z√

1 + 2δ
gc13 . (6c)

Because the stiffness coefficients, cij , have the same dimension, the same order of mag-
nitude, and approximately equal sensitivity to the observed data (Gholami et al., 2013a),
equations 3 can be used directly in a gradient-based optimization algorithm to minimize the
objective function (Le, 2016). When parameterized with vz, ε, and δ, these parameters not
only have different dimensions and magnitudes, but also very different sensitivities, with vz
the most sensitive parameter. Its sensitivity is an order of magnitude larger than that of ε,
which is in turn much larger than δ’s. As a result, not accounting for these differences can
lead to bad estimates of subsurface parameters.

I propose a simple normalization that can mitigate the differences in dimensions, mag-
nitudes, and sensitivities among parameters such as vz, ε, and δ. Instead of inverting for
these parameters directly, I invert for a set of equivalent but normalized parameters, v̄z, ε̄,
and δ̄ defined by:

v̄z =
vz
v0
, ε̄ =

ε

ε0
, δ̄ =

δ

δ0
. (7)

The normalization coefficients, v0, ε0, and δ0 are scalar constants chosen to satisfy:

gv̄z

v̄z
=
gε̄
ε̄

=
gδ̄
δ̄
. (8)

These equations promote approximately the same amount of update to all parameters at
each inversion iteration.

I illustrate the improvement of this parameter normalization using a portion of the BP
2007 VTI synthetic model. Figure 1 shows the true model parameters and Figure 2 shows
the initial model parameters. The observed data is synthesized using the same engine as
the modeled data with a Ricker wavelet of 5 Hz central frequency. 100 sources and 1600
receivers are placed uniformly on the water surface. Source spacing is 200 meters and
receiver spacing is 12.5 meters. Maximum offset is 20 km.

Figure 3 shows the gradients with respect to unnormalized parameters, vz, ε, and δ.
Note from the scale bars that gvz (Figure 3(a)) is three orders of magnitude smaller than
the other two gradients, gε (Figure 3(b)) and gδ (Figure 3(c)). After normalization, gv̄z

(Figure 4(a)) is now greater than gε̄ (Figure 4(b)), which is greater than gδ̄ (Figure 4(c)).
This means that the gradients with respect to normalized parameters better reflect their
sensitivities to the data. Notice that because the normalization coefficients v0, ε0, and δ0 are
scalar constants, the change of variables from unnormalized to normalized does not change
the geologic structures in the gradients, but only the magnitudes of their updates.

I performed two inversions with unnormalized and normalized parameters, and the re-
sults are shown in Figures 5 and 6 respectively. Compared with the true model (Figure 1),
the inverted model using unnormalized parameters (Figure 5) shows unrealistic updates in
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ε and δ and almost no update in vz. Inversion with normalized parameters (Figure 6) shows
significant update in velocity, although updates in ε and δ are small. Figure 7 compares two
objective functions from these inversions. Inversion with normalized parameters reduces the
objective function much more than without normalization. In fact, without normalization,
the inversion gets stuck after 13 iterations.

(a) (b) (c)

Figure 1: True model: (a) vz in km/s, (b) ε, and (c) δ. [ER]
mypaper/. v.bp2007,eps.bp2007,del.bp2007

(a) (b) (c)

Figure 2: Initial model: (a) vz in km/s, (b) ε, and (c) δ. [ER]
mypaper/. bgv.bp2007,bgeps.bp2007,bgdel.bp2007

(a) (b) (c)

Figure 3: Gradients with respect to unnormalized parameters: (a) gvz , (b) gε, and (c) gδ.
Notice from the scale bars that gvz is three orders of magnitude smaller than the other two
gradients. [CR] mypaper/. gv0,geps0,gdel0

PARAMETERIZATION TEST

Parameterization is a vital aspect of anisotropic FWI. A set of parameters that is most
resolvable and has minimal trade-offs can lead to better inversion results. Besides stiffness
coefficients cij , vertical velocity vz, and Thomsen’s parameters ε and δ, there are other
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(a) (b) (c)

Figure 4: Gradients with respect to normalized parameters: (a) gv̄z , (b) gε̄, and (c) gδ̄. The
scale bars show that these gradients more accurately reflect the sensitivities of unknown
parameters. [CR] mypaper/. gv,geps,gdel

(a) (b) (c)

Figure 5: Inverted model using unnormalized parameters: (a) vz in km/s, (b) ε, and (c) δ.
Velocity is almost not updated while the other two parameters show unrealistic features.
[CR] mypaper/. v0.1,eps0.1,del0.1

(a) (b) (c)

Figure 6: Inverted model using normalized parameters: (a) vz in km/s, (b) ε, and (c) δ.
Velocity is much better resolved compared to the inversion with unnormalized parameters,
even though anisotropic parameters are weakly updated. [CR] mypaper/. v.1,eps.1,del.1
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Figure 7: Comparison of objec-
tive functions from inversions with
and without normalization. In-
version with normalized parameters
does not get stuck and leads to a
lower objective function. [CR]
mypaper/. objfuncs1

parameters that also play an important role in describing anisotropic media. They are
horizontal velocity vh, normal moveout (NMO) velocity vn, and the anellipticity parameter
η:

vh = vz
√

1 + 2ε, (9a)

vn = vz
√

1 + 2δ, (9b)

η =
ε− δ

1 + 2δ
. (9c)

Many studies have been devoted to parameterization in anisotropic media. Alkhalifah
and Tsvankin (1995) derive an expression for P-wave travel time in VTI media and show
that it depends on two parameters: NMO velocity vn and anellipticity parameter η. Plessix
and Cao (2011) compute the eigenvalues of the Hessian of the FWI objective function
and conclude that NMO and horizontal velocities are the most sensitive parameters. While
NMO velocity is responsible for reflection events, horizontal velocity is responsible for diving
waves and post-critical reflections. Gholami et al. (2013a) analyze and plot the radiation
patterns of different sets of parameters to study sensitivity and trade-off.

In this work, I carry out several inversions using parameterizations that have been
studied by Gholami et al. (2013a) in order to compare their performances. Four types of
parameterizations are tested. The first type includes stiffness coefficients cij . The second
type consists of three parameterizations with one velocity and two anisotropic parameters:
{vz, ε, δ}, {vn, η, δ}, and {vh, ε, η}. The third type has two velocities and one anisotropic
parameter in two different sets: {vz, vh, δ} and {vn, vh, δ}. The last type contains three
velocities {vz, vn, vh}. The inversions are run on the BP 2007 synthetic model with the same
setting and acquisition as mentioned earlier. They start from the same initial model and
the normalization technique described in the previous section is applied whenever unknown
parameters are of different dimensions (the second and third types).

Figure 8 shows a comparison of objective functions from inversions with different pa-
rameterizations. I observe that the second type of parameterization with one velocity and
two anisotropic parameters gave the best results in terms of reduction in objective function.
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Within this type, all three parameterizations, {vz, ε, δ}, {vn, η, δ}, and {vh, ε, η}, perform
equally well. The third type of parameterization with two velocities and one anisotropic
parameter is second in performance while parameterizations with stiffness coefficients (the
first type) and with three velocities (the fourth type) give roughly equally worst results.

Figures 10, 12, 14, 16, 18, 20, and 22 show updates of model parameters for seven tested
parameterizations. These updates are to be compared with the corresponding differences
between the true and the initial model parameters, which are shown in Figures 9, 11, 13,
15, 17, 19, and 21 respectively. Some observations can be made. Firstly, parameterizations
with one velocity and two anisotropic parameters always give the best velocity estimates.
NMO velocity, vn, is best inverted using parameterization {vn, η, δ} (Figure 14(a)), while
horizontal velocity, vh, is best resolved using {vh, ε, η} (Figure 16(a)), and vertical velocity,
vz, is best resolved using parameterization {vz, ε, δ} (Figure 12(a)). However, the inverted
velocity models show some unreal features that is a result of cross-talk from two anisotropic
parameters within their parameterizations.

I also observe that parameterization {vz, ε, δ} also gives the best estimates in ε and δ
(Figures 12(b) and 12(c) respectively). However, update in δ is very weak and contaminated
by cross-talk from velocity. In fact, this is true for all parameterizations that include
δ. Particularly, this cross-talk from velocity is so strong that δ is updated in the wrong
direction in parameterizations {vn, η, δ} (Figures 14(c)) and {vn, vh, δ} (Figure 20(c)). In
terms of η, it is best resolved using parameterization {vn, η, δ} (Figure 14(b)). However,
the inverted η parameter is again degraded by cross-talk from velocity (NMO velocity, vn,
in this case), especially in the shallow part of the model. The inter-parameter cross-talk
between velocity and anisotropic parameters is expected because the wide range of scattering
angle over which velocity is resolvable overlap with those angles of anisotropic parameters
(Gholami et al., 2013a).

Figure 8: Comparison of objective
functions from inversions with differ-
ent parameterizations. Parameter-
izations with one velocity and two
anisotropic parameters lead to the
most reduced objective functions.
[CR] mypaper/. objfuncs2

REGULARIZATION

Although acoustic anisotropic FWI has a smaller number of model parameters than its
elastic equivalent, compared to isotropic FWI, its model space is still much larger. This
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(a) (b) (c)

Figure 9: Differences between initial and true model: (a) c11, (b) c13, and (c) c33 in MPa.
[ER] mypaper/. dc11.bp2007,dc13.bp2007,dc33.bp2007

(a) (b) (c)

Figure 10: Updates after inversion: (a) c11, (b) c13, and (c) c33 in MPa. These updates are
to be compared with the corresponding differences between true and initial model in Figure
9. [CR] mypaper/. dc11,dc13,dc33

(a) (b) (c)

Figure 11: Differences between initial and true model: (a) vz in km/s, (b) ε, and (c) δ.
[ER] mypaper/. dv.bp2007,deps.bp2007,ddel.bp2007

(a) (b) (c)

Figure 12: Updates after inversion: (a) vz in km/s, (b) ε, and (c) δ. These updates are to be
compared with the corresponding differences between true and initial model in Figure 11.
This parameterization gives the best estimates in both velocity and anisotropic parameters.
There is some cross-talk between velocity and the other two parameters, especially δ. [CR]
mypaper/. dv.1,deps.1,ddel.1
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(a) (b) (c)

Figure 13: Differences between initial and true model: (a) vn in km/s, (b) η, and (c) δ.
[ER] mypaper/. dvn.bp2007,deta.bp2007,ddel.bp2007

(a) (b) (c)

Figure 14: Updates after inversion: (a) vn in km/s, (b) η, and (c) δ. These updates are to
be compared with the corresponding differences between true and initial model in Figure 13.
This parameterization gives the best estimates in vn and η. Inverted models of theses two
parameters also show some cross-talk. Cross-talk from vn leads to wrong-direction update
in δ. [CR] mypaper/. dvn.2,deta.2,ddel.2

(a) (b) (c)

Figure 15: Differences between initial and true model: (a) vh in km/s, (b) ε, and (c) η.
[ER] mypaper/. dvh.bp2007,deps.bp2007,deta.bp2007
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(a) (b) (c)

Figure 16: Updates after inversion: (a) vh in km/s, (b) ε, and (c) η. These updates are to
be compared with the corresponding differences between true and initial model in Figure
15. This parameterization gives the best estimate in vh. ε update is contaminated by vh. η
is updated in the wrong direction. [CR] mypaper/. dvh.3,deps.3,deta.3

(a) (b) (c)

Figure 17: Differences between initial and true model: (a) vz in km/s, (b) vh in km/s, and
(c) δ. [ER] mypaper/. dv.bp2007,dvh.bp2007,ddel.bp2007

(a) (b) (c)

Figure 18: Updates after inversion: (a) vz in km/s, (b) vh in km/s, and (c) δ. These updates
are to be compared with the corresponding differences between true and initial model in
Figure 17. [CR] mypaper/. dv.4,dvh.4,ddel.4

(a) (b) (c)

Figure 19: Differences between initial and true model: (a) vn in km/s, (b) vh in km/s, and
(c) δ. [ER] mypaper/. dvn.bp2007,dvh.bp2007,ddel.bp2007
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(a) (b) (c)

Figure 20: Updates after inversion: (a) vn in km/s, (b) vh in km/s, and (c) δ. These
updates are to be compared with the corresponding differences between true and initial
model in Figure 19. In some areas, δ is updated in the wrong direction due to cross-talk
from velocities. [CR] mypaper/. dvn.5,dvh.5,ddel.5

(a) (b) (c)

Figure 21: Differences between initial and true model: (a) vz, (b) vn, and (c) vh in km/s.
[ER] mypaper/. dv.bp2007,dvn.bp2007,dvh.bp2007

(a) (b) (c)

Figure 22: Updates after inversion: (a) vz, (b) vn, and (c) vh in km/s. These updates are
to be compared with the corresponding differences between true and initial model in Figure
21. [CR] mypaper/. dv.6,dvn.6,dvh.6
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results in a much bigger model null space, making the problem more ill-posed, and the
inversion can more easily get stuck in local minima. One standard way to overcome this
issue is to use regularization. The regularized objective function is expressed as:

χ(m) =
1
2
‖d(xr, t; m)− d0(xr, t)‖22 +

α

2
‖Am‖22, (10)

in which A is some styling operator that is related to the model covariance matrix. In
the next example, I take this operator to be a steering filter obtained from the dip of the
migrated image. Using a steering filter to spread dip information along geologic structures
helps speed up convergence and improve inversion results. This was introduced and applied
successfully to tomography by Clapp et al. (2004). Figure 23(a) shows the migrated image
and Figure 23(b) shows the tangent of the dip angle, which is used to construct the steering
filter A. The inversion results with regularization are shown in Figure 24. This figure shows
improvements in the inverted models compared to the non-regularized results (Figure 12).
Dipping reflectors are more continuous and the inverted model parameters are closer to the
true ones. Figure 25 shows that regularized inversion leads to a slightly lower objective
function than without regularization. The improvements are, however, not very significant,
which I suspect is due to the smooth dip field (Figure 23(b)). Moreover, cross-talk between
velocity and anisotropic parameters is still present because the same steering filter is applied
on all three parameters. Additional information (from rock physics, for example) can be
used to obtain separate filters for individual parameters that can reduce their cross-talk.

(a) (b)

Figure 23: (a) Migrated image and (b) dip (tangent of dip angle). [CR]
mypaper/. image,dip

CONCLUSIONS

In this report I investigate three practical issues in anisotropic FWI. The first issue is how
to account for differences in dimension, magnitude, and sensitivity among different param-
eters. I suggest applying a normalization which transforms the original parameters into a
set of dimensionless parameters that more truly reflect their sensitivities. This normaliza-
tion can be seen as a simple way to approximate the Hessian matrix. The second issue is
parameterization. I have tested four types of parameterization: stiffness coefficients, one
velocity with two anisotropic parameters, two velocities with one anisotropic parameters,
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(a) (b) (c)

Figure 24: Updates after inversion with steering filter regularization: (a) vz in km/s, (b)
ε, and (c) δ. Inverted model parameters show more continuous dipping structures and
better converge toward the true ones. Cross-talk is, however, still observable. [CR]
mypaper/. dv.1r,deps.1r,ddel.1r

Figure 25: Comparison of objec-
tive functions from inversions with
and without regularization. Regu-
larization leads to a slightly lower
objective function. [CR]
mypaper/. objfuncs3
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and three velocities. Performance of different parameterizations is evaluated by how much
they reduce the objective function. I found that parameterizations with one velocity and
two anisotropic parameters gave the best results. Especially, among all tested parameter-
izations, {vz, ε, δ} results in the best estimates in both vertical velocity and anisotropic
parameters despite some cross-talk. Another issue in anisotropic FWI is the large model
null space. I have shown that a regularization with a steering filter constructed using dip
information from the migrated image can improve the results and lead to better inverted
models. Additional information from rock physics can also be used for regularization and
is the subject of my future work.
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