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Preface

The electronic version of this report! makes the included programs and applications available
to the reader. The markings [ER], [CR], and [NR] are promises by the author about the
reproducibility of each figure result. Reproducibility is a way of organizing computational
research that allows both the author and the reader of a publication to verify the reported
results. Reproducibility facilitates the transfer of knowledge within SEP and between SEP
and its sponsors.

ER denotes Easily Reproducible and are the results of processing described in the pa-
per. The author claims that you can reproduce such a figure from the programs,
parameters, and makefiles included in the electronic document. The data must either
be included in the electronic distribution, be easily available to all researchers (e.g.,
SEG-EAGE data sets), or be available in the SEP data library?. We assume you have
a UNIX workstation with Fortran, Fortran90, C, C++, X-Windows system and the
software downloadable from our website (SEP makerules, SEPlib, and the SEP latex
package), or other free software such as SU. Before the publication of the electronic
document, someone other than the author tests the author’s claim by destroying and
rebuilding all ER figures. Some ER figures may not be reproducible by outsiders
because they depend on data sets that are too large to distribute, or data that we do
not have permission to redistribute but are in the SEP data library.

CR denotes Conditional Reproducibility. The author certifies that the commands are in
place to reproduce the figure if certain resources are available. The primary reasons
for the CR designation is that the processing requires 20 minutes or more, MPI or
CUDA based code, or commercial packages such as Matlab or Mathematica.

NR denotes Non-Reproducible figures. SEP discourages authors from flagging their fig-
ures as NR except for figures that are used solely for motivation, comparison, or
illustration of the theory, such as: artist drawings, scannings, or figures taken from
SEP reports not by the authors or from non-SEP publications.

Our testing is currently limited to LINUX 2.6 (using the Intel compiler), but the code should
be portable to other architectures. Reader’s suggestions are welcome. More information on
reproducing SEP’s electronic documents is available online?.

"http:/ /sepwww.stanford.edu/private/docs/sep165
2http:/ /sepwww.stanford.edu/public/docs/sepdatalib/toc_html
3http://sepwww.stanford.edu/research/redoc/
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Practical issues in anisotropic full waveform inversion

Huy Le

ABSTRACT

In the previous report, SEP 163, I demonstrated the potential of using the second-
order pseudo-acoustic anisotropic wave equations for full waveform inversion with sim-
ple examples. In this report, I investigate some practical issues that anisotropic full
waveform inversion implemented with this system of equations faces. These issues are
parameter sensitivity, parameterization, and null space. Firstly, to take into account
differences in sensitivity of different anisotropic parameters, I suggest a simple normal-
ization technique. This normalization results in dimensionless parameters that better
reflect sensivity to recorded data. Secondly, a number of parameterizations, including
stiffness coefficients, velocities, and Thomsen’s parameters, are tested on the BP 2007
synthetic model. T found that parameterizations with one velocity and two Thomsen’s
parameters gave the best results in terms of reduction in the objective function. Lastly,
to mitigate the null space problem, I regularize the inversion with steering filters based
on the migrated image’s dip information.

INTRODUCTION

Full waveform inversion (FWI) is a powerful technique to obtain both the long-wavelength
(background) and the short-wavelength (reflectivity) components of a velocity model by
minimizing the difference between the observed data and the modeled data. Successful
applications of FWI generally require low-frequency and long-offset data, particularly diving
waves, in order to solve the cycle skipping problem. When processing long-offset data, it
is necessary to incorporate anisotropy to account for the dependence of seismic velocity on
propagation direction. Studies have shown that FWI with anisotropy leads to better results
(Barnes et al., 2008; |Lee et al., 2010]).

Anisotropic FWI poses more challenges compared to isotropic FWI. These challenges
come from the increase in the number of unknown parameters. An anisotropic medium is
characterized not only by velocity but also by anisotropic parameters that describe how
velocity changes with direction. The first challenge is to account for different sensitivities,
units, and magnitudes among these different parameters. The second challenge is to find a
suitable parameterization. Multiple parameters are required for anisotropy and there are a
number of equivalent sets of them. Another challenge in anisotropic FWI is the extension of
the problem’s null space, which is a direct consequence of increasing number of parameters.
In this report, I propose some solutions to these challenges.

Because the earth supports elastic wave motions, one will have to use elastic wave
equations in order to handle the amplitude and kinematics of seismic waves. However, in
the context of parameter estimation, a large number of unknowns in elastic FWI poses many
difficulties, both theoretically and computationally. Consequently, acoustic wave equations
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have been commonly used and have shown successes in many FWI applications (Gholami

et al., [2013b};Warner et al.;|2013]). Although acoustic anisotropy is not realistic, the resulting

equations may accurately describe the kinematics of waves in anisotropic media. This work

adopts a time-domain method that was developed by |Le| (2016|) in the previous report for

anisotropic FWI. This method is based on the second-order pseudo-acoustic wave equations

in transverse isotropic media (VTI) (Duveneck and Bakker) 2011):
97p = cn10ip + c1302q + fr, 0
Otq = c130%p + c3302q + f-.

p and ¢ are the normal stresses in the z-direction and z-direction, f; are the sources, and
cij are the density-normalized stiffness coefficients.

Define x to be the location vector, x, to be the receiver location, and m to be the
vector of model parameters. The modeled pressure field is defined as the average stress,
d(x,t;m) = 3(p + q). The FWI objective function can be defined as the ly-norm of the
difference between the modeled data and the observed data, do(x,,1):

x(m) = 3 e, tm) — do e, O3 ¢l

Following the adjoint state method presented in [Fichtner| (2011), the gradients of the
objective function with respect to model parameters are computed as cross-correlations of
the adjoint wavefields, p; and q1, and the forward modeling wavefields, p and g:

T

Gor, = /0 p1Oapdt, (3a)
T

Gers = /0 (p192q + q10%p)dt, (3b)
T

Jeas —/ qlazth. (3c)
0

The adjoint wavefields are solutions to the adjoint equations:

at2pl = 3%(011]?1 + c13q1) + %(d —dp)d(x — Xy),
a,?CII = 82(613p1 + c33q1) + %(d —dp)o(x — Xy).

BALANCING THE GRADIENTS

There are several ways to parameterize the subsurface and the inversion problem. One
common way is to use velocity and Thomsen’s anisotropic parameters (Thomsen, |1986]).
The stiffness coefficients, c¢;;, are related to vertical P-velocity, v., €, and 4, by:

c11 = v2(1 + 2¢), (ba)
c13 = v2V/1 + 26, (5b)
2

C3z3 = U,. (50)
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The gradients of the FWI objective function with respect to v,, €, and §, can be easily
computed from equations [3| by chain rules:

Gu, = 20;(1 4 2€)gc,, +20,V1 + 20gc,5 + 2029cs,, (6a)
Je = 21}2(1 + 2€) ey, (6b)
02

= —= ... 6¢
gs 1_|_26g13 ( )

Because the stiffness coefficients, ¢;;, have the same dimension, the same order of mag-
nitude, and approximately equal sensitivity to the observed data (Gholami et al., 2013a)),
equations|3|can be used directly in a gradient-based optimization algorithm to minimize the
objective function (Le, 2016|). When parameterized with v, €, and ¢, these parameters not
only have different dimensions and magnitudes, but also very different sensitivities, with v,
the most sensitive parameter. Its sensitivity is an order of magnitude larger than that of e,
which is in turn much larger than §’s. As a result, not accounting for these differences can
lead to bad estimates of subsurface parameters.

I propose a simple normalization that can mitigate the differences in dimensions, mag-
nitudes, and sensitivities among parameters such as v,, €, and d. Instead of inverting for
these parameters directly, I invert for a set of equivalent but normalized parameters, v, €,
and ¢ defined by:

g=2 (7)

The normalization coefficients, vg, €y, and J§y are scalar constants chosen to satisfy:

95, _ Y9 _ G5

Uy € ) ( )
These equations promote approximately the same amount of update to all parameters at
each inversion iteration.

I illustrate the improvement of this parameter normalization using a portion of the BP
2007 VTTI synthetic model. Figure [1| shows the true model parameters and Figure 2| shows
the initial model parameters. The observed data is synthesized using the same engine as
the modeled data with a Ricker wavelet of 5 Hz central frequency. 100 sources and 1600
receivers are placed uniformly on the water surface. Source spacing is 200 meters and
receiver spacing is 12.5 meters. Maximum offset is 20 km.

Figure [3| shows the gradients with respect to unnormalized parameters, v,, €, and 9.
Note from the scale bars that g,, (Figure|3(a)) is three orders of magnitude smaller than

the other two gradients, g. (Figure 3(b)) and gs (Figure [3(c)). After normalization, gs,
(Figure [(a)]) is now greater than g (Figure [£(D)]), which is greater than g5 (Figure [i(c)).

This means that the gradients with respect to normalized parameters better reflect their
sensitivities to the data. Notice that because the normalization coefficients vy, €y, and g are
scalar constants, the change of variables from unnormalized to normalized does not change
the geologic structures in the gradients, but only the magnitudes of their updates.

I performed two inversions with unnormalized and normalized parameters, and the re-
sults are shown in Figures |5 and |§| respectively. Compared with the true model (Figure ,
the inverted model using unnormalized parameters (Figure |5)) shows unrealistic updates in
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€ and § and almost no update in v,. Inversion with normalized parameters (Figure@ shows
significant update in velocity, although updates in € and ¢ are small. Figure [7]compares two
objective functions from these inversions. Inversion with normalized parameters reduces the
objective function much more than without normalization. In fact, without normalization,
the inversion gets stuck after 13 iterations.
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Figure 2: Initial model: (a) v, in km/s, (b) € and (c) 0. [ER]
’ huyle/. bgv.bp2007,bgeps.bp2007,bgdel.bp2007 ‘

PARAMETERIZATION TEST

Parameterization is a vital aspect of anisotropic FWI. A set of parameters that is most
resolvable and has minimal trade-offs can lead to better inversion results. Besides stiffness
coefficients ¢;;, vertical velocity v,, and Thomsen’s parameters € and ¢, there are other
parameters that also play an important role in describing anisotropic media. They are
horizontal velocity v, normal moveout (NMO) velocity vy, and the anellipticity parameter

n:

vp = vV 1 + 20, (9b)
€e—0
T 1T (9¢)

Many studies have been devoted to parameterization in anisotropic media.
land Tsvankin| (1995) derive an expression for P-wave travel time in VTT media and show
that it depends on two parameters: NMO velocity v,, and anellipticity parameter 7.
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and Cao (2011) compute the eigenvalues of the Hessian of the FWI objective function
and conclude that NMO and horizontal velocities are the most sensitive parameters. While
NMO velocity is responsible for reflection events, horizontal velocity is responsible for diving
waves and post-critical reflections. |Gholami et al.| (2013a)) analyze and plot the radiation
patterns of different sets of parameters to study sensitivity and trade-off.

In this work, I carry out several inversions using parameterizations that have been
studied by |Gholami et al. (2013a) in order to compare their performances. Four types of
parameterizations are tested. The first type includes stiffness coefficients ¢;;. The second
type consists of three parameterizations with one velocity and two anisotropic parameters:
{vs,€,0}, {vn,n,0}, and {vp,€,n}. The third type has two velocities and one anisotropic
parameter in two different sets: {v,,vn,d} and {v,,vp,0}. The last type contains three
velocities {v,, vy, v, }. The inversions are run on the BP 2007 synthetic model with the same
setting and acquisition as mentioned earlier. They start from the same initial model and
the normalization technique described in the previous section is applied whenever unknown
parameters are of different dimensions (the second and third types).

Figure [§] shows a comparison of objective functions from inversions with different pa-
rameterizations. I observe that the second type of parameterization with one velocity and
two anisotropic parameters gave the best results in terms of reduction in objective function.
Within this type, all three parameterizations, {v,,€,0}, {v,,n,d}, and {vp,€,n}, perform
equally well. The third type of parameterization with two velocities and one anisotropic
parameter is second in performance while parameterizations with stiffness coefficients (the
first type) and with three velocities (the fourth type) give roughly equally worst results.

Figures and [22] show updates of model parameters for seven tested

parameterizations. These updates are to be compared with the corresponding differences
between the true and the initial model parameters, which are shown in Figures [9]
and [21] respectively. Some observations can be made. Firstly, parameterizations
with one velocity and two anisotropic parameters always give the best velocity estimates.
NMO velocity, vy, is best inverted using parameterization {v,,7,d} (Figure [I4(a)), while
horizontal velocity, vy, is best resolved using {vp,€,n} (Figure , and vertical velocity,
v, is best resolved using parameterization {v,,¢,0} (Figure [12(a)l). However, the inverted
velocity models show some unreal features that is a result of cross-talk from two anisotropic
parameters within their parameterizations.

I also observe that parameterization {v.,€,d} also gives the best estimates in € and §
(Figures|[12(b)land [12(c)|respectively). However, update in ¢ is very weak and contaminated
by cross-talk from velocity. In fact, this is true for all parameterizations that include
0. Particularly, this cross-talk from velocity is so strong that § is updated in the wrong
direction in parameterizations {v,,n,0} (Figures and {v,, vy, 8} (Figure 20(c)). In
terms of 7, it is best resolved using parameterization {v,,n,d} (Figure . However,
the inverted 7 parameter is again degraded by cross-talk from velocity (NMO velocity, vy,
in this case), especially in the shallow part of the model. The inter-parameter cross-talk
between velocity and anisotropic parameters is expected because the wide range of scattering
angle over which velocity is resolvable overlap with those angles of anisotropic parameters
(Gholami et al., 2013a)).
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REGULARIZATION

Although acoustic anisotropic FWI has a smaller number of model parameters than its
elastic equivalent, compared to isotropic FWI, its model space is still much larger. This
results in a much bigger model null space, making the problem more ill-posed, and the
inversion can more easily get stuck in local minima. One standard way to overcome this
issue is to use regularization. The regularized objective function is expressed as:

1 o
x(m) = S ld0x, trm) — do(x. 1) + 5 || Aml3, (10)

in which A is some styling operator that is related to the model covariance matrix. In
the next example, I take this operator to be a steering filter obtained from the dip of the
migrated image. Using a steering filter to spread dip information along geologic structures
helps speed up convergence and improve inversion results. This was introduced and applied
successfully to tomography by (Clapp et al.| (2004). Figure shows the migrated image
and Figure [23(b)[shows the tangent of the dip angle, which is used to construct the steering
filter A. The inversion results with regularization are shown in Figure[24] This figure shows
improvements in the inverted models compared to the non-regularized results (Figure .
Dipping reflectors are more continuous and the inverted model parameters are closer to the
true ones. Figure shows that regularized inversion leads to a slightly lower objective
function than without regularization. The improvements are, however, not very significant,
which I suspect is due to the smooth dip field (Figure . Moreover, cross-talk between
velocity and anisotropic parameters is still present because the same steering filter is applied
on all three parameters. Additional information (from rock physics, for example) can be
used to obtain separate filters for individual parameters that can reduce their cross-talk.

1l
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Figure 23: (a) Migrated image and (b) dip (tangent of dip angle). [CR] ‘huyle/ . image,dip

CONCLUSIONS

In this report I investigate three practical issues in anisotropic FWI. The first issue is how
to account for differences in dimension, magnitude, and sensitivity among different param-
eters. I suggest applying a normalization which transforms the original parameters into a
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set of dimensionless parameters that more truly reflect their sensitivities. This normaliza-
tion can be seen as a simple way to approximate the Hessian matrix. The second issue is
parameterization. I have tested four types of parameterization: stiffness coefficients, one
velocity with two anisotropic parameters, two velocities with one anisotropic parameters,
and three velocities. Performance of different parameterizations is evaluated by how much
they reduce the objective function. I found that parameterizations with one velocity and
two anisotropic parameters gave the best results. Especially, among all tested parameter-
izations, {v,,€,0} results in the best estimates in both vertical velocity and anisotropic
parameters despite some cross-talk. Another issue in anisotropic FWI is the large model
null space. I have shown that a regularization with a steering filter constructed using dip
information from the migrated image can improve the results and lead to better inverted
models. Additional information from rock physics can also be used for regularization and
is the subject of my future work.
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Reverse-time migration using the energy imaging condition
in TTI media

Alejandro Cabrales-Vargas

ABSTRACT

I extend my previous work about the energy imaging condition for anisotropic reverse-
time migration to tilted-transverse isotropic media. Synthetic examples show the fea-
sibility of this implementation.

INTRODUCTION

This report constitutes the follow-up of a previous report (Cabrales-Vargas, |2016|) where I
implemented the energy imaging condition (EIC) in vertical-transverse isotropic (VTI) me-
dia. Similar to its isotropic counterpart, EIC can be used to enhance either the tomographic
component (applicable to improving the full waveform inversion gradient for cycle skipping
reduction) or the reflectivity component of the image (Whitmore and Crawley, 2012 |Rocha,
et al.l 2016a,b) for imaging purposes.

In this report I first introduce the EIC for tilted-trasverse isotropic (TTI) media. Next, I
show the numerical results obtained on the BP TTI 2-D synthetic model. Finally, I present
the conclusions of this work.

METHOD

In isotropic acoustic media (e.g.|Rocha et al.,|2016a)) the EIC can be derived from the energy
function of the acoustic wave equation, which is defined as

B) - [ [;(Z‘;)z+HVuﬂdx= | 1Eulax 1)

where E(t) is the energy of the acoustic wave equation, u is the propagation wavefield.
From this expression Rocha et al.| (2016a) derived the EIC as

I(x) =Y 0O8(x,t) - OR(x,1), (2)

where S and R are the source wavefield and the receiver wavefield, respectively. The op-
erator [J represents a space-time gradient (also known as D’Alembertian), given in three-
dimensional space-time by

o-(t2 22y 5
vot’ Oz’ Oz
and the operator 0 is a modified space-time gradient given by
~ 10 0 0
0= = = =, 4
(cosr2 2 2 2] (@
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where 7. represents a cut-off angle that rejects seismic events in the neighborhood of such
value for the reflection angle. For example, setting 7. = 0° preserves the reverse-time
migration (RTM) tomographic component and rejects reflections in the neighborhood of
zero degrees. On the contrary, setting v. = 90° rejects most of the tomographic component
and preserves the reflectivity component, similar to the Laplacian low-cut filter (Rocha
et al., 2016a).

For the TTI case I utilize the anisotropic wave equations proposed by |Zhang et al.
(2011)),
1 9%
v2 Ot2
where p = [p, T]T is the stress vector with horizontal component, p, and vertical component,
r, matrices B and Go are given by

[ 1+2 V1+26
B_L/1+25 1 (6)

Gy O
0 Gzz ’

= BG2p7 (5)

and

G, = { (7)

where G, = Gfo and G, = GZTGZ, and

G, = D,COS(0) — D.SIN(8),
G. = D.SIN() + D,COS(6), (8)

where € and  are the Thomsen parameters, D, and D, represent the first order derivative
operators with respect x and z respectively, G, and G, constitute the first order derivatives
after axis rotation by the dip angle field 8, and SIN(6) and COS(0) are the corresponding
trigonometric functions with their elements arranged as diagional matrices. The corre-
sponding transpose derivatives are given by

GT =cos®)"DL - sIN(9)T DT,
GT =sIN@®)T DT + cose)! DL, (9)

Using Equations [§ and [9] we ensure that Equation [5] remains stable by keeping matrix Go
symmetric and negative definite (Zhang et al.,2011)). In the current implementation I em-
ploy central differences and staggered grids for the derivative operators D, and D,, followed
by linear interpolation to the original grid. Logically, DI and DI are implemented by ap-
plying the adjoint of the interpolation operator, followed by the adjoint of the derivative
operator.

The definition of the TTI EIC beginning from the energy of the TTI wave equation
(Equation [5)) is similar to the VTT case (Cabrales-Vargas, 2016). In such a case the energy
of the VTI wave equation is given by

1 _1 .
£ = [ { 50A YD+ Do bix = [ IR (10)

where the columns of matrix Y are the eigenvectors of matrix B, and the diagonal of matrix
A contains the eigenvalues of matrix B. Such matrices are obtained from the diagonalization
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process: B = YTAY. Matrix D represents the first derivative operator, defined as
20
0z

With these definitions the space-time gradient for the VTI wave equation becomes a matrix-
like operator defined by

1. 1.0
O=(-A"2Y—,D 12
(U 2 ) (12)
and the modified version with cut-off angle
~ 1, 1.0
O= 29.)| —A"2Y—, D). 13
cos(z) (1A 1. D) (13)
Therefore, the VTT EIC can be written as
I(x;7.) =Y Ops-Opr = (14)
t

2. { cos(%);t[A—%Yps] -[A72Ypp] + [Dps] [DpRl}.

For TTI we substitute G for D,

£ = [ { 0A YD+ 1Gol? bix = [ [pIPix (15)
where G is given as
G- [Cé GO] (16)
The corresponding TTI EIC thus becomes
I(x;7.) =Y Ops - Opr = (17)
t

> { 05(27:) -5 [A"FYpg] - [A~5Ypy] + [Gps] [GpR]}.

The image normalization employed in the VTI case (Cabrales-Vargas, 2016)) is applicable
for TTI EIC. I use such normalization in the numerical examples presented in the next
section.

SYNTHETIC EXAMPLES

I compare the result of the EIC with the crosscorrelation imaging condition (CIC) by
applying anisotropic RTM to one half of the BP TTI synthetic dataset (Figure [L(a))).

Figure 2| shows the TTI-RTM result using the CIC. The seismic events are obscured by
the tomographic component of the RTM image. Applying the EIC with . = 0° (Figure [3))
we can preserve such tomographic component. Figures [2| and [3|are very similar, but closer
examination reveals that in fact, using CIC the reflections are simply obscured, while using
EIC for 7, = 0° the reflections become attenuated. Figures [d] and [5] show the corresponding
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sections after the application of a Laplacian filter, confirming the last argument. The
oceanic floor reflector persists because it encompases a wide reflection angle range, whereas
the cut-off angle has the rejection band confined to a small threshold, in this case around
0°. Rocha et al| (2016a)) discuss the potential benefit of attenuating the reflectivity while
preserving the tomographic component in the computation of the full-waveform inversion
gradient, thus reducing the susceptibility to cycle skipping.

distance(m)
40000 50000 60000 70000

{m)q'.;dap
0000T 0008 0009 000¥ 0002

Figure 2: TTI reverse-time migration using CIC [CR/. ‘alejandro2 /- CiC‘

Figure [6] shows the result of the EIC setting 7. = 90° to preserve reflectivity, to be
compared with Figure [dl This EIC section still exhibits remaining artifacts in the shallow
part, which are absent in the filtered version of CIC. On the other hand, the Laplacian filter
slightly affects the continuity of some shallow events near the ocean bottom. In contrast to
the acoustic case (Rocha et al., 2015| |2016a), it is possible that in anisotropic propagation,
v, values other than 90° might give better results in attenuating the tomographic compo-
nent. In fact, the EIC offers the flexibility to choose among different rejection angles, but
additional research is needed to determine the optimum value of 7, without relying on trial

and error.

CONCLUSION

I derived a TTT energy imaging condition from the VTI case presented in the previous SEP
report. The numerical results show satisfactory preservation of the tomographic component
when setting 7. = 0°. Preservation of the reflectivity component was less than optimum,
possibly because the anisotropic case might require to set v, to angle values other than 90°.
Therefore, additional research is needed to determine the optimum cut-off angle.
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Figure 3: TTI reverse-time migration usinf EIC with v. = 0° [CR]. ‘alejandro2 /- eicl‘
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Figure 4: TTI reverse-time migration using CIC, after the application of a Laplacian filter
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Application of wave-equation migration velocity and Q
analysis to the field data from the North Sea

Yi Shen

ABSTRACT

The Dolphin Geophysicals (Dolphin) multi-client field data acquired in the North Sea
used in this study has attenuation problems. The area was under the influence of salt
tectonics, producing two diapirs. Dolphin interpreted a gas chimney above one diapir,
and a channel above the other. The gas chimney forms a migration pathway for the
gas to leak and then to accumulate at the shallow position. The shallow gas gives rise
to strong attenuation and low interval velocities in the gas area. The channel also has
low velocities, and strong attenuation is associated with it. The objective of my study
is to update the provided velocity model, especially at the gas and channel area, and
to invert for the QQ models to recover these two anomalies. Angle domain common
image gathers after migration with the current interval velocity show that most of
the events are curved down, indicating the current velocity is too high. Furthermore,
both the migrated image and the angle gathers show that the events between 26,000
meters (m) to 28,000 m and 38,000 m to 42,000 m are wiped out below the two salt
bodies. The attenuation anomalies above two salt bodies are the main reasons for
the wiped-out image below. I first applied wave-equation migration velocity analysis
to update the current velocity model. As a result, the velocity decreases in the gas
and channel area. The angle gathers migrated using the updated velocity model are
much more flattened, and the events above the top of salt in the migrated images are
more coherent. Then, I applied wave-equation migration @Q analysis to invert for the
Q models. The estimated Q model shows that the two Q anomalies are recovered and
match the interpretation. By using this Q model in seismic migration, I made the
seismic events below the anomalies clearly visible, with improved frequency content
and coherency of the events.

INTRODUCTION

Seismic attenuation, typically quantified by a parameter Q, is a notoriously challenging
problem for reservoir identification and interpretation in the North Sea, where strong atten-
uation anomalies are present. Attenuation degrades the seismic image quality by decaying
the image amplitude, lowering the image resolution, distorting the phase of events, and
dispersing the velocity. These problems impede accurate image interpretation for hydro-
carbon production and well positioning. The Dolphin’s multi-client field data acquired in
the North Sea (CNS data) used in this study has such an attenuation problem. Gas chim-
neys and channels exist in the subsurface with strong attenuation and low interval velocity.
These complexities reduce the amplitude and phase of deeper events, and essentially create
a shadow zone over the salt body below and at the potential reservoirs, thus hampering
accurate reservoir interpretation. Therefore, it is important to build a velocity model as
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accurate as possible. It is also valuable to understand and quantify the effects of these atten-
uation anomalies to create an accurate laterally- and vertically- varying attenuation model.
The improvements in image quality using the derived model provide greater confidence for
hydrocarbon exploration.

In my previous studies, I have shown the methodology and workflow to update the
Q model using wave-equation migration Q analysis (WEMQA) (Shen et al., 2013| 2014,
2015; Shen™ et al., 2015)). I have also included the velocity inversion using wave-equation
migration velocity analysis (WEMVA) (Sava and Biondi, 2004; Zhang and Biondi, 2013)
into the Q inversion workflow to update both the velocity and Q models (Shen, 2015)). I have
demonstrated the successful application of WEMQA combined with WEMVA on a modified
synthetic SEAM model (Shen| 2015). In this study, I continuously use this workflow (Shen),
2015)) to build velocity and Q models for this field data to recover the gas and channel; and
therefore to produce an improved seismic image.

In this paper, I first give an overview of these field data. Second, I present my pre-
processing workflow to prepare the data for the later analysis. Third, I apply WEMQA
combined with WEMVA to update the current velocity model and to invert for the Q
models to recover the Q anomalies.

DATA DESCRIPTION

The CNS data is acquired using a marine-towed streamer seismic survey in the North Sea.
The data provided by Dolphin for this research contain 28 sail lines, which were acquired by
three vessels. The streamer configurations for the survey of three vessels are similar. Figure
shows the streamer configuration for the survey of one of the vessels. This vessel has
10 streamers. Each streamer is 6,000 m long, and the separation between the neighboring
streamers is 75 m. The source was configured with two shots, in a flip-flop mode with a
shot interval of 25 m. The source separation was 37.5 m. The streamer depth for all the
survey was 30 m, and the source depth was 6 m, as shown in Figure As a result, both
the receiver-side ghost notch and source-side ghost notch are able to be calculated using
equation f = ¢/2d, where f is the frequency of the first ghost notch, ¢ is the water velocity
of 1500m/s and d is the streamer/source depth. The results show that the receiver-side
ghost has its first notch at 25 Hz, and the source-side ghost has its first ghost notch at 125
Hz.

The CNS data have strong attenuation anomalies. The depth slice provided by Dolphin
in Figure [2| highlights the areas with the strongest gas chimneys and strongest channel
effect. The depth slice in Figure [2| does not cover the entire survey, but it covers the most
complex area for the study of these anomalies. According to the interpretation by Dolphin,
attenuation appears stronger from gas chimneys than from the channels. Attenuation from
the gas on the right dome of the slice is stronger than the one on the bottom left dome of
the slice. The channel at the top left of the slice shows low velocities, and there might be
Q anomalies with it, although exhibiting less attenuation. The part of the survey provided
by Dolphin for this study covers the left gas chimney and channel but does not include the
anomaly on the right of the slice.
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Figure 2: A depth slice provided by Dolphin that highlights the areas with the
strongest anomalies associated to gas chimneys and channel. North is upward. [NR|]
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PREPROCESSING
Coordinates manipulation

The original coordinates of source and receiver of CNS data provided by Dolphin are not
regularly sampled along neither inline nor crossline direction, and they are in a rotated
Cartesian coordinate system. First, I shifted the origins of the coordinates and rotated the
tilted coordinates to align the X—axis with the inline direction and the Y-axis with the
crossline direction. The rotated and shifted coordinates of source and receivers are shown
in Figure Aligning the processing grid axes with the acquisition inline and cross-line
directions makes it easy to bin the seismic shot gathers to the regularly sampled data grid
that I create. Then, I regularized the grids of the source and receiver coordinates using the
parameters shown in Table [I] facilitating subsequent data processing.

Table 1: The parameters used for regularizing the grids

Keys number | origin [m] | spacing [m]
Receiver at crossline (Y) 10 -337.5 75
Receiver at inline (X) 240 50 25
Source at crossline (Y) 28 2100 300
Source at inline (X) 1239 230 50
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Denoise, Demultiple, Debubble and Deghost

This data is strongly influenced by swell waves that propagate along the interface between
water and air. Such noise can also be identified in the FK domain of the data. Figure
shows a common offset gather at offset=300 m. The vertical strips in the common offset
gather are the low-frequency noise that is generated by the swell noise. Figure shows
the same common offset gather of Figure in the FK domain. The horizontal strip
around 0 Hz frequency corresponds to the low-frequency noise. Therefore, I use a low-cut
filter at 2 Hz to remove such noise. Figure shows the common offset gather in the FK
doamin after filtering. The result in the physical domain is shown in Figure Notice
the virtual absence of vertical strips, which means the swell noise is removed.

Beside the swell noise, these data are also contaminated by water-bottom multiples,
salt-interval multiples, bubbles from the airguns, and the ghost described in the previous
section. These noises copy events, e.g. water bottom reflection, at a periodic spatial interval.
I used a gapped Preconditioning Error Filter (PEF) to remove such repetitive patterns
(Clarebout and Fomel, 2014). Figure and are the windowed common offset gather
at offset=300 m before and after a gapped PEF being applied, respectively. The yellow
arrows show the bubbles, ghosts and multiples in Figure Such events, of which the
locations are also indicated by yellow arrows in Figure are partially removed. Figure
and Figure show a representative shot gather before and after a gapped PEF
being applied, respectively. Figure shows the bubbles, ghosts and multiples that are
pointed by the yellow arrows. The event marked as repetitive event is still unknown to me,
which may be a result of a wave bouncing from the back of the boat. The locations of these
marked events are removed from Figure after a gapped PEF being applied. The events
The spectra of Figure and Figure are compared in Figure|8l The first receiver-side
ghost notch is flattened by the preprocessing with a gapped PEF. The noisy wiggles can be
observed at the high frequencies in Figure [§ because PEF tries to flatten the spectra and
therefore boosts the high frequency noise.

TWO-DIMENSIONAL VELOCITY AND Q ESTIMATION

For the model building for this field study, I first focused the analysis on one representative
two-dimensional (2D) section in order to set a proper inversion workflow and the corre-
sponding parameter set for this particular dataset, and thus better prepare the road to 3D
field inversion. In this report I show the results for the 2D inversion only. This 2D section is
at the crossline 7,500 m, which passes through the left-side gas chimney and the left channel
as shown in Figure[2] Figure[d]is the 2D slice of the 3D depth NMO interval velocity model
provided by Dolphin at the crossline of 7,500 m, as an initial velocity model for the inversion.
The velocity model shows a salt body with two diapirs, and a high-velocity layer above the
salt body. Such layer acts as a potential cap layer. A gas chimney constitutes a migration
pathway for the trapped gas that leaks and accumulates at the shallow position above the
left diapir. The shallow gas presents low velocity and strong attenuation. Therefore, the
velocities shown in Figure [9] at the shallow position above the left salt domes are slower
than the surrounding areas. The area above the right salt domes also has slow velocities
as shown in Figure [0} because of the presence of a low-velocity channel that as interpreted
by Dolphin. Because Dolphin has not provided the Q model, the initial Q model for the
inversion is set to be homogeneous with a value of 500.
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Figure 4: Common offset gather at offset=300 m: (a) before denoise; (b) after denoise.
[CR] ‘ yishenl/. dlp-dprc-ofth,dlp-mprc-offh-fkd ‘
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Figure 5: FK domain transformed from the common offset gather at offset=300: (a)
before low-cut filter being applied; and (b) after low-cut filter being applied. [CR]
’ yishenl/. dlp-mprc-ofth-fkb,dlp-mprc-offh-fka ‘
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Figure 6: Windowed common offset gather at offset=300 m: (a) before processed with a
gapped PEF; (b) after processed with a gapped PEF. The marked events are removed.
[CR] ‘ yishenl/. dlp-mprec-ofth-fkd-win2,dlp-mprc-ofth-pefm3-win2 ‘
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Figure 7: Shot gather at inline=24,580 m, crossline =7,500 m: (a) before processed with
a gapped PEF; (b) after processed with a gapped PEF. The marked events are removed.
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Figure 9: A 2D slice of the 3D depth NMO interval velocity model provided by Dolphin at
the crossline of 7500 m, which passes through the left-side gas chimney and the left channel
as shown in Figure [CR] ‘yishenl /- dlp2D—bqiv—post-basc-bvel-iterO‘

Figure [10| is the migrated image using one-way wave-equation migration (Shen et al.
2013, at zero subsurface offset using the initial velocity model and the initial Q model.
The migration frequency range is from 0.8 Hz to 50 Hz. The spacing of the imaging grid
used is 25 m in X by 25 m in Y by 10 m in Z. The salt body with two domes ( x = 26,000
m to 28,000 m and z = 38,000 m to 42,000 m) is well imaged. The bright spots above the
left and right salt peaks are the shallow gas and channel, respectively. These two regions
have strong sand-shale impedance contrasts and thus their seismic reflection amplitudes
are strong, which results in bright spots. The events below these two spots are wiped out.
The attenuation caused by the shallow gas and channel is the main reason for the dimming
region below. The dimming image at the boundary (x < 25,000 m and x > 43000 m) are
tapered by the boundary condition in the migration. Figure shows 10 representative
Angle Domain Common Image Gathers (ADCIGs) of this migrated image using the initial
models. The events in the ADCIGs are not flat but curved down, thereby indicating the
velocity is too high. Angle gathers with midpoints close to the attenuation anomalies, e.g.,
ADCIGs at = 27 km and = = 41, have lower amplitudes.

I ran the velocity and Q inversion using the workflow described in my previous work
for 40 iterations. The optimization scheme described by contains
two objective functions: (1) one mainly for velocity updates, and (2) the other mainly for
Q updates. Such scheme employs a weighting parameter 3 to balance these two functions.
The previous study (Shen) shows that an error in velocity can cause significant error
in the Q inversion results. The conspicuously curved-down events in the ADCIGs (Figure
indicate a significantly velocity error, therefore I focus on the velocity updating at the
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Figure 10: The migrated image at zero subsurface offset using the initial velocity model
and the initial Q model. [CR] ‘yishenl /. dlp2D-bqiv-post-basc-bimg-before
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Figure 11: The migrated image at zero subsurface offset using the updated velocity model
and the initial Q model. [CR] ‘yishenl /. dlp2D-bgiv-post-basc-bimg-after
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Figure 12: The ADCIGs using the initial velocity model and the initial Q model. [CR]
| yishenl/. dlp2D-bqiv-post-basc-bang-before
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Figure 13: The ADCIGs using the updated velocity model and the initial Q model. [CR|]
| yishenl/. dlp2D-bgiv-post-basc-bang-after
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early iterations until the velocity error is significantly reduced. I update the Q model at
the later iterations. In this inversion, I set the weighting parameter 3 to be small (10710)
to mainly estimate velocity during the first 20 iterations, and set 3 to be large (10'°) to
mainly focus on Q estimation during the final 20 iterations.

I chose stack power of the migration image as the objective function for velocity updates.
This method maximizes and therefore focuses the energy at the zero subsurface offset of
the migrated image. Its low computational cost makes the application feasible for the later
3D inversion running in the computer resources of academic institutes. Figure[14]shows the
velocity gradient of the first iteration of the inversion, in which the sign is opposite of the
searching direction. The gradient shows the updates are strong around the shallow gas and
the channel region and aims to decrease the velocity. Figure[15|is the updated velocity after
20 iterations. Compared to the initial velocity in Figure [9] the shallow velocity becomes
slower, and the shallow low-velocity zone (above 500 m) becomes thicker. The decreases
of the shallow velocity intend to push the events in ADCIGs upward and therefore flatten
those events. The velocity drops more significantly above the salt domes, as shown in Figure
corresponding to the low-velocity anomalies of shallow gas and channel.
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Figure 14: The velocity gradient of the first iteration of the inversion. [CR]

’ yishenl/. dlp2D-bqiv-post-basc-grdp-iter0 ‘

Figure is the seismic image at zero subsurface offset migrated using the updated
velocity model and the initial Q model. The updates lower the velocity at the shallow
part, and as a result, the events in Figure move up. Figure also shows how some
events (e.g. the flank of the right salt dome) become more coherent in phase after velocity
updating. Figure shows 10 representative ADCIGs of this migrated image using the
updated velocity model and the initial Q model. The decrease in the shallow velocity after
inversion pushes the curves of the events in ADCIGs upward, and therefore flattens the
gathers. Such flatness is significant above z = 4,000 m. More iterations or a different
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Figure 15: The wupdated velocity after 20 iterations. [CR]
‘ yishenl1/. dlp2D-bqiv-post-basc-bvel-iter20

objective function may improve the flatness in a deeper depth; however, events below the
base of salt (z > 4,000 m) are not the target of my study, and have little (if any) impact on
the estimation of the shallow gas and channel for both the velocity and Q models. Because
the Q model has not yet been updated, the dimming amplitudes in the seismic image have
no improvements in Figure [11] and Figure

During the final 20 iterations, I mainly focus on updating the Q model. Before Q
updating, the seismic image (Figure migrated using the updated velocity model and
the initial Q model has only been compensated by the background Q value of 500. The
image under the interpreted Q anomalies is wiped out. In my previous studies
, , I have shown that the parameter slope (p) is able to effectively quantify the
attenuation effects from a seismic image. The slope value (p) can be computed from the
logarithm of the spectral ratio between a measured spectra and a reference spectra (Tonn
. The negative value of p means the image is undercompensated; while the positive
value of p means the image is overcompensated. The larger the absolute value of p, the
larger the Q effects measured from the seismic image, and the further the current Q model
is from the accurate Q model — and vice versa. Therefore, the objective of this image-based
Q inversion is to minimize the summation of p(z; Q) over each image point. I have derived
two objective functions to measure p from different image domains: (1) migrated image at
zero subsurface offset (a postack objective function) and (2) ADCIGs (a prestack objective
function). As described by [Shen et al.| (2013| [2014), inversion using a prestack objective
function is able to produce a higher resolution and more accurate Q inversion results,
although its computational cost is higher than the inversion using a poststack objective
function.
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To perform the inversion using a poststack objective function, I choose the trace at
33,880 m as the reference trace to compute p. This trace is far from both the shallow gas
and the channel, and is assumed to be the least affected by the attenuation caused by these
two QQ anomalies. The window size to compute the spectra from the migrated image for
p is 500 m in z direction and 125 m in x direction. I have developed an automatic picker
to find the peak of the computed spectra over the wavenumber and record it as k.. The
desired wavenumber range that I choose to compute p is [k, — 0.015 1/m, k. + 0.015 1/m].
The velocity stretch effect in the migrated image is also corrected before spectral analysis
for p.

Figureis the logarithm of the spectral ratio from the attenuated image ( Figure
between the window below the left Q anomaly in which the window center is at © = 27,500
m, z = 2,500 m and the reference window in which the window center is at x = 33,880 m,
z = 2,500 m. Figure is the logarithm of the spectral ratio from the attenuated image
(Figure 23)) between the window far from these two Q anomalies in which the window center
is at x = 34,500 m, z = 2,500 m and the reference window in which the window center is
at x = 33,880 m, z = 2,500 m. The picked wavenumber range of these two locations is
roughly within [0.005 1/m, 0.035 1/m]. Within this wavenumber range and regardless of the
noisy wiggles, the curve in Figure decreases linearly with wavenumber with a negative
slope; while the curve in Figure is almost flat with its slope value approximating to 0.
These two slope values indicate the chosen window below the left Q anomaly is attenuated,
and the chosen window far from these two Q anomalies has almost no attenuation. To
remove the influence of the noise on the spectra shown as the wiggles, I use linear least-
squares regression to fit a line to the curves of the logarithm of the spectral ratio within
the picked wavenumber range by linear least squares regression. Figure is the slope
estimate of the image in Figure 23| for every image point used as the window center. The
slope values at certain image points of the attenuated image in Figure 23] are positive. The
possible reasons are because the chosen reference trace does not necessarily have the least
attenuation impacts from the anomalies, and the way to pick the wavenumber range is not
sophisticated enough. I clipped the positive numbers in Figure [17]to display the attenuated
region only. The blue color in the slope map indicates the areas strongly attenuated. In
accordance with the observation from Figure two strong attenuation regions under the
salt domes are highlighted by the blue in Figure However, the blue regions below a 4
km depth are unexpectedly distributed, possibly because of the poor image quality below
the base of salt. Fortunately, this deep part of the image has little impact on the estimation
of the shallow Q anomalies.

Figure [18| is the inverted Q model displayed in logarithm scales (log;q Q) after 20 it-
erations using the Q inversion with a poststack objective function. The results have two
anomalies above the salt that are both shifted to the left of these two salt domes. The
method using a poststack objective function has the disadvantage of producing a low-
resolution result, which is part of the reason for the bias between an estimated location and
the interpreted location of the anomalies. In addition, the right anomaly has a stronger
attenuation than the left one, which contradicts the interpretation that the gas on the left
has stronger attenuation than the right channel.

To perform the inversion using a prestack objective function (Shen et al.,[2015), I choose
the angle gather in which the midpoint is at 33,880 m as the reference gather to compute
p, which is considered to be the least attenuated by two @ anomalies. This angle gather
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Figure 16: (a) The logarithm of the spectral ratio from the attenuated image ( Fig-
ure between the window below the left Q anomaly in which the window center is
at £ = 27,500 m, z = 2,500 m and the reference window in which the window cen-
ter is at * = 33,880 m, z = 2,500 m. (b) The logarithm of the spectral ratio from
the attenuated image ( Figure between the window far from these two QQ anoma-
lies in which the window center is at * = 34,500 m, z = 2,500 m and the refer-
ence window in which the window center is at x = 33,880 m, z = 2,500 m. [CR]
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Figure 17: The slope estimate of the image in Figure [23| for every image point that is used
as the window center. [CR] ’yishenl /- dpoD—iqtv—post-basc-slopsft—iterO‘
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Figure 18: The inverted Q model displayed in logarithm scales (log;,@) after
20 iterations using the (Q inversion with a poststack objective function. [CR]
’ yishenl/. dlp2D-igtv-post-basc-bg-iter20 ‘

is referenced to the rest of the angle gathers to compute the slope. The window size to
compute the spectra from the migrated image for p has only one direction along the depth
with the length of 300 m. The smaller window size aims for a higher-resolution @ inversion
results. The automatic picker for the desired wavenumber range is the same as in the
method using a poststack objective function. The velocity stretch effect and angle stretch
effect (Shen et al., 2015) in the ADCIGs are also corrected before spectral analysis for p.

The ADCIGs at the first iteration of inversion mainly for Q model updating have only
been compensated by the background Q value of 500. Figure [19]displays the slope estimate
of these 9 representative ADCIGs. Every point in the angle gathers are the center of the
windows for computing the slope . The slope values at certain points of the ADCIGs are
positive because of the same reason previously described for the method using the poststack
objective function. I clipped the positive number in Figure to display the attenuated
regions only. The blue color in the slope map indicates the strongly attenuated area. The
blue colors are dominated at the depth below Q anomalies (z < 1,500 m) and above the
base of the salt (z > 4,000 m). Again, the image below the base of the salt (z > 4,000 m)
has little impact on the Q inversion. Therefore, I only focus the analysis below Q anomalies
(z < 1,500 m) and above the base of salt (z > 4,000 m). With this depth range, the gathers
in which the midpoint is far from the  anomalies area (e.g., x = 31 km, z = 33 km and
x = 35 km in Figure have little attenuated region indicated by blue. As the midpoint
moves closer to the Q anomalies (e.g., x = 25 km, z = 29 km and = = 37 km in Figure
, the wave propagating at large angles passes through the Q anomalies; and therefore,
the far angles at these ADCIGs are attenuated. Once the midpoint is at the anomalies area
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(e.g., v =27 km, z = 39 km and = = 41 km in Figure, their near angles are attenuated.
Figure shows the zero-angle slope estimated measured from this attenuated ADCIGs
with its blue color highlighting two strong attenuated regions within the salt domes.
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Figure 19: The slope estimate of the ADCIGs at the first iteration of inversion mainly for
Q model updating. The slope estimates of 9 representative ADCIGs are displayed. Every
point in the angle gathers are the center of the windows for computing the slope. [CR|]

’ yishenl/. dlp2D-iqtv-pre-basc-slopsft-iterQ

Figure 21| shows the Q gradient at the first iteration of inversion mainly for Q model
updating with a prestack objective function, in which the sign is opposite to the search
direction. The gradient shows updates are strong around the shallow gas and channel
region that exhibit the highest attenuation. Figure 22is the inverted Q model displayed in
logarithm scales (log; Q) after 20 iterations for Q inversion. The inverted Q models recover
two Q anomalies. The location and the relative shapes of such Q anomalies in Figure 22]
match the interpretation much better than the ones in Figure This result also proves
the conclusion that the inversion using a prestack objective function has a better capability
to build an accurate QQ model than the one using a poststack objective function.

Figure [24] is the migrated image at zero subsurface offset using the updated velocity
model and the inverted Q model. The structures at the gas and channel regions become
brighter. These bright spots matches the interpretation that the strong impedance contact
makes seismic reflection amplitudes strong. The compensated image below the Q anomalies
in Figure are improved in terms of their enhanced amplitudes and higher frequency
content. To take a closer examination, I zoom in the region around the left and right of
the salt peaks in Figure 25| and Figure respectively. Figure 25(a)| and [26(a)| are the
zoomed-in regions of the attenuated image in Figure Figure [25(b)| and [26(b)| are the
zoomed-in regions of the compensated image in Figure Because the enhancement of the
absolute amplitudes by Q compensation is already obvious in Figure[24] I apply Automatic
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Figure 20: The slope estimate of the ADCIGs at the first iteration of inversion mainly for
Q model updating. The slope estimates extracted at the zero angle are displayed. [CR]
’ yishenl/. dlp2D-igtv-pre-basc-slop0-iterQ ‘
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Figure 21: The Q gradient at the first iteration of inversion mainly for Q
model updating, in which the sign is opposite to the search direction. [CR]

’ yishenl1/. dlp2D-iqtv-pre-basc-grdp-iter0
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Figure 22: The inverted Q model displayed in logarithm scales (log;,@) after
20 iterations using the (Q inversion with a prestack objective function. [CR]
’ yishenl/. dlp2D-iqtv-pre-basc-bg-iter20 ‘

Gain Control (AGC) to the zoomed-in regions in Figure 25| and Figure [26{to compare their
frequency and phase improvements. The compensated images show that events become
sharper because of the recovery of high frequencies and become more coherent because of
attenuation-induced phase distortion being corrected. I compute the spectra of the events
below the right Q anomaly of Figure [23] and Figure 24] and display them in the logarithm
scale in Figure The spectra shows the compensation with the inverted Q model whitens
the spectra and compensates for the higher frequency loss caused by attenuation.

Figures and show 10 representative ADCIGs of this migrated image with the
Q model before and after Q updating, respectively. Results show the ADCIGs compen-
sated by the inverted Q model have sharper and more coherent events. Such improvement
brings benefit to the gather picking for velocity analysis and to AVO analysis for reservoir
characterization.

CONCLUSION

The Dolphin’s multi-client field data acquired in the North Sea used in this study has
attenuation and velocity problems. Gas chimneys and channels exist in the subsurface with
strong attenuation and low-interval velocity. In this paper, I first preprocessed this field
data to regularize the bin grids and removed the swell noise, multiples, bubble and ghost.
Then, I applied wave-equation migration velocity analysis to update the current velocity
model. As a result, the velocity decreases in the gas and the channel area. The angle gathers
migrated using the updated velocity model are much more flattened, and the events above
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Figure 23: The migrated image at zero subsurface offset using the updated velocity model
and the initial Q model. Same as Figure Replicate the figure here for a convenient
comparison with Figure [CR] ‘yishenl /. dlp2D-igtv-pre-basc-bimg-before
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Figure 24: The migrated image at zero subsurface offset using the updated velocity model
and the updated Q model. [CR] ‘yishenl /. dlp2D-iqtv-pre-basc-bimg-after
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Figure 25: Zoomed-in region around the left of the salt peak of (a) attenuated image in
Figure 23] and (b) compensated image in Figure [24] AGC is applied to both images. [CR]
’ yishenl/. dlp2D-iqtv-pre-basc-regl-before,dlp2D-iqtv-pre-basc-regl-after ‘
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Figure 26: Zoomed-in region around the right of the salt peak of (a) attenuated image in
Figure [23|and (b) compensated image in Figure AGC is applied to both images. [CR]
’ yishenl/. dlp2D-iqtv-pre-basc-reg2-before,dlp2D-iqtv-pre-basc-reg2-after ‘
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Figure 27: The spectra of the events below the right Q anomaly of Figure
and Figure The spectra are displayed in the logarithm scale. [CR]
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Figure 28: The ADCIGs using the updated velocity model and the initial Q model. AGC
is applied. [CR] |yishen1 /. dlp2D-iqtv-pre-basc-bang-before
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Figure 29: The ADCIGs using the updated velocity model and the inverted Q model. AGC
is applied. [CR] |yishen1 /. dlp2D-igtv-pre-basc-bang-after

the top of salt in the migrated images after velocity updating are more coherent. Then, I
applied wave-equation migration Q analysis to invert for the Q models. The results show
that the QQ inversion using a prestack objective function better recovers the two  anomalies
than the Q inversion using a poststack objective function. The inverted Q model matches
the interpretation quite well. Using this Q model in seismic migration, I made the seismic
events below the anomalies clearly visible, with improved frequency content and coherency
of the events.
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Systematic bandwidth picking for the
spectral ratio method

Stuart Farris

ABSTRACT

We use the spectral ratio method to estimate the effect of anelastic attenuation. The
proper bandwidth over which to use the method is not constant throughout the entire
image of the subsurface. Hand picking the correct bandwidth at every location would be
prohibitive for a large 2D, let alone 3D image. Herein, various techniques are explored
to systematically identify the upper and lower frequency bounds in order to improve
performance of the spectral ratio method over large data sets. These techniques are
evaluated with a visual metric to asses the accuracy of their bandwidth picks.

INTRODUCTION

Anelastic attenuation is represented by the Q factor in reflection seismology. A good esti-
mate of the QQ factor is useful for reflection data processing and rock property prediction.
For example, processing methods, such as migration, Q filtering, and deconvolution that
account for attenuation can produce higher quality images than methods which ignore it.
Further, attenuation estimates can reveal information about porosity, permeability, and
fluid saturation useful for reservoir characterization (Best et al., 1994)).

There are numerous techniques that attempt to accurately predict the Q factor within
a seismic image. The spectral ratio method is regarded as one of the more robust tech-
niques (Tonn, 1991)). A benefit of the spectral ratio method is that it can be performed
over a limited range of frequencies that are signal dominated, hence disregarding noise or
artifact dominated parts of the spectrum. While this makes the technique more versatile,
it also implies the signal dominated bandwidth of the spectra must be chosen beforehand.
Moreover, the proper bandwidth is not constant throughout the seismic image, implying it
must be independently chosen at every location. Manually picking this proper bandwidth
at every location would be extremely time consuming.

If a systematic technique could be developed to accurately pick the signal dominated
bandwidth, the speed at which the spectral ratio method could be performed over an entire
seismic image would increase dramatically. Consequently, the speed at which the Q factor,
the output of the spectral ratio method, could be found at every point in a model would also
increase. The focus of this study is picking the proper bandwidth for the spectral ration
method.

I considered many techniques to pick the correct bandwidth for the spectral ratio
method. It was logical to begin with the simplest methods and progress towards more
complex ones. Those tested here:
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1. use a constant, narrow bandwidth that might represent signal dominated frequencies
at all locations,

2. fix the lower frequency bound and linearly decrease the upper bound with depth,

3. center the bandwidth around the peak frequency.

I also discuss other techniques that may perform better than those tested in this report.

SPECTRAL RATIO METHOD

The spectral ratio method can be used to determine the Q effect over some discretization
of a seismic image by comparing incident and outgoing waves. Take some outgoing wave,
R(f), which is the result of some incident wave, S(f), and the attenuating medium response
GH(f):

R(f) = GH(f)S(f) (1)
where f is frequency and G represents the geometrical spreading, instrument response,
source and receiver coupling, radiation pattern, and reflection/transmission coefficients.

H(f) includes the attenuation effect on amplitude and was shown by |Ward and Toksz
(1971)) to be expandable to

H(f) = e o, (2)

where v is the wave velocity. Substituting H(f) into equation |1 gives
R(f) = Ge  fravds g 3
(f) = Ge (f)- 3)

With some manipulation, equation |3| becomes:

In[R(f)/S(H)] = ( )f = n(G). (4)

™
ray QU
This reveals that the relation between R(f) and S(f) is linear with respect to frequency
following

y(f) =mf+0b, (5)
where
y(f) =In[R(f)/S(f)], (6)
m = ( . @), (7)
b= —In(G). (8)

Therefore, Q can be found using the slope of the line representing the log of the ratio
between the input spectrum, S(f), and the output spectrum, R(f). Notice that the b term
can be ignored which means this method is not affected by G and its dependencies.

In practice, the seismic image is discretized into spectrum windows. Each window is
of the order of tens of meters wide and hundreds of meters tall. Windows overlap to
ensure spectra are not dominated by local reflectivity. To calculate QQ at each window, the
spectrum is treated as the outgoing R(f) and is divided by some input spectrum S(f). The
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input spectrum S(f) does not necessarily need to be the source spectrum, but can be some
spectrum from a non-attenuated window. I will call this the reference window. The log of
this ratio is calculated and the line of best fit is found. Using Equation 7} Q can be found
from the slope of this line. Figure [l] illustrates an example of R(f), S(f), and their log
ratio.
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Figure 1: a) Spectra of some window of interest and a reference window, b)
log ratio of the reference spectra divided by the window of interest. [ER]

’ sfarrisl/. spexref-mx600-win30,rati-mx600-win30

An added advantage to the spectral ratio method is that is can be applied over a limited
range of frequencies to avoid those dominated by noise. As seen in Figure [I] data above
wavenumber 0.03 represent noise and rather than signal. If linear regression is performed
over all wave numbers, the resulting line and its slope will be largely affected by the noise
dominated region. The noise can be avoided by evaluating the line only over the signal
dominated wavenumbers. Picking the correct frequencies to evaluate is the purpose of this
investigation.

DATA

The data used in this analysis is Dolphin Geophysical’s multi-client field data acquired in
the North Sea. There are significant velocity and attenuation challenges caused by a salt
body with two peaks. As interpreted by Dolphin, a gas chimney is present above one of
the salt peaks and a channel above the other. The gas chimney forms a migration pathway
for gas to leak and accumulate at shallow depths above the salt. The shallow gas gives rise
to strong attenuation and low interval velocity. The channel also has low velocities and
provides strong attenuation. These regions of strong attenuation, and therefore significant
Q effects, make the dataset ideal for testing the spectral ratio method.

As previously mentioned, the seismic image will be discretized into spectra windows.
The window size used in this study is 500 m in the z direction and 125 m in the x direction.
The spectrum at each window will be the total spectrum from a window of this size centered
at the window’s location in the subsurface.
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BANDWIDTH PICKING TECHNIQUES

Herein I present the various methods tested for choosing the correct bandwidth over which
to perform the spectral ratio method.

Constant bandwidth

The most simple technique is to use a constant bandwidth for all windows. A bandwidth
should be chosen that could reasonably represent the frequencies dominated by signal for
all depths and locations in the subsurface.

Linearly shrinking bandwidth

With this technique the lower frequency bound is fixed and the upper bound decreases
linearly with depth. Since higher frequencies are expected to naturally attenuate with
depth, it follows that the bandwidth dominated by signal should also shrink with depth. I
implement two variations of this method. In the first, I fix the lower bound at wavenumber
0.0 and linearly move the upper bound from wavenumber 0.04 to 0.02. In the second, I
fix the lower bound at 0.005 and linearly move the upper bound from wavenumber 0.04 to
0.02. I vary the lower bound in an attempt to avoid low frequency noise.

Center around peak

The frequency with the largest amplitude most likely represents the location with the
strongest signal. By centering the bandwidth around this region, it is reasonable to assume
it represents a bandwidth dominated by signal. This bandwidth should be wide enough to
capture enough frequencies to produce a spectral method result representative of the signal
dominated region, but narrow enough to avoid noise dominated frequencies. Here, I used a
width of 0.015 wavenumbers centered around the peak frequency.

RESULTS

A metric is required to compare the results of each picking method. I use a visual metric
focusing on the slope of the log ratio used in the spectral ratio method.

At nine locations over a 2D slice of the Dolphin dataset, presented in Figure [2] the
bandwidth dominated by signal was chosen manually. The slope was found from the log
ratio of the picked window and a reference window. This will be the control slope. We
can see that the windows at the center of Figure [2] are non-attenuated. These were used
as the reference windows. At the nine locations, each picking method selected a particular
bandwidth. The slope was then found over the bandwidth picked by each method. By
visually comparing the manually picked slopes with the slopes picked by each method, the
accuracy of each technique can be evaluated.
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Figure 2: Location of nine visual metric locations. Size of windows not representative of
actual window size. [NR] ‘sfarrisl /. metricWindows

Slope results

To illustrate the varying slope results for each technique, I chose three windows to analyze.
The windows are located at 40,000 meters, as seen in Figure [2] with depths of 1000, 3000,
and 5000 meters. These three windows were chosen because they represent regions in the
subsurface with varying amounts of noise. Figures [3| [ bl and [6] show results for each of
these windows. In each graph, there are three lines. The dashed, pink line is the log of
the ratio between the reference window and the current window. Again, the slopes are
calculated by linear regression over some bandwidth of this log ratio line. The solid blue
line is the control slope pick. The solid red line is the slope picked by one of the designed
techniques.
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Figure 3: Log ratio (dashed pink), control slope pick (solid blue), and constant bandwidth
method slope pick (solid red) at x=40000 m and, (a) z=1000 m, (b) z=3000 m, (c) z=5000
m [ER] |sfarris]/. mx600-win10-b4,mx600-win30-b4,mx600-win60-b4|

While the metric comparing slope picks is useful for analyzing accuracy at individual
windows, it does not reveal how a technique performs throughout the entire image. To gain
insight into the big picture results, the slopes were calculated at every window using each
technique. These slope panels are displayed in Figure[7] A clip of 150 was applied to each
panel.
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Figure 4: Log ratio (dashed pink), control slope pick (solid blue), and lin-
early shrinking bandwidth (min=wavenumber 0.00) slope pick (solid red)
at x=40000 m and, (a) 2z=1000 m, (b) 2z=3000 m, (c) 2z=5000 m [ER|]
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Figure 5: Log ratio (dashed pink), control slope pick (solid blue), and lin-
early shrinking bandwidth (min=wavenumber 0.005) slope pick (solid red)
at x=40000 m and, (a) z=1000 m, (b) 2z=3000 m, (c) 2z=5000 m [ER]
’ sfarrisl/. mx600-win10-b3,mx600-win30-b3,mx600-win60-b3 ‘
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Figure 6: Log ratio (dashed pink), control slope pick (solid blue), and bandwidth centered
around peak slope pick at x=40000 m and, (a) z=1000 m, (b) z=3000 m, (c) z=5000 m
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DISCUSSION

Figure [0] shows the technique centered around the peak frequency best matched the con-
trol picks. This is a reasonable result since it is the only method that actually considers
the spectrum of the current window. Other methods blindly choose bandwidths without
dynamically considering where the signal is most dominant. Still, each method had trouble
matching the control at large depths and often at shallow depths. As currently imple-
mented, none of the methods can be considered accurate enough fot systematically picking
the correct bandwidth over which to perform the spectral ratio method.

While the full slope panels in Figure [7] were not the main metric used to determine
viability, they do provide unique insight. Primarily, these panels reveal a promising proof
of concept. Each contains a slope trend that outlines the salt bodies beneath the shallow
Q anomalies seen in the original data image. These slope trends almost appear as lenses
beneath the Q anomalies. Since we would expect higher attenuation under these anomalies,
it is promising that the techniques are finding slope trends that are directly related to
lower Q values. Furthermore, the large positive slopes seen near these lenses are caused
by the large size of each window. Indeed, the spectrum at each window is actually an
average of a few traces 500 meters in length. This implies that some windows interact with
regions affected by the shallow Q anomalies when they are actually located outside the
lensing region. This interaction causes an anomalous log ratio result leading to a positive
slope outcome. Therefore, these large positive anomalies are not caused by the bandwidth
picking methods but by the large window size.

FUTURE WORK WITH NEW TECHNIQUES

A numeric metric should be created to determine the viability of each bandwidth picking
method. One possibility is to find the mean square error (MSE) between the control slopes
and the slopes found by each technique. This would quantify how far the results are from
the control.

A more sophisticated bandwidth picking technique could be developed using machine
learning. I can see two possible approaches. The first would use regression methods based
on control bandwidth picks to find parametric estimations of the lower and upper frequency
values. The second would be a clustering method analyzing various parameters such as
signal-to-noise, amplitude, average frequency, or spikiness.

Finally, the window size used to discretize the image’s spectrum could be altered. There
exists an optimal size that eliminates local reflectivity but avoids issues on the borders of
large QQ anomalies.
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Linearized Waveform Inversion with Velocity Updating:
Theory and first results

Alejandro Cabrales-Vargas, Biondo Biondi, and Robert Clapp

ABSTRACT

Linearized Waveform Inversion or least-squares migration is a process that aims at
obtaining a better estimation of the subsurface reflectivity, in comparison with con-
ventional migration. During the process, the background model (velocity or slowness)
remains invariant. Only the reflectivity component is updated.

In this report we revisit the Linearized Waveform Inversion with Velocity Updating
theory introduced in a previous report, and present the first synthetic examples. The
method introduces controlled updates to the background model during the reflectivity
inversion, correcting for slowness inaccuracies that negatively affect seismic amplitudes
during conventional linearized waveform inversion. The method incorporates Wave-
Equation Migration Velocity Analysis to transform such background model updates
into perturbations in the image.

INTRODUCTION

Imaging complex oil & gas reservoirs with seismic methods demands solutions beyond kine-
matically accurate subsurface images. Beyond identification of reservoir traps, proper char-
acterization of oil-bearing rock facies is vital for optimal drilling programs and exploitation.
One important tool in the achievement of these goals is the variation of seismic amplitudes
as a function of the rock and fluid type.

For several years, the interpretation of amplitude variations has relied on “true-amplitude”
Kirchhoff migration images. The high-frequency approximation assumption entailed by
Kirchhoff modeling and migration algorithms allows splitting the solution into two com-
ponents: a kinematic component, and an amplitude component. The former is obtained
by means of traveltime computations, resulting in an image with correctly positioned seis-
mic events in relatively simple geology. The latter (amplitude coefficients) is usually an
approximation to the transport equation solution.

Kirchhoff-based solutions present an important caveat: the high-frequency approxima-
tion fails in the presence of strong velocity contrasts and complex geology. Downward contin-
uation methods and two-way wave equation methods are thereby mandatory for adequately
addressing such complexities. Nonetheless, the final image usually is only kinematically
correct. One reason is that the imaging condition constitutes a zero-lag crosscorrelation of
the source wavefield and the receiver wavefield (Claerbout, 1971). The amplitudes can be
balanced by implementing deconvolution imaging conditions (e.g. Guitton et al., 2007), but
the amplitude still remains inaccurate.

One important limitation of the migration methods, regardless of the amplitude treat-
ment, is that they merely constitute the first step of the inversion process aimed at esti-
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mating the subsurface reflectivity:
i = L'd, (1)

where dg represents the seismic data collected at discrete surface locations, m represents
here the estimated reflectivity, and L’ represents the adjoint of the Born modeling operator,
better known as migration (Claerbout, [1992). We denominate m as the migrated image.
Born modeling constitutes a linearization of the full modeling operator, £, around a back-
ground velocity (or slowness) field, with the reflectivity acting as a perturbation in such
background field.

Unfortunately, the amplitudes of the migration image are often not representative of the
geologic variations. The problem is further exacerbated by irregular and/or sparse acquisi-
tion geometries (frequently due to obstacles and/or limited budget) and limited frequency
bandwidth of the data. As a consequence, the resulting image often constitutes a blurred
version of the subsurface reflectivity: the imperfect acquisition geometry and limited fre-
quency content negatively impact both the seismic resolution and amplitude preservation.

Linearized waveform inversion (LWI) (a.k.a. least-squares migration) (e.g. Nemeth and
Schuster], [1999; |[Ronen and Liner}, 2000; |Clapp), 2005; [Valenciano, [2008; [Tang), 2011b}; [Dai
et al.l 2010; Fletcher et al.l 2016) constitutes an iterative process for approximating the
inverse of seismic modeling, hence recovering a better reflectivity estimation than conven-
tional migration. It can be expressed as the solution of the normal equations, formally cast
as

L'Lm = L'd,, (2)

where m constitutes the subsurface reflectivity. Solving Equations [2]is equivalent to mini-
mizing the following objective function in data space

1
®(m) = §HLm —dol|3, (3)

or in model space

@(m) = |[Fm — 13 @

where d = Lm constitutes synthetic data, and H is the Hessian operator associated to the
misfit function ® (a.k.a. Gauss Newton Hessian). Note that in Equation [3| we aim at fitting
synthetic data to the recorded data, whereas in Equation 4] we aim at fitting a reflectivity
model to the migrated image. Both constitute different versions of the same optimization
problem, which is linear because the Born operator and the Hessian are linear with respect
to the reflectivity model. In other words, such operators are independent of the reflectivity
model.

LWI has been so far parameterized exclusively in terms of the subsurface reflectivity.
The velocity field is assumed to be either correct or inaccurate to some degree (e.g. Luo and
Hale, [2014]), but either way fixed during the optimization process. It does not participate
in the reflectivity estimation during LWI. Thus, the obvious question is, can we push the
LWI capabilities further by allowing velocity (or slowness) to participate in the optimization
process?

We developed Linearized waveform inversion with velocity updating (LWIVU) to in-
corporate a perturbation component of the velocity field into the optimization process



SEP-165 LWIVU Theory € Results 65

(Cabrales-Vargas et al., 2016). The objective is to obtain better estimations of the re-
flectivity with respect to conventional LWI. The updates in the velocity (or slowness) field
are intended to be perturbations small enough to maintain the linearity of the inversion.
Moreover, such perturbations are not incorporated back to the background velocity field,
but merely used to compute perturbations in the image that would increase the accuracy
of the inverted reflectivity. With this approach, we exploit the fact that, in real data, the
“correct velocity field” is accurate enough for positioning seismic events, but remaining
inaccuracies can affect the amplitudes.

LWIVU can be derived from a simplification of the nonlinear optimization process known
as full-waveform inversion (FWTI), by splitting the Hessian into Gauss-Newton Hessian and
wave-equation migration velocity analysis (WEMVA) Hessian, and adding a WEMVA-based
constraint that maximizes the stacking power. In the next section we revisit the original
derivation introduced in our previous report (Cabrales-Vargas et al.,2016). Next, we present
synthetic examples in a two-layer model with a Gaussian slowness anomaly. Next, we
analyse the computational costs of LWIVU compared to conventional LWI. Finally, we
present the conclusions of this report.

THEORY

Derivation of LWIVU from FWI

Full-waveform inversion (FWI) (Tarantolal 1984; Virieux and Operto, [2009; |[Fichtner, 2011;
Biondi and Almomin} [2014)) is a nonlinear optimization scheme that minimizes the misfit
between the recorded seismic data, d,, and modeled data, d, with respect to a subsurface
parameters model, m,

1
®pwr(m) = glld*drllg- ()

where d = £(m). As aforementioned, £ constitutes the non-linear seismic modeling oper-
ator. It is worth remarking that the non-linearity of this operator is with respect to the
model parameters, m. On the contrary, the operator is linear with respect to the source
term (Almomin, 2013).

We can apply the Gauss-Newton method to minimizing the misfit function in Equation 5
Firstly, notice that a necessary condition is that the gradient of the misfit function vanishes
at a minimum (Fichtner} 2011]),

where m,,,;,, constitutes such a minumum. Now we can expand the gradient in Equation @]
in Taylor series around a nearby model, m;, such that the difference dm = m,,;;, — m; is
small enough to allowing us to truncate the series at the second term:

V(I)ij(mmm) ~ VCDFW[(I’IIZ‘) + H(mz)ém =0, (7)

where H represents the FWI Hessian operator. It is the second derivative of the misfit
function with respect to the model parameters. We use this result to estimate the model
update, dm, by solving the linear system

H(ml)ém = —V@ij(mi), (8)
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which is known as the Newton’s equation. In the FWI problem we solve Equation [8| as part
of an iterative non-linear optimization scheme aimed at updating the model parameters
using m;; = m; + ém, repeating the process until desired convergence is reached.

For the LWIVU derivation, we adopt the |Barnier and Almomin| (2014 notation, sepa-
rating the model parameters in a low-wavenumber component, b, and a high-wavenumber
component, r,

m=>b+r. 9)

We refer to b and r as the background and reflectivity components, respectively. Now we
perturb each component,

m = by + Ab + ro + Ar, (10)

where by constitutes the most background model, Ab is the perturbation in the background
model, rqg is the background reflectivity, and Ar is the perturbation in the reflectivity. In
practice, we assume that the model parameters (e.g., slowness) have transitions smooth
enough to allowing us to neglect the background reflectivity, hence ro = 0. Therefore, the
reflectivity image is defined exclusively by Ar. For such reason we sometimes refer to it as
“the image”.

With these considerations we can recast the Newton’s equation in such a way that we
keep by unchanged during the inversion, and only update the perturbations by setting
om = Ab + Ar. Thus, Equation [§] becomes

We first interpret the meaning of the right-hand side of Equation Back to Equation
let us set m = by,

1
Qrwi(bo) = 5\\5(100) —d, |3, (12)

with the corresponding gradient becoming

Verwi(be) = [8/;(111)

om

[ 10 - a) (13)

‘mbo

where / represents the adjoint. The synthetic data evaluated at the most background model
contains transmitted and direct waves, but no reflections, while the recorded data con-
tains all the events. Therefore, this data difference corresponds to the negative of the
recorded data after removing the transmitted and direct waves, i.e., the negative of the
reflection data, dy = d, — L(bg). The derivative of the synthetic data evaluated at the
most background model is the Born modeling approximation. The adjoint of this operator
is reverse-time migration (RTM) (Barnier and Almomin, 2014)). Therefore, the gradient in
Equation 13| represents the negative of the reverse-time migration image,

V<I>(b0) = _Armig7 (14)
where we represent the migrated image as Ary,;; to be consistent with the notation em-

ployed throughout this report. The migrated image (and hence the gradient) remains
unchanged during the optimization process.
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Now we interpret the left-hand side of Equation According to Biondi et al.| (2015)
we can split the full Hessian H into the so-called Gauss-Newton Hessian, Hgy, and the
wave-equation migration velocity analysis (WEMVA) Hessian, Hyy:

H=Hgy +Hy. (15)
Substituting Equation [I4] and Equation [15] into Equation [11] we obtain
(HGN + Hw)(Ab + AI‘) = Al‘mig. (16)

We can explicitely apply each Hessian to the perturbations, regrouping terms in a convenient
manner:
(HGNAI‘ + HwAb) + (HGNAb + HwAI‘) = Armig- (17)

We first analyze the first part of the left-hand side of Equation The first term, Hoy Ar,
is the Gauss-Newton Hessian applied to the perturbation of the reflectivity. The Gauss-
Newton Hessian constitutes the adjoint of the Born modeling operator followed by the
corresponding forward operator: Hgy = L7L. Fitting this term alone to the migrated im-
age represents conventional LWT in model space (Valenciano et al.,|2009), to be distinguished
from the LWI formulation in data space (Nemeth and Schuster] [1999) (both methods are
sketched out in Equations |1 to . Therefore, this term yields a reflectivity estimation that
is more accurate than the conventionally migrated image, in terms of amplitude and seismic
resolution. The second term, Hyy Ab, is the WEMVA operator applied to the perturbation
of the background model, which yields a perturbation of the reflectivity image. Such term
is what we need to implement the proposed method.

Now we analyze the second part of the left-hand side of Equation The first term,
HenyAb, is the Gauss-Newton Hessian applied to the perturbation of the background
model. Insofar as our objective is to account for reflectivity estimations, we can neglect
this term because improving the background model is not part of this objective. The sec-
ond term, Hyy Ar, is the WEMVA operator applied to the perturbation of the reflectivity.
This term accounts for second-order scattering effects, such as multiples. We do not consider
such effects for LWIVU, therefore we can neglect this term too.

After these considerations, we simplify Equation [17] to obtain

A
HoyvAr + Hyy Ab = [HGN Hw] |:AII;:| ~ Armig- (18)

From Equation [18| we can cast an optimization problem with the following misfit function,
1
®1(Ar, Ab; by) = ;[HenAr + Hyy Ab — Arinigl3, (19)

where the optimization parameters are Ar and Ab, for a seismic experiment realization
with the most background model by. Both Hessians are independent of the optimization
parameters; they only depend on bg. Hence, the optimization problem portrayed by Equa-
tion [19)is linear. We have labeled this misfit function as ®; because an additional constraint
is required to update Ab in synergy with the original purpose of producing more focused
images. One way to ensure this happens is enforcing the maximization of stacking power,
or conversely, the minimization of the negative of stacking power. On these grounds we
include an additional term in the misfit function,

)\2
5(Ab; by) = — - [Hw Ab + Arpig 5, (20)
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where A is a parameter that allows us to control the level of stacking power maximization.
In order to analyze the interaction between the misfit functions ®; and ®5, we express Equa-
tion 19 as an optimization problem aimed at fitting the reflectivity model to an improved
migrated image Ar,,;,(Ab), such that

Arpig(Ab) = Ar,,;,, — Hyy Ab, (21)
therefore Equation becomes
1 _—
1(Ar, Ab;by) = - |[Han Ar — Arpig(Ab)|3, (22)

According to this definition, once Ab satisfies the misfit function, ®5 (thus maximizing
the stacking power), it should yield an improved migrated image, A\rmig. However, the
maximizing effect gained by Ab precisely removes such correction from such migrated
image, because of the minus sign in Equation[21] Such a scheme would harm the reflectivity
estimation. Hence, it becomes logical to re-define the improved migrated image as the term
to be maximized inside the norm in Equation

Arpig(Ab) = At + Hyy Ab, (23)
thus the LWIVU misfit function becomes
®(Ar, Ab;by) = ®1(Ar, Ab; bg) + ®5(Ab; by)
= LHaAr - v (AB)E - 2| &rp(Ab)E @4)

Let us explicitely express Equation [24] in terms of HADb:

1 22
®(Ar, Ab;byg) = 5HHGNAr — (Hw Ab + Arpg) |5 — ?HHWAb + Arpgl. (25)

In order to implement gradient-based optimization schemes we obtain the gradient of the
misfit function in Equation Deriving with respect to the model parameters Ar and Ab,

Var® = Hoy (HoyAr — Hyy Ab — Ar,pi,), (26)

va(p = Hg/V(HGNAI‘ - HwAb — Armig) - )‘H%V |:)\(HwAb + Armig):| s (27)

the total gradient becomes

Vo — Var®| H\ 0 HoyAr — Hyy Ab — Arpg (28)
~|Vap®| | —Hj, —XHj, A(Hw Ab + Aryig).
The adjoint of LWIVU is the matrix-like operator at the right-hand side of Equation
H,y 0 }
) (29)
[ -Hj, —\Hj,

which is applied to the residuals vector. Note that such residuals correspond to the fitting

goals, i.e., the optimization terms in Equation The adjoint of the LWIVU adjoint

operator constitutes the LWIVU forward operator:
|:HGN —Hw ]

0 —-)Hpy (30)
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With the forward and adjoint operators we can set forth LWIVU as a gradient-based op-
timization scheme. We implement the optimization using the conjugate directions method
(Claerbout), [2014)). We discuss such implementation in the Appendix A. In the Appendix B
we derive the WEMVA optimization problem using maximization of the stacking power, in
an effort to provide the reader with additional tools for understanding the LWIVU deriva-
tion.

SYNTHETIC EXAMPLES: LWI VS. LWIVU

For the sake of illustration we implement LWIVU in a 2-D synthetic dataset obtained
from a two-layer subsurface model with a Gaussian anomaly (Figure . The model space
consists of 151 x 461 grid-points in depth (z) and distance (z), respectively, plus a 48-point
haloing zone for the tapering boundary conditions. Grid spacing is Az = Az = 20 m.
The slowness square of the upper and lower layers are 2.5 x 1077 s2/m? (2000 m/s) and
1.6x10~7 82 /m? (2500 m/s), respectively. The Gaussian anomaly (Figure has a minimum
value of —2.3 x 1078 s2/m?2. Tt is added to the first layer. For this experimental setup, the
initial slowness squared model consists of the two-layer model without the anomaly (Figure
. This model corresponds to the most background model, by, whereas the anomaly
constitutes the perturbation of the background model, Ab.

We obtained synthetic data by non-linear modeling using the true model and a constant
model (the latter consists of the slowness of the upper layer only), and subtracted them to
remove direct waves and only preserve reflections. The acquisition geometry consists of 31
sources spaced every 300 m with the first source at x = 0. Every source corresponds to 481
receivers spaced every 20 m. Source and receivers lie at the surface, z = 0.

We obtained the migrated image, Ar,,;4, by applying RTM to the data with the initial
model (Figure[2(d)). The Gauss-Newton Hessian and WEMVA Hessian are calculated with
the most background model, by. For the experiments shown in this report we only use the
diagonal of the Gauss-Newton Hessian matrix, yielding a correction in the amplitude but
not a resolution increase.

In the following plots we compare the LWI reflectivity (left panels) with the LWIVU
reflectivity (right panels), and the true slowness squared perturbation (left panels) with the
LWIVU perturbation (right panels), for different A values. We obtained the LWI result
in model space according to Equation 4, which becomes ®(Ar) = %HHGNAI‘ — Arpigl3
with the notation used in the theoretical section. For better appreciation we zoomed in on
the reflectivity panels. We applied no clippling to the reflectivity panels. In the slowness
squared perturbations panels we clipped to the minimum of the true anomaly. All the
examples were run for 10 iterations, unless otherwise specified.

Figure |5| shows the reflectivity comparison for A = 0, i.e., without stacking power maxi-
mization. Note the amplitude gap at the center of the reflector in both panels caused by the
incorrect slowness model. The excess in slowness square when ignoring the anomaly is too
small to produce kinematic errors (e.g., pull-ups), thus only amplitudes are affected. Two
linear events cross at the center of the reflector gap. They are the smearing effect of con-
ventional migration, and off-diagonal elements of the Gauss-Newton Hessian are needed to
collapse such artifacts. LWIVU with A = 0 did not recover the amplitude at the gap. More-
over, the perturbation in slowness squared is updated with the wrong polarity (positive)
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Figure 1: Slowness squared model with Gaussian anomaly. This model constitutes the real
model [ER]. ’alejandrol /. mod-gauss




SEP-165 LWIVU Theory & Results 71

distance(m)

0] 2000 4000 6000 8000
o o

N}
&
— ~
= &)
o © =
2 2
= <
= =
El © A
— 0 o wn
o ()
o o O
o — 4
I =
©
wn

o

o

o

o

Figure 2: Slowness squared perturbation, Ab: Gaussian anomaly [ER)]. |alejandr01 /- gauss|
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Figure 3: Slowness squared model without Gaussian anomaly. This model constitutes the
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(Figure @) The corresponding “improved” migrated image, A\rmig, has the gap reinforced,
and the reflectivity is fitted to such undesired image.

Figure [7] shows the reflectivity comparison for A = 0.5. The results are very similar to
the previous case. However, the perturbation in slowness squared (Figure () is less positive
than that of A = 0 (Figure [6).

Figure [9] shows the reflectivity comparison for A = 1.0. There is still no apparent
change with respect to the previous cases, but the slowness squared perturbation flipped the
sign and became negative (Figure . Imposing stacking power maximization pushes the
perturbation of the image to fill the gap in the migrated image, which demands a negative
Ab. The reflectivity is fitted to this improved migrated image. Yet, 10 iterations are not
enough to match the true slowness squared with A = 1.0, then the improved migrated image
does not have the gap filled, and as a consequence, neither does the reflectivity. Thus, we
extended the inversion to 16 iterations. Note in Figure|l1|that the gap previously observed
in the right panel of Figure[9 has been healed. The shaded zone still observed at the reflector
center can be the crossing linear events. The background in slowness squared in Figure
now satisfactorily resembles the true perturbation.

Figure shows the reflectivity comparison for A = 1.5. The time the gap has been
healed, and the overall amplitude is increased. However, the perturbation appears to be
slightly surpassing the true anomaly (Figure . Note the increase in amplitude of the
subsamplig artifacts in the shallow part and the reflector leaking into the perturbation
image. They appear not to be influencing the reflectivity. Using less iterations we can
better fit the perturbation in slowness and reduce the artifacts, but then the gap is not
completely healed.

Figure shows the reflectivity comparison for A = 2.5. The gap is eliminated, but
the amplitude appears to be over-corrected (note the bias towards positive values in the
scalebar). As expected, Ab surpasses the true slowness (Figure further than A\ = 1.5.
Better results are obtained at the eighth iteration (Figure note the unbiased scalebar),
although Ab remains overestimated (Figure . Despite the over-correction, the overall
amplitude decreased compared to A = 1.5. The artifacts in Ab increased with respect to
A = 1.5 in both cases.

Finally, Figure and Figure are the comparisons of reflectivity and perturbation
in slowness squared using A = 5.0. The gap is over-corrected, whereas the amplitude sig-
nificantly diminishes further away from the reflector center. In addition, the perturbation
in slowness squared has been laterally compressed. The positive surrounding halo, the
subsampling artifacts, and the leaked reflector are exacerbated compared to lower A\ val-
ues. The reflectivity amplitudes can be impacted by such effects. The energy imaging
condition (Rocha et al., [2016) can potentially attenuate the leaked reflectivity, whereas the
subsampling artifacts can be attenuated by addressing the model null space.
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Figure 5: Reflectivity comparison, A = 0. Left: LWI reflectivity; Right: LWIVU reflectivity
[CR]. ‘ alejandrol/. Fig-R-0-0

COMPUTATIONAL COST OF LWIVU

LWIVU demands more wavefield propagations than LWI because of the inclusion of WEMVA
into the process. We compare LWI and LWIVU flowcharts to quantify them. The opti-
mization scheme is the conjugate directions method (Appendix A). We assume reversible
propagations by using random boundary conditions (Clapp), 2009, [2010), which massively
reduce storage demand at the cost of extra-propagations. The arrows accompanying the
source/receiver wavefield symbols signify forward propagation (right-pointing arrow) and
backward propagation (left-pointing arrow) in time.

Figure [21| shows a flowchart of LWI performed in data space (in model space is trivial;
LWTI is virtually instantaneous once the Gauss-Newton Hessian has been pre-computed).
We perform source wavefield and residual wavefield backward propagations in order to
compute the gradient each iteration. In other words, the adjoint of Born modeling or RTM
(a forward propagation of the source wavefield is required before the iterative scheme).
Subsequent projection of the gradient into data space requires Born modeling. Thus, we
perform forward propagation of the source wavefield and the source scattered wavefield,
using the gradient as entry for reflectivity. The total number of propagations is 1 + 4n;ier,
where 1t 1s the number of iterations.

Figure shows a flowchart of LWIVU. We precompute the Gauss-Newton Hessian,
e.g., using point-spread functions (Fletcher et all 2016), and apply it on demand. Now
the gradient consists of two members: one relates to the reflectivity and the other relates
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Figure 6: Perturbation in slowness squared, A = 0. Left: True anomaly; Right: LWIVU
perturbation [CR]. ’alejandrol/. Fig—B—O—O‘

to the perturbation of the background model (see Appendix A for details). The former
consists of applying the Gauss-Newton Hessian to the appropriate residual, not requiring
wavefield propagations. The latter consists of applying the WEMVA Hessian to a linear
combination of the residuals. Here WEMVA requires four backward wavefield propagations
of the source wavefield and the receiver wavefield, among the souce scattered wavefield
and the receiver scattered wavefield, using the residuals as entries for perturbations in
the image (constituting the adjoing of WEMVA). For the projection of the gradient into
data space we apply WEMVA again. We forward propagate the source wavefield and the
receiver wavefield, among the source scattered wavefield and the receiver scattered wavefield
using the appropriate member of the gradient as entry for perturbations of the background
model (constituting forward WEMVA). Accounting for the initial forward propagation of
the source wavefield, the total number of propagations is 1 + 8ngter, 4.€. twice as much as
in LWIVU, and excluding pre-computation of the Gauss-Newton Hessian.

From this analysis we recognize the computational demands as the main caveat of
LWIVU. Nonetheless, we envision a situation where this method can be applicable. In
reservoir characterization, it can be advantageous to perform LWI in model space in order
to take advantage of amplitude variations with enhanced resolution, for better identifica-
tion of oil-targets. We typically use small seismic volumes encompassing only the oil field
of interest, so expensive iterative-based imaging methods become affordable. In case of
small velocity errors impacting the amplitudes, we can implement LWIVU to rectify the
reflectivity, without re-computing the Gauss-Newton Hessian.



SEP-165 LWIVU Theory & Results 77

distance(m)
4000 8000 12000 16000

— (e
D (@]
S \
(<D]
Lo
[Qv]
N
co
S [«B)
O
o~ S
=
2 = £
e
o oD i
— O o
O
23 £
(c®]
(@]
oo \
aN] [<D)
- L
< a2
\
AN
NG
(@]
O

Figure 7: Reflectivity comparison, A = 0.5. Left: LWI reflectivity; Right: LWIVU reflectiv-
ity [CR]. |alejandrol/. Fig-R-0-5

CONCLUSIONS

We revisited the LWIVU theory to make the improved image (after stacking power maxi-
mization) the target image for the reflectivity estimation. The synthetic examples demon-
strate the potential of this method to correct amplitude inaccuracies derived from the cu-
mulative effect of velocity (or slowness) errors. The main disadvantage is the computational
demands, which are about twice compared to LWI, besides requiring the pre-computation of
the Gauss-Newton Hessian. However, we foresee the applicability of LWIVU in detailed ex-
ploration works, such as reservoir characterization, where accurately addressing amplitude
variations is vital for identification and delimitation of oil-bearing rock facies.
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APPENDIX A: THE CONJUGATE DIRECTIONS METHOD AND
LWIVU

The software that implements the gradient-based optimization is based on the conjugate
directions method (Claerbout, 2014), a “cousin” of the more popular conjugate gradient
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method (Hestenes and Stiefel, 1952). In this Appendix I illustrate its implementation
directly with LWIVU.

I initialize the method with an starting model. In linear problems it is often practical
to set this model to zero. The model space consists of the perturbation of reflectivity and
perturbation of the background, so the initial model is

) =] e

Then I compute the first residual, fy, by using the fitting goals in Equation [25|evaluated at
the initial model:

£ = fOArl _ HGNAro—HwAbQ—Armig _ _Armig (A—2)
07 |fAr A(Hy Abg + Arpig) AT,

The data space is the conventionally-migrated image space. Thus, the two components of
the residual, fOArl and fOAm, constitute migrated-like images.

Now I can set forth the iterative process, calculating the gradient at iteration k using
the adjoind operator (Equation ,

Ar / Arg
_ |8 | _ Hey 0 £, .
= ghe] = [ [ e
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Figure 9: Reflectivity comparison, A = 1.0. Left: LWI reflectivity; Right: LWIVU reflectiv-
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and then projecting such gradient onto the data space using the forward operator (Equa-

tion , ]
GA™
G2

o |

0 —AHy

Hgn —HW] [gﬁr]
Ab| -
8k

(A-4)

What follows next is determining the model update and the residual update. They are

given respectively by

[0AT), 1] . [gkAr] L5 |:(5AI']€

[0Aby 1 8" dAby,
and SN

R} iy G o

| =[G o)

(A-5)

(A-6)

where a and § are parameters that define the search plane that minimizes the new residual
(Claerbout|, |2014)). Finally, I update the model and the residual:

Arpyr| _ [Arg] n (6 AT
Abgii| |Abg|  [6Abggq]|’
Ary ] reAryT [ ceAr
L | = g | + [ g |

Pl B Pl B ) iy

and proceed with the next iteration.

(A-7)

(A-8)
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Figure 10: Perturbation in slowness squared, A = 1.0. Left: True anomaly; Right: LWIVU
perturbation [CRY]. ’alejandrol/. Fig-B-1-0

APPENDIX B: WEMVA INVERSION USING STACKING POWER
MAXIMIZATION

In this Appendix I derive the WEMVA inversion process using the maximization of the
stacking power as a focusing operator. This derivation is important to have a better under-
standing of how LWIVU was derived, for maximizing a function via minimizing its negation
is tricky. Thus, I explain with special thoroughness through this section.

The general expression for the WEMVA misfit function is (Biondi, [2006])
1
B(s%) = 5| Armig(s”) = F[Arpig(s”)][I2, (B-1)

where s? is the slowness squared field or background model, and F is a focusing operator
applied to the migrated image. For the sake of consistency I keep the notation for the
migrated image, Ar,,;4, the same as in the theoretical section.

The focusing operator enforces the correction of the migrated image without changing the
background model. Such corrected image will become the target image that the inversion
process fits, now updating the background model. There are several focusing operators.
The most popular are perhaps the differential semblance optimization (DSO) (Symes and
Carazzone, |1991)) and the maximization of the stacking power. The former enforces focusing
by flattening the angle-domain common-image gathers (ADCIG), whereas the latter seeks
for maximum power of the stack section, presumably occurring when offset-domain common-
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Figure 11: Reflectivity comparison, A = 1.0. Left: LWI reflectivity; Right: LWIVU reflec-
tivity. The number of iterations was increased to 16 [CR/. ‘alejandrol /. Fig-R-1-0a

image gathers (ODCIG) focus, an it is equivalent to flattening ADCIG. Maximazing the
stacking power is known to suffer from cycle skipping when velocity errors are big, but
in LWIVU we assume that velocity inaccuracies are rather small, therefore it becomes
applicable.

Maximization of the stacking power is achieved using F =1+ S as a focusing oper-
ator, where I is the identity operator and S is the stacking operator. Substituting into
Equation [B-1} we obtain

B(5%) = 1 [ Arig() — [Atig(57) + SATmig($)] I = 51 - SAruig (][5 (B2)

The minus sign is lost if we simply perform the algebra, yielding an ordinary minimization.
In order to achieve the maximization we move the negative sign out of the absolute value

(c.¢. [Tang OTTa),
1 1
() = 5 | ATy () — [Atinig(8%) + S ALy (82)] |3 = ~ S AT ()] I3 (B-3)

In the case of zero subsurface offset, the stacking operator becomes the identity operator,
thus

D) = 3 | Arg(s7)] 13 (B-4)

We can linearize this problem by assuming that s> = s3+As?, where s is the initial slowness
squared model (analogous to the most background model), and As? is a perturbation in
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Figure 12: Perturbation in slowness squared, A = 1.0. Left: True anomaly; Right: LWIVU
perturbation. The number of iterations was increased to 16 [CR]. ’alejandrol/. Fig-B-1-0a

such initial model. Thus, I can expand the migrated image around s3, with s? = s2 + As?
for a small perturbation As?,

8AI‘mZ’g (52)

Arml-g(s2) ~ Armig(sg) + a2

|52:Sg} As? = Arpy(s?) + WAS?, (B-5)

where Ary,y(s3) is the image migrated with s, and The derivative in Equation consti-
tutes the WEMVA operator, W (equivalent to the WEMVA Hessian, Hyy). Note from the
expansion in Equation that the forward WEMVA operator constitutes a linear opera-
tor that relates perturbations in the background slowness squared to perturbations in the
image:

Aryig(5?) — Arpig(si) = A(Arp,) ~ WAs? (B-6)

Now I obtain the gradient of the misfit function (Equation ,
aAI‘mZ‘g(S2)
0s?
= ~W/[Arg(s5) + WAs?, (B-7)

Vo(s?) = — [ SZ:J /[Armig(s%) + WASs?|

Finally, I can initialize the conjugate directions method by setting the initial model and the
initial residual, the latter evaluating the fitting goal on the initial model (see Appendix A),

As =0; fy = Arpig(s)) + WAS) = Arpig(s)). (B-8)
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Figure 13: Reflectivity comparison, A = 1.5. Left: LWI reflectivity; Right: LWIVU reflec-
tivity [CRY. ‘alejandrol/. Fig-R-1-5

The gradient is defined with the negative of adjoint operator (Equation applied to the
residuals,
gr = —W'fy. (B-9)

and it is projected onto the data space with the negative of the forward operator
Gk = —ng. (B—l())

Note that the negative signs accompanying the forward and the adjoint WEMVA operators
in Equations[B-9and [B-10]are also utilized in the WEMVA Hessian for the LWIVU operator
(see Appendix A).
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Solving nonlinear inverse problems by linearized model
extension - a survey of possible methods

Biondo Biondi, Rahul Sarkar, and Joseph Jennings

ABSTRACT

Nonlinear inverse problems are challenging because gradient-based inverse algorithms
may converge toward local minima instead of the desired global minimum. Differ-
ent methods can be used to solve nonlinear inverse problems based on a linearized
model extension; these methods differ in their global-convergence characteristics and
in their convergence rate. We present and analyze, both analytically and numerically,
three types of such methods. All three methods show attractive global convergence
properties. However, our analysis is both incomplete and based on a simple 1D wave-
propagation problem where the medium is characterized by a single slowness value.
We discuss the convergence rate of the three types of solution we proposed, but, at
the current stage of our research, we cannot reach any definitive conclusions on their
convergence rate.

INTRODUCTION

Full waveform inversion (FWI) has a well-known convergence problem when the starting
velocity model is far from the correct one and low frequency are not present in the data,
or they are too noisy. One of the most promising direction of research for overcoming this
problem is based on an extension of the velocity model. The first proposed solutions were
based on extension of the reflectivity model (e.g. migrated image); we will refer to all
of these methods, somewhat inappropriately, as wave-equation migration velocity analysis
(WEMVA) methods (Symes and Carazzonel [1991; Biondi and Saval, (1999} [Sava and Biondi,
2004; Shen and Symes|, [2008; Zhang and Biondi, [2013). More recently, Symes| (2008) and
Biondi and Almomin| (2014) have proposed extensions of the whole velocity model; that
is, of long wavelength as well as short wavelength. These methods have been successful
to converge to good models when applied to field data; however, their convergence might
be too slow for being directly applicable to large scale problems (Almomin and Biondi,
2014)). With another rough, but convenient, generalization we will refer two these methods
as tomographic waveform inversion (TFWI) methods.

The main goals of our project are: 1) to develop faster-converging algorithms to apply
to the extended FWI methods (e.g. TFWI), and 2) to explore the applicability of the idea
of a linearized extension to the solution of other important nonlinear inverse problems in
geophysics. In the first section of this report we formalize the idea of applying a linearized
model extension to a generic non-quadratic optimization problem.

The second section presents the modeling equation of a simple 1D waveform inversion
problem. We assume the data to be a single trace recorded from a transmission experiment
between one source and one receiver in an homogeneous medium, with the slowness of the
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medium being the only parameter to estimate. We also introduce a useful linear extension
of the nonlinear modeling operator that will be used to test inverse methods.

In the last sections of this report we present and analyze three ways of solving the
nonlinear inverse problem by using a linearized model extension. The first way is based on
the optimization of a two-term objective function, and it is related to the TFWI methods
proposed by [Symes| (2008) and Biondi and Almomin (2014)); The first term measures data
fitting whereas the second one is a regularization (model focusing) term.

The second approach is based on alternating between the optimization of two objective
functions. It is conceptually related to WEMVA methods as presented by |Biondi and Sava
(1999)); Sava and Biondi (2004)); Zhang and Biondi| (2013) (e.g. migration and velocity model
updating), where the velocity updating is driven by the matching of the current image to a
better focused image.

The third proposed methods minimizes an objective function with a single term. This
single term depends on the slowness model through two modeling operators: the original
nonlinear operator and the extended linear operator. Our analysis shows that this one-term
objective function has some characteristics of both the FWI and the WEMVA objective
functions; we will refer to it as the FWI-WEMVA objective function. A version of this
objective function was first presented by |Symes (2008). In that paper this objective function
was used as the basis for the formalization of the velocity analysis problem as a constrained
optimization problem, rather than to be directly minimized.

SOLVING NON-QUADRATIC OPTIMIZATION PROBLEMS BY
LINEARIZED MODEL EXTENSION

As mentioned above, one of our goals is to explore the applicability of the idea of a lin-
earized extension to the solution of other important nonlinear inverse problems in seismol-
ogy. Therefore, we first formalize the inversion problem in general terms, and then we
study several inversion approaches by analyzing their application to a specific 1D waveform
inversion problem.

We want to estimate the vector of model parameters, m, from the recorded data vector,
d,, recorded as the output of an operator £ that is non-linear with respect to the model

parameters; that is,
d, = £ (), (1)

where m is the “true” value of the parameter vector, and it is the ideal solution of the esti-
mation problem. We can set up the estimation as the least-squares problem of minimizing

T (m) = 3 1 (m) — d |2 )

Because of the non-linear dependency between the modeled data, d = £ (m) and the
parameter vector m, the objective function in equation [2]is not quadratic, and in general,
is not even convex, and presents many local minima. Therefore, when we apply gradient-
based methods to solve the optimization problem in [2| we are likely to converge towards a
local minimum, instead of the desired global one ().

We are interested in improving the convergence towards the global minimum by solving
a different optimization problem that shares the global minimum with the one expressed
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in [2| but does not have local minima, or at least, can be “safely driven” to converge to the
global minimum starting from an arbitrary starting solution mg. We start by extending the
non-linear operator by adding to the modeled data (d) the output, 1,d, of an appropriately
defined linear operator, L, applied to an additional parameter vector ;m. The“total”
modeled data vector is thus expressed as,

td=L(m,pm) =L (m)+L(m),m=d + .d, (3)

where £ is the “extended” modeling operator that is function of both the original parameter
vector, m, and the extended model parameter vector, ym. Notice that the linear operator
L is itself a non-linear function of the parameter vector m.

The optimization problem in [2| can be modified into the following

2

10 ~
Ji (m, 1m) = 2 Hc(m,Lm) -d. . (4)

that obviously has a global minimum for (m = m,;m = 0). In a more compact notation,
if we combine the two model vectors into one, we can write

2

Ji (pm) = % |2 (o) — | (5)

where Tm = (m,;m) and Tm = (m = m,  m = 0).

The extension operator L plays an important role in the method, and it should be
defined according to the specific non-linear behavior of £ (m) that prevents convergence to

the global minimum of J in the practical problems that we want to address. Ideally, dL

drm
is close to be a unitary operator, or at least the following approximation is valid: '
L i’
drm m drm (m) [£(m) —d,] =
5 5!
d d
£ £ m)[C(m)—L£(@)] ~ [£(m)—L(m@) Ymandm.  (6)

dTm m dTm

In practice, there is not a single linear extension that fulfills the requirement expressed in [6]
for all possible events present in typical reflection-seismic data, and for any possible error in
starting velocity model. For example, Biondi and Almomin| (2014) showed that a time-lag
extension of the slowness model is capable of modeling the kinematics of the data residuals
caused by long-wavelength errors in the velocity model. However, the same linear extension
is not as effective when the nonlinear wave phenomena that hamper global convergence are
related to multiple-scattering by discrete interfaces; e.g. multiples.

Focusing operator

The optimization problem in {4 (and [5)) is under-constrained. For any choice of the extended
model vector m, it is likely that there is a corresponding value of ;m that minimizes Jg.
Furthermore, the extension of the modeling operator is only an end to achieve the goal of
robustly converging toward m. At convergence, or even in a neighborhood of the global
minimum, we would would like to have the contributions of the linearized extension to be
negligible. To achieve this goal, we introduce a “focusing” F operator.
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An essential property of the focusing operator is that its output is more focused than
its input. If we define an optimally focused model vector Tm when all the energy is focused
in at one particular model coordinate Xy, we can define a measure of the defocusing as

D (1m) = | X m]3, (7)

where Xy is a diagonal matrix with the absolute value of the distance from Xy; that is,
Xy = diag(|x¢ — X¢|). By construction D (zm) = 0.

The focusing operator must have at least the property that

D . — (8)
(F(Lm)) <D(um)  if pm # pm.

{f(Lm):Lm if ym =1m

In the following sections we discuss how the focusing operator can be introduced in a

regularization term to be added the data-fitting term of the objective function, or how we

can directly introduce it into the data-fitting term of the objective function. Depending on

the way that the focusing operator is introduced in the objective function(s), and on the

choice of L, other properties, in addition to |8 of F are required for defining an estimation
method that robustly converges towards the global minimum.

SIMPLE 1D WAVEFORM INVERSION PROBLEM

In the following sections we present several approaches to solve the estimation problem. We
analyze the behavior of these methods using a simple 1D “wavelet-shift” modeling operator.
In a homogeneous medium with slowness s, the wavefield generated by one source and
recorded by one receiver at a distance [ is equal, when we ignore an amplitude scaling, to
the source wavelet time-shifted by At = Is. The recorded-data vector d, € R is expressed

as follows:
dr =L (§) =S (l§) g, (9)

where g € B9 is the source vector, and S (At) € RV*Ns is a time-shift operator that shifts
an input vector by the time interval At.

We define the linearized extension of modeling as the time convolution of the shifted
wavelet with a filter ¢; that is as,

Ld (t) = g (t —ls) x7 c(7), (10)

where with the symbol #, we denote convolution with the filter ¢ (7) along the time-lag axis
7. For matter of convenience, we fix the value of ¢ at the origin to be equal to zero; that is,
c(tr=0)=0.

The data vector, 1,d, produced by the linearized extension can be expressed by the
following matrix-vector product .
Ld = L(S) c, (11)

where L (s) € RNeXN7 i5 a matrix appropriately constructed with the elements of the shifted
source vector S (Is)g, and c is a vector of length N, representing the discretization of
convolutional filter ¢. The total modeled data td can thus be expressed as follows:

rd=L(s,c)=L(s)+L(s)c=8(s)g+L(s)c. (12)
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As mentioned before, we set the zero-lag coefficient of ¢ to zero; that is, ¢¢ = 0. For
convenience, we also assume that c is centered around the origin; that is, ¢; # 0 for N, /2 <
i < N,/2 with N, even.

Notice that our choice of L is, in purpose, not the most obvious one. The most natural
choice would have been to define Lc as the convolution of ¢ with the first time derivative of
the shifted source wavelet; that is, to build L with elements of —IS (I5) 8, instead of S (I3) g
(Biondi and Almomin, 2014). In practice, there is a little differences between these two
choices. The main reason we made this choice is to emphasize that the definition of L does
not need to be based on physical arguments. The main criterion driving the definition of L
should be to fulfill the approximation expressed in [f] as accurately as possible.

Linearization of modeling operators

When computing gradients of the proposed objective functions, we need to linearize the
modeling operators with respect to perturbations of the model parameters. In this section
we derive the linearization of the simple 1D modeling operator /:'(s,c) with respect to
slowness s and the coefficients of the convolutional filter c. Taking advantage of the fact that
slowness is a scalar, the operators derived from these linearizations can also be expressed
as vector and matrices.

The derivative of the operator £ (s) with respect to slowness, that we will denote as the
vector L € RNt is given by the following:

AL (s)

5 L(s) = —IS(Is) &, (13)

where g is the discretization of the first time derivative of the source function g (¢).

The derivative of the extension operator L (s,c) with respect to slowness is given by the

matrix-vector product of the matrix Le RV*N* with the vector ¢ as follows:
oL -
s (s,c) =L (s)c. (14)

As for the matrix L (equation , also the matrix L can be appropriately constructed with
the elements of the first time derivative of the shifted source vector S (Is) & scaled by —I.

Since 1.d is linear with respect to the convolutional filter ¢, the linearization of the
extension operator L (s, c) with respect to ¢ is simply the matrix L; that is,

e (s,0) = L. (15)

Numerical example
We illustrate the properties of the operators defined above by using a numerical example.
Figure [1| shows the results of this numerical example.

Figure shows the wavelet that we used for this example. It was derived by taking
the first time derivative of a Ricker wavelet with fundamental frequency of 7 Hz. For
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convenience, in the proceedings we will refer to it as the Ricker-derived wavelet. Figure
shows the data residuals (£ (s,) — £ (5)) for a range of starting slowness values (s,), and a
true slowness 5 = 1 s/km. The source-receiver distance [ is 4 km.

Figures [1c and [Id show the back projection of the data residuals into the model space.
These back projections are an important component of any gradient-based estimation al-
gorithm. Figure |1 shows the application of the adjoint of L (s,) to the corresponding data
residuals shown in Figure [Ip. Similarly, Figure [Id shows the application of the adjoint of
L (s,) to the same data residuals shown in Figure .

Time (s) Starting slowness (s/km)
-04 -0.2 0 0.2 0.4 w 0.9 0.95 1 1.05 1.1
o o
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S w
5 2
o ]
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5O /\ o
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o * 2o
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Figure 1: a) Ricker-derived wavelet used for the numerical examples. b) data residuals for
a range of starting slowness values. c¢) back projection of the data residuals into slowness
space for the same range of starting slowness values. d) back projection of the data residuals
into the convolutional filter space. [ER] |biond01 /- Examp—1D|

As discussed, above, an important characteristic of the extended modeling operator is
that its linearization should be close to be unitary, in the sense defined by the relation in
equation |§l Figure [2[ shows that the original (non extended) linearized operator is far from
fulfilling that condition, whereas the linearized extension fulfills that condition, at least with
regards to the kinematics of the reconstructed residuals.

Figure 2b shows the application of LL’ to the data residuals shown in Figure , which
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for convenience of the reader are also displayed in Figure [2h. Figure can also be de-
scribed as the forward projection into the data space of the slowness perturbations shown
in Figure [[c. The data residuals are well reconstructed only in a small interval of starting
slowness centered around the true slowness (5). Furthermore, at both ends of this range,
the reconstructed residuals have the wrong polarity. In contrast, Figure [2c shows the appli-
cation of LL’ to the data residuals. It can also be described as the forward projection into
the data space of the convolutional filter perturbations shown in Figure [Id. The kinematics
of the events in the data residuals are well reconstructed. The only noticeable difference be-
tween panel [2a and panel [2c is that the reconstructed events are convolved with the square
of the source wavelet.

Starting slowness (s/km) Starting slowness (s/km) Starting slowness (s/km)
0.9 0.95 1 1.05 1.1 0.9 0.95 1 1.05 1.1 0.9 0.95 1 1.05 1.1

9°e

(s) sy
¥

¥y

Figure 2: a) Data residuals [£ (s,) — £ (5)]. b) LL/[£ (so) — £ (5)]. ¢) LL/ [£ (s,) — L (5)].
[ER] | biondol/. Data-Examp-1D |

Focusing operators

We tested different focusing operators; all of them are linear with respect to the convolu-
tional filter c. Therefore, we will denote as F and write F (c¢) = Fc. There are two families
of focusing operators that can be useful. The operators belonging to the first family scale
the filter coefficients as a function of the distance from the origin; that is, as a function of
the time lag 7. We refer to the focusing operators belonging to this family as amplitude fo-
cusing operators because they simply scale the amplitudes of the input filter. The operators
belonging to the second family “shift” the filter coefficients towards the origin. Therefore,
we refer to these operators as phase focusing operators because they actually change the
phase of the convolutional filter.

DSO (Differential Semblance Operator)

The first operator we analyze is derived from the classical DSO operator (Symes and Caraz-|

1991) and defined as Fp = diag(7f) with

TwTmax —|7| if |7] < TwTmax
T =

TwTmax

(16)

0 if |7| > TwTmax,

where Tyax is the maximum 7 represented in ¢, and 7y, (with 0 < 7, < 1) is an adimensional
parameter that determines the width of the triangular window; this parameter may change
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with iterations. Notice that the classical DSO operator is equal to I — Fp with =, = 1.

Gaussian window

The second operator we analyze is also a simple amplitude focusing operator; it is defined
as the truncated Gaussian window F¢ = diag(7y), with

#2

5T .
Tf — e (Tmeax)2 lf ‘7—’ < TW Tmax (17)
0 if |7| > 7w Tmaxs

where T,.x and 7w have the same meaning as in equation

Shift

The third operator we analyze is the simplest phase focusing operator (Almomin, personal
communication). The operator Fg shifts by one sample the coefficients of ¢ towards the
origin. The i-th coefficient ¢; of the output filter are computed from the coefficients ¢; of
the input filter as:
Cit1 ifi>0
Gi=<cy ifi<O. (18)
0 if |i| = N;/2 or 1 =0.

Shrink

The fourth, and last, operator we analyze is also a phase focusing operator; it scales the 7
axis of its input filter by a factor «a, that is ¢ (7) = ¢(a7), with o > 1. The operator F,, is
the discrete implementation of this axis-shrinking operator that employs a sinc interpolator.

Examples of application of focusing operators

Figure 3| shows the outputs of these four focusing operators as applied to the convolutional
filters shown in Figure [Id. Figures Bk, Bb, Bk, and [Bd show the results of applying Fp, Fg,
Fg, and F,, respectively. The output of Fg is indistinguishable from its input because Fg
shifts its input by one sample only.

Figure 4| shows the plots of the defocusing measure D defined in equation [7|to the input
and output c vectors shown in Figure and Figure |3 It demonstrates with a numerical
example that all four focusing operators fulfill the condition introduced in For this
example, we set 7y = 1.0 for both Fp and Fg, and @ = 1.111 for F,. The functions
are obviously symmetric around s, = 1 s/km, and thus for clarity we plotted them only
for s, > 1 s/km. The values of D (Fgc) are uniformly smaller than the values of D (c);
however, their respective plots shown in Figure {4| almost perfectly overlap because their
difference is tiny.
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Results of applying the four focusing operators to the convolutional filters c

shown in Figure : a) Fpc, b) Fge, ¢) Fgc, and d) Fyc. For both Fp and Fg, rw = 1.,
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TFWI OBJECTIVE FUNCTIONS

Model-space regularization

As previously discussed, there are three different ways in which we constrain problem
using the focusing operator F. One of these approaches is to use it in a model regularization
term in addition to the data-fitting term defined in problem |4, For the simple 1D problem
described above, we can write this objective function as:

19 2 € 2
ha(s.e) =3[ £(s.0) = | + 5 IT-F)el3, (19)

where F is the linear focusing operator. Through our numerical experiments, we have
found that choosing F as the DSO operator provides the best convergence properties. This
observation is related to the fact that the phase-focusing operators are nearly unitary and
therefore, the result of their forward and adjoint applications in the computation of the
gradients does not provide the correct focusing of the extended model space.

The results of running 7000 iterations of a non-linear conjugate gradient inversion are
shown in Figure |5l For this inversion, the starting physical slowness (sg) was 1.12 s/km
and the starting extended slowness (co) was 0. For the regularization, we set € = 100 and
F to be the DSO operator.

Data-space regularization

Another approach of regularization is to add a data-space regularization term. One way to
write this objective is as:

2 el -~ < 2
2+§H£(S’c)_£(S’FC)H . (20)

Jo (s,¢) :%HE(S,C) —d, 2

As was discussed with the model-space regularization, choosing F to be the DSO oper-
ator provides the best convergence properties for optimizing this objective function. The
results of running this inversion for 10000 iterations and a starting model of sp = 1.12 s/km
and ¢y = 0 with ¢ = 10 and the DSO operator as the focusing operator F are shown in

Figure

Comparison

Comparing both model and data space regularization results (blue and red curves respec-
tively) in each of the panels in Figure |5 we observe from the data residual norms (panel
(a)) that the model space regularization reduces the extended FWI objective function
(||£ (s,¢)—d,||3) faster than does the data space. This is due to the fact that with the model
space regularization, we are directly focusing the model therefore providing better focusing
of the extended model (c¢). This is clear in panel (b) which shows the focusing measure D(c)
with iteration. However, the data space regularization does update the model much faster
than the model space regularization. This is evident in panels (c¢) and (d) where the FWI
data residual norm (3||£ (s) — d,||3) and the model residual are shown respectively. From
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Figure 5: Results of inversions with model space (blue curve) and data space (red curve)
regularization. Both inversions ran for 7000 iterations and plots are windowed here for
display. The inversions were run with starting a model of sp = 1.12 s/km and ¢y = 0. (a)
Data residual norms of extended FWI objective function (%Hﬁ (s,¢) — d,||3), (b) focusing
measure D(c) as defined in equation |7} (c) data residual norms of FWI objective function
(3|1£ (s) — d,]|3), and (d), model residual (|siter — 5| where siter is the physical slowness at
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these figures it is clear that in only 600 iterations the updated physical slowness is within
0.45% of the true slowness. In contrast, the model space regularization needs more than
1500 iterations before it reaches that point in the inversion. At later iterations, it is evident
in both panels (c) and (d) that the model-space regularization does reduce the objective
function more than the data-space regularization. This only occurs when the residuals are
quite small.

These results suggest that a data-space regularization with frequent restarts; that is, by
resetting set ¢ to zero might be the best approach within this class of methods. [Biondi and
Almomin| (2014)) presented a nested optimization algorithm that included a restart at each
outer iteration. At the limit, if the algorithm is restarted by resetting set c to zero after
each update of the slowness model, we will implement an inversion scheme close the the
alternating algorithms presented in the next section.

A CLASS OF ALTERNATING ALGORITHMS

In this section, we discuss a class of algorithms to solve the extended FWI problem. We
begin by first introducing an algorithm based on a simple intuitive idea, which we will refer
to as the “alternating algorithm”. Guided by computational evidence that the algorithm
converges to the true slowness § for any incorrect starting slowness sy, we attempt to
understand the underlying cause of its global convergence. Mathematical analysis reveals
the key property governing its convergence properties. We discuss some of these findings
briefly.

Although we are not able to mathematically prove global convergence of the alternating
algorithm, we are able to build on the analysis to develop a simpler modified algorithm that
retains the global convergence properties. We will refer to it as the “modified alternating
algorithm”. It should be noted that the modified alternating algorithm is under investiga-
tion and it converges faster, but this property may be specific to the 1D problem analyzed
in this paper. Whether these properties hold for the general case is not known at this time.

Throughout this section we do not enforce the requirement that ¢y = 0. It is not
necessary for the class of algorithms discussed in this section for the specified 1D problem.
In addition, we also assume that the length of the convolution filter is given by N, = 2N, —1.

Alternating algorithm

We motivate the first algorithm by considering the residual of the total modeled data using
the extended modeling operator measured in the [? norm. For a given starting slowness s
and convolution filter ¢, we denote this quantity as J¢(sg, c). It is defined below as:

1 ~
Je(s0,€) = 5 I£(s0, €) — d,|13. (21)

It is important to remember that we had originally introduced the convolution filter ¢
to represent an extended set of model parameters that we could change as we like to model
the recorded data, for any starting slowness sg. A natural way to achieve this goal is to
fix sp in equation and then perform gradient descent to determine a suitable c that
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minimizes J¢(sp,c). In fact for fixed sp, the function Je(sg,c) is a semidefinite quadratic,
and thus doing a sequence of steepest descent iterations over ¢ will converge to a global
minimum, which in absence of noise in the data happens to be zero. However, solving such
a subproblem to convergence involves repeated iterations, irrespective of the optimization
algorithm employed.

We look at a cheaper alternative which is to only look at the negative gradient at the
first iteration, still for fixed so but with ¢ = 0. We denote this quantity ¢(sp) and define it
below,

&(sg) = — e =1L (s,) [dr — L(s0,0)| = L/ (sp) [d, — L(s0)] . (22)

s=s0,c=0

Note that —¢(sg) is the same quantity that was plotted before in Figure , i.e the
application of L' (s,) to the data residual £(sg) — d,. This figure can be understood as a
superposition of a central positive band that is invariant with respect to sg, and a diagonal
negative band that depends on sg. The positive band is exactly the term L/ (s,) £(so), while
the negative band is the term L/ (s0) d, appearing in the expression for ¢(sp) in equation
122

It can be mathematically proved that the positive band is invariant with respect to sg.
It is also clear from the figure that the closer sg is to s, the diagonal negative band is closer
to the zero lag coefficient of ¢(sp). This observation is key in understanding this algorithm
and motivates the following idea : given any ¢(sg), we can try to apply a focusing operator
F to transform ¢(sp) to an approximation of ¢(sp+As), where As is a slowness perturbation
towards 5. Mathematically, this idea is expressed below:

Fé(sg) = ¢(sp + As). (23)

Assuming that we have carried out the above transformation, the only thing remaining
to do is to find a way to recover As from Fé(so). An intuitive idea would be to match the
quantities L£(sg, €(so)) and L(s,F¢(sp)) in the least squares sense, where s is close to sg.
For fixed s, this leads to the following objective function:

To(5) = 511E(s0, (50)) — (s, Fe(s0) I3 (24)

The quantity £(so,&(so)) represents the total modeled data using the extended mod-
eling operator for slowness sy and convolution filter ¢(sg), while £(s, F¢&(sp)) represents
the total modeled data for any slowness value s close to sy and the focused convolution
filter F¢(sp). The expectation is that minimizing the objective function Js(s) will yield a
slowness perturbation As towards 5. Putting all these ideas together, we have the following
algorithm:

1. For any starting slowness s, compute &(sg) = L’ (s,) [d, — £(50)] .
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2. Start from s = sg, and solve the following local optimization problem:

S« = argmin Js(s) (25)

S

3. Set sg = s, and iterate 1-3 till convergence.

In the above discussion F is a general focusing operator. However in this section, we
restrict ourselves to the particular case of the shift focusing operator, which was introduced
earlier in equation Note that the choice of the shift focusing operator is inherently
restrictive, because we only shift the coefficients in the extended model vector by one sample
towards the zero lag coefficient. Doing that automatically enforces small changes in As. It
is indeed possible to incorporate bigger shifts up to a limit into F g, and we would obtain
similar results to what we present next. The choice of studying the one sample shift focusing
operator captures all the effects that would be true with bigger shifts. The subsequent
analysis of the alternating algorithm also holds in this regime in a slightly modified form.
In fact, with bigger shifts the rate of convergence is much faster at each iteration when sg
is far away from 5. However, if the shifts are too large we lose the property that As is a
slowness perturbation towards s for all starting slowness sg.

Such ideas of incorporating bigger shifts and speeding up convergence can also be incor-
porated with the use of other types of focusing operators like the shrink focusing operator
F,, introduced earlier.

Numerical results

We provide computational evidence that the alternating algorithm converges to § for any
starting slowness sg. To illustrate this we start by plotting the objective function Jg(s) for
different values of s in Figure [6] It is clearly seen from each panel that minimizing J;(s)
starting from sg will yield a slowness update As towards 5. Therefore, if this process is
repeated at every iteration, we will reach 5. The iterates eventually stop changing when
so = § as the gradient of J,(s) with respect to s at s = § becomes zero. This test shows
that the alternating algorithm converges to the true slowness s starting from any sg.

Another way of seeing the global convergence property is to evaluate the gradient of the

objective function Js(s) for each sy at As =0, i.e 8‘]37(;0). We first calculate the gradient of

Js(s) below:

8‘§§s> =— _ag(j) + aléis)Fé(so)) [Z(s0, &(50)) — £(s, Fé(s0))|
= L)+ L () Fé(so))} |Z(s0,&(s0)) — £(s, Fe(s0) | (26)
_ ) + (s T (s)] [Z(so, &(s0)) — Z(S,Fé(s()))}

Evaluating this quantity at s = s gives:
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6J3(80)

o = — | (s0) + € (s0)F L' (so)| L (s0) [I — Flé(s0) (27)

We have plotted the quantity 8‘]‘:97(;0) as a function of different starting slowness values
s in Figure[7] The figure tells us that for sy > 3, the gradient is always positive, while for
sop < §, the gradient is always negative. Thus, the search direction which is the negative
of the gradient always points in the correct direction. Finally when sy = s, the gradient is

zero, which means that the algorithm will terminate when sg = 5.
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Figure 6: Plot of the function J4(s) for different values of sq : (a) sp = 0.69 ms/m represents
the case when s is slow compared to 3, (b) sp = 1.29 ms/m represents the case when s is
fast compared to s, (c) sop = 0.99 ms/m represents the case when sg is almost close to 5 on
the slower side, and (d) sp = 1.01 ms/m represents the case when s is almost close to § on
the faster side. [ER|] ’biondol/rahulﬁg JS—50,JS—110,JS—80,JS—82‘
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Figure 7: Plot of the quantity 8‘]37{:0) in equation as a function of different starting
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Analysis of the alternating algorithm

The computational evidence of global convergence to § naturally leads us to take a closer
look at the alternating algorithm. Here the main question of interest is “why s the algorithm
converging ?”. We want to isolate the pieces of the objective function that is responsible
for its convergence.

We first focus our attention to the behavior of Jg(s) for some fixed sg. We will also
henceforth use ¢ to denote ¢(sp), unless stated otherwise to avoid excessive notation. We
start by expanding the expression for Jg(s) and group similar terms to get the following:

To(5) = lIE(s0,€) ~ L(s, FO)B = 3 [£(s0) — £(5)] + [ (s0)& — £ (5) Fe] [

= SI11EGs0) — £05)] — [E (50) 7 (50) £(s0) — . () FE (50) £(s0)

: . ) ) (28)
+ L (50) T/ (50) dr = L (5) FL/ (s5) v I3
= v wiE = 2 [l + v+ IwlB] + [y + viw + wha]
where we have denoted,
=u(s) = L(s0) — L(s)
vi=v(s) = —[I: (s0) — L (s) F]i’ (s0) L(s0) (29)
w = w(s) = [L (s,) — L () FIL (s,) d

The different terms involving u,v and w

It turns out that the most interesting term is the one involving only ||w||3. This term is
the key in getting the correct update when sg is far away from s, and so the modeled data
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L(sp) and the recorded data d, don’t interfere with each other. When this is the case, two
key mathematical properties hold for the 1D problem being studied, as stated below:

FL/ (s,)d, = L' (so + As)d, + O((6t)%) (30a)
L (so) L' (so) = L (so + As) L' (so + As) + O((6t)?) . (30b)

Demonstration of equations [30]is straightforward but lengthy; therefore, we decided to
omit it from the text.

In equation As is a slowness perturbation in the correct direction (towards s). The
immediate consequence of these relations is that the quantity %HWH% vanishes at sp + As.
This is illustrated below in equation where the second line follows from (a) and the
third line follows from [B0j(b).

1 - - - -
Slwllz = 5l[L(s0 + As) FL' (s,) d, — L (s0) L' (50) d/|[3

= T (0 + A8 E/ (50 + As) dy — Eso) B (50) &y + OGHNB (31

= %Hf‘ (80) S0) dy _E(SO) L/ (80)d; +O((5t)2)||g

(
=0((t)H) =0

Numerical studies also suggest that the function i||wl|3 is increasing in the interval
[min(so, so + As), max(so, so + As)]. Thus if we carry out local minimization of the 3||w/||3
term starting from the initial slowness sg, we would obtain the new optimal point sg + As,
which is always closer to the true slowness 5. It is to be noted that the above argument only
holds in the regime when s is far away from 5. When this is not the case, the modeled data
L(sp) and the recorded data d, begin to interfere and equation |31) does not hold. However,
numerical studies seem to indicate that one can still get the correct update direction by
minimizing 1||w][3.

These aspects are illustrated in Figure 8] where we have plotted the quantity 3||w(so +
As)||3 as a function of the slowness perturbation As around sg, for different values of
sg. Figures and represent cases when sy and § are sufficiently far apart so that
there is no interference between L(sp) and d,. As can be seen on both the figures, the
function goes to zero on the “correct” side, i.e if we start from As = 0 and try to minimize
31|w(so + As)||3, the optimal As would represent a step towards 5. The same fact is true
also for Figures and which represent cases where sg is so close to § that there is
interference between L£(sg) and d,. In both of these cases, one can see that the minima of
31[w(s0+ As)||3 is still in the right direction, but the function does not become zero at the
minima. This is precisely connected to the fact that equation [31]is losing accuracy in this
regime.

It seems from the analysis of the ||w||3 term that if one ignored all the other terms in
the expression for Js(s), we would still have global convergence. In fact this is actually the
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Figure 8: Plot of the function ;|[w(sg + As)|[5 for different values of sq : (a) s9 = 0.69

ms,/m represents the case when sg is slow compared to 5, (b) sp = 1.29 ms/m represents
the case when s is fast compared to s, (¢) sp = 0.99 ms/m represents the case when s is
almost close to § on the slower side, and (d) sp = 1.01 ms/m represents the case when s is
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case, and would later motivate the development of the “modified alternating algorithm”.
However, we still need to consider the behavior of the remaining terms in the expression for
Js(s) and understand if they help or impede the convergence. We thus turn to the 3|[ul|3
and 3||v||3 terms next.

The 3|[ul|3 term is not useful. Using the definition of u in equation 20} we have ||u||3 =
211£(s) — L(s0)]|3. This looks exactly like the FWI objective function 3|[£(s) — d||3, but
where the recorded data d, = £(5) has been replaced by L(sp), i.e data modeled using an
incorrect slowness sg. We know from the properties of the FWI objective function that it
is a convex function in a sufficiently close neighborhood of the true slowness. Therefore,
this property also carries over to the %||u|3 term, and we conclude that the i[|u|l3 is
locally convex around sg. This means that if we start sufficiently close to sg, the gradient
of s with respect to the %||u|[3 term will always point towards so. This observation is
important, as it says that while the presence of the 1||w]|[3 term in Jy(s) will provide the
correct update direction, including the 3||u||3 term in J,(s) will oppose the correct slowness
update. Clearly, this is not a desirable property and we thus conclude that we should omit
the 1||ul|3 term in the definition of Jy(s).

Finally we consider the 3||v||3 term. It turns out that this term is also convex locally
around sg. For this particular 1D case, an interesting fact about this term is that its profile
does not vary with sg. This is illustrated in Figure[9] As clearly seen, the curves in both
the figures are exactly same. In fact, this is also true for all possible values of sq irrespective
of whether sg is close or far from 5, but this is most likely only true for the specific 1D
problem we are studying. However, we think that the local convexity property of %HvH%
close to sgp may be more general. Thus, presence of this term will also impede convergence
as its gradient will oppose any change from sq.
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Figure 9: Plot of the function ||v(so+As)||3 for different values of sg : (a) so = 0.69 ms/m
corresponds to the case when sg is slower compared to s, and (b) sp = 1.29 ms/m corre-
sponds to the case when s is faster compared to 5. [ER] ’biondol /rahulfig V—50,V—110‘

The cross terms u'v+v'w-+w'u are quite complicated and evades mathematical analysis
at the moment. Preliminary analysis has not revealed any clear understanding of how they
may be affecting convergence. In general, they produce gradients which are sometimes in
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the correct direction and at other times not. So it is quite a miracle that the full expression
for Js(s) produces the correct update direction, as evidenced in the numerical results shown
earlier.

Slowdown of convergence

It is quite clear that for this 1D problem, the effect of the 3||w||3 term dominates that
of the others in the full expression for Js(s). So as a net, we obtain the correct slowness
perturbation As by minimizing Js(s) at every step of the iterative algorithm. Starting from
any slowness sg, one step of the algorithm takes us closer to the true slowness s, and this
process iterated enough times finally takes us to 5. The process converges to § because as
we get closer and closer to §, the updates As get smaller and smaller. In fact for so = 3,

we have a‘]ggg) = 0, and so we do not get any more update.

However from the point of view of algorithmic efficiency and rate of convergence, we
would really like to avoid the ill-effects associated with the terms involving u and v. Based
on the analysis done so far, we would like to only use the 3||w||3 term for solving the local
minimization problem at each iteration. But first, we provide some numerical evidence of
how the convergence is affected. As an example, we have chosen to drop all terms involving
u from the expression of Js(s), and analyze the behavior of the remaining terms given by
Js(s) = 4||w[|3+3||v|[3+Vv'w = J||w+V|3. This situation is plotted in Figures{10(a){10(b)
for slowness values sy = 0.69 ms/m, 0.99 ms/m. In each figure, we have displayed the
quantities 3|[v|3, 3||w|[3 and ||w + v||3. As we can clearly see in both cases, minimizing
2||[w + v|[|5 or [|w]|3 starting from sy will yield a slowness perturbation towards 5. But
in the latter case, the step will be larger compared to the former. It should be mentioned
that similar conclusions are also obtained for the cases when sg is faster than 5. We thus
conclude that minimizing the complete expression for J,(s) will take longer to converge to
§ in the presence of the u and v terms.

Modified alternating algorithm

To address the convergence issue, we now discuss a modified alternating algorithm that is
based on the idea of replacing the original expression for Js(s) in equation 24| by Jg(s) =
Flwl3 = %H[INJ (s0) — L (s) F]L/ (s,) d,||3. As we have shown previously, local minimization
of the 3||w||3 term produces the correct update direction at every iteration. We had also
argued previously based on Figures and that minimizing the %||w||§ term gives
the correct update direction, even when sg is close to s. This is indeed the case for the
choice of the modeling parameters like wavelet and sampling interval used to create those
plots. However, it has also been observed that for other choices of modeling parameters, the
5/|w||3 term starts to have the minima exactly at s, when so starts to get close to 5 and
the algorithm terminates before reaching s. It is quite difficult to characterize this situation
analytically due to the interference between L£(sg) and d,, but we suspect that the effect is
related to the shape and frequency of the wavelet and also numerical inaccuracies stemming
from the choice of the modeling parameters. We discuss a robust alternative below that was
found to not suffer from this issue by modifying the objective function in such a manner
that when s is far from §, it is exactly equal to ||w||3, and the only differences are when
sg 1s close to 8.
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Figure 10: Plot of the different terms 1||v(so + As)|3, 1||w(so + As)||3 and 3||w(so +
As) + v(so + As)||3 for different values of s, indicated by the red, blue and black curves
respectively : (a) sp = 0.69 ms/m represents the case when sg is slow compared to 5, and
(b) sp = 0.99 ms/m represents the case when sq is almost equal s, but slightly slower. [ER]

| biondol /rahulfig VW-50,VW-80]

We first define the unit shift operators in the positive and negative directions S and
S_. S, defines a linear map RV — RN, where each sample is shifted down by one sample.
S_ defines a linear map R™ — RN7 | where each sample is shifted up by one sample. These
operators have the explicit matrix form as defined below:

wn
+
|
it
Il
w
)
—

L 1 0- N-XN- L 4 N XN,

We next introduce the masking operator M;. It also defines a linear map RV — RV7,
and its action on a vector ¢ € RV is defined as follows:

Cj, lfjgl

33
0, ifj>=q (33)

M;c =c¢ ,where, ¢; = {

The above quantities S;,S_, M, form the building blocks of the modified algorithm.
For the remainder of this section we will redefine the quantity & to be &¢ = L' (s,) d,.. We also
need to define two more quantities r (s) and r_(s), which can be interpreted as generalized
residuals and defined below:

ry :=r,(s) =L(s)MoS;¢—L(s,) M_1¢&
L
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It is instructive to look at what the combination of terms appearing in equation
involving S4, S_ and Mg, M_; look like when applied to a vector c. To clarify this point, we
choose a dummy vector ¢ corresponding to the choice of parameters Ny =5, N, = 2N;—1 =
9 as shown in Figure We then applied the unit positive and negative shifts and plotted
the results in Figures[11(b)|and [I1(c)} respectively. In Figures[12(a)} [12(b)} [12(c)} and [12(d)|
we plot the terms MpS;c, M_jc, [ — M_1]S_c and [I — My]c, respectively. As seen from
these figures, the terms MgSc and M_;c are exactly shifted copies of each other with
the property that all positive lag coefficients are zero. Similarly, the terms [I — M_;|S_c
and [I — Mjy]c are also shifted copies of each other with the property that all negative lag
coefficients are zero.

Thus ry term can be interpreted as the difference between the data produced by the
linearized extension using the starting slowness sy and convolution filter M_j¢ (which is
the L (s,) M_1¢& term), and the linearized extension using a slowness s close to sy and
convolution filter MS ;& (which is the L (s) MoS, ¢ term). A similar interpretation also
holds for r_(s). It is clear from the definition of the mask operator that when the support of
C is strictly negative, r_ = 0 holds identically, and when the support of ¢ is strictly positive,
r+ = 0 holds identically. These situations correspond to the cases so >> 5 and sg << 5
respectively and hence the modeled data £(sg) and recorded data d, do not interfere with
each other in both these cases.

s So

Amplitud
Amplitude
Amplitud

1 o
Lag coefficient

(a) (b) ()

1 T
Lag coefficient

Figure 11: Plot of the result of application of the shift operators to a vector corresponding
to the choice of parameters Ny = 5, N; = 9. (a) This is the vector c. (b) Result of
application of unit positive shift S c. (c) Result of application of unit negative shift S_c.
[ER] | biondol /rahulfig C,SpC,SmC|

The preceding observations allow us to define the modified objective function Jy/(s)
in terms of the squared [? norms of r and r_ which we define to be Jy(s) and J_(s)
respectively, as below:

1 1+ PO .
T (s) = gllrells = ST () MoS 1€ = T (s0) M85

Jo(8) = 5lle-]B = Sl () [1 - M_yJS_e — L (s) (1~ Mole[} (35)
Im(s) = Jy(s) + J-(s)

We can finally write the modified alternating algorithm:
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Figure 12: Plot of the composite terms appearing in equation involving the mask and
shift operators, with vector c in Figure (a) MoSc - The result is the zeroing of all
samples of S c after the sample at index 0. (b) M_jc - The result is the zeroing of all
samples of ¢ after the sample at index -1. (c) [I — M_1]S_c - The result is the zeroing of
all samples of S_c before the sample at index 0. (d) [I — Mjg]c - The result is the zeroing
of all samples of ¢ before the sample at index 1. [ER] ’biondol /rahulfig C1,C2,C3,C4
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1. ¢=1L (s,)d,.

2. Start from s = sg, and solve the local minimization problem:
s = argmin Jys(s) (36)
S
3. Set sg = s« and iterate 1-3 till convergence.

The objective function Jy/(s) has two interesting properties. The first one is that when
so is far away from 8, Jp/(s) = 3||w||3. The second property is that when so >> 5, J_(s) =0
and hence Jy(s) = J4(s), and similarly when sg << s, J4(s) = 0 and hence Jy/(s) = J_(s).
Both J(s) and J_(s) are non-zero only when L(so) and d, are interfering, which happen
when s is close to 5. We have plotted the behavior of the functions Jys(s), J4(s), J—(s) in
Figure It is clear from these plots that the modified alternating algorithm will converge
to the true slowness s from any starting slowness sg, as minimizing Jjs(s) yields a step As
towards s.

We finally note that the modified alternating algorithm converges faster than the alter-
nating algorithm. This can be realized by noting the fact already mentioned that for sg
sufficiently far away from 5, Ja(s) = 3||w|[3. This observation can be seen by comparing
the profiles of Jy/(s) in Figures [13(a)| and [L3(b)} with the profiles of 3||w||3 in Figures M
and Thus in the regime when sq is far away from s, the convergence is controlled by
the behavior of the §||w||3 term. But we know that the ||w||3 term has better convergence

than Js(s), and thus so does the modified alternating algorithm.

It must be mentioned here that just like it was discussed that it is possible to incorporate
the idea of bigger shifts in the shift focusing operator used in the alternating algorithm,
it is possible to do the same thing also with the modified alternating algorithm. Doing so
will increase the magnitude of the update As obtained at each iteration leading to faster
convergence, but this will only work up to some maximum shift beyond which the global
convergence property will be lost. However, the essential features of running the alternating
algorithm with bigger shifts are similar to what have been presented here with the unit shift
operators.

FWI-WEMVA OBJECTIVE FUNCTION

Finally we analyze the behavior of the following objective function that incorporates the
focusing operator directly in the data fitting term:

Jew(s) = 5 |[@-F)E () [£(s.c=0)~d]

_ %H(I—F) L (s)[L(s) - d] (37)

2

This objective function is related to the one presented by Symes| (2008) in equation 14. One
of its attractive properties is that it depends on slowness through both the data residuals
(L (s) —d,) and the focusing of the backprojection of these residuals into the space of ¢
by the operator L' (s). Our conjecture is that during the inversion process, the gradient
component corresponding to the direct dependency on the data residuals introduces short
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Figure 13: Plot of the functions Jas(s), J4(s), J_(s) for different value of starting slowness
so : (a) sp = 0.69 ms/m represents the case when sy is slow compared to s, and hence
J+(s) = 0, (b) so = 1.29 ms/m represents the case when sy is fast compared to s, and
hence J_(s) = 0, (c) sp = 0.99 ms/m represents the case when sg is almost close to 5 on
the slower side, and (d) sop = 1.01 ms/m represents the case when s¢ is almost close to § on
the faster side. [ER] ’biondol/rahulﬁg Jm-50,Jm-110,Jm-80,Jm-82
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wavelengths into the slowness model, whereas the gradient component corresponding to
the focusing of ¢ introduces long wavelengths into the slowness model. If that were the
case, optimizing this objective function would have the potential of achieving simultaneous
inversion of all model scales. Unfortunately, this conjecture cannot be fully tested using our
simple 1D model because we assumed the slowness to be a scalar, and obviously cannot be
decomposed into different scales.

Another attractive properties of the objective function in equation is that, when
the amplitude focusing operators Fp and F¢g are used, its behavior substantially changes
according to the value of the parameter mw. These changes in behavior of Jpw can be easily
understood by analyzing the gradient of the objective function with respect to slowness.
This gradient has two terms because both £ and L’ are function of the slowness. The term
deriving from the dependency of £ from s is a FWI-like gradient, whereas the one deriving
from the dependency of L/ from s is a WEMVA-like gradient. The total gradient can be
expressed as follows:

View = L' (s)L(s)I-F) (I—-F)L (s)[L(s) —d,] (38)
FWI-like gradient
+ [L(s)—d,) L(s)(I-F)T-F)L'(s)[L(s) —d,]. (39)
WEMVA —like gradient
= VJrw + VJIrw (40)

When 7w = 0 the first term in the gradient (VJpw in equation is close to the conven-
tional FWI gradient because LL' (£ (s) — d,.) & (£ (s) — d,.) by virtue of the approximation
in equation @ It also dominates the gradient, because the second term (V.Jpw in equa-
tion is small (it would be actually zero if we had not imposed the constraint of ¢y = 0).

In contrast, when mw = 1, the first term in the gradient, VJgw, is small because the
application of (I — F)' (I — F) strongly attenuates the time lags in ¢ that contribute the
most to the backprojection of the residuals (see Figure ) Consequently the WEMVA-like
term, VJrw, dominates the gradient, and ensures convergence towards the global minimum.

This behavior of the objective function in equation [37]is illustrated by Figure[14] through
Figure Figures |14 and |15 show Jpw (s,) for F = Fp and F = F¢, respectively. In each
figure, the three panels correspond to different values of mw: for panels a) 7w = 1.0, for
panels b) 7w = 0.5, and for panels ¢) 7w = 0.0. The objective functions in the leftmost
panels are convex. A gradient-based method would have no problems to converge towards
the global minimum; the convergence, however, would be slow. In the middle panels,
the objective functions are ”tighter” but still convex. In contrast, the objective functions
plotted in the rightmost panels are oscillatory and may cause similar convergence problems
as experienced in the minimization of conventional FWI objective function. On the other
hand, the high sensitivity of these oscillating objective functions to small changes in slowness
may also enable the inversion to achieve high resolution, once we are close enough to the
correct slowness. These observations suggest the application of an iterative inversion process
that starts with wide focusing operators (7w = 1.0) and that slowly tightens the focusing
operators toward mw = 0.0 as the data kinematics are fitted. Such an algorithm has the
potential of achieving both robust global convergence from arbitrary starting model and
fast local convergence close to the desired global minimum.
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Figures [16] and [17] show the FWI-like gradient term for F = Fp and F = F¢, whereas
Figures [I§] and [I9] show the WEMVA-like gradient term for F = Fp and F = Fg. Notice
that the FWI-like gradient term is strongly oscillatory for all values of 7y, but also that its
amplitude is higher than the amplitude of the WEMVA-like term only for 7w = 0 (panels
c) in the figures. In contrast, the WEMVA-like term of the gradient that is shown in
panels a) and b) is well-behaved for both choices of focusing operator. However, close to
convergence; that is for s, close to 5, the gradient is small. If we had to rely only on this
gradient-component, the resolution of the inversion would be likely to suffer. In panels c)
the WEMVA-like term becomes oscillatory and has “wrong” sign even close to convergence,
but its amplitude insignificant compared to the amplitude of the corresponding FWI-like
gradient terms.

We can also observe the WEMVA-like gradients in panels a) and b) are smoother when
F = F¢ (Figure than when F = Fp (Figure [18). This difference may be indicative
of a difference in robustness between the two focusing operators. To test this hypothesis
we conducted a a similar test, but with a zero-phase wavelet in place of the Ricker-derived
wavelet shown Figure [Th. The zero-phase wavelet has the same central frequency as the
Ricker-derived wavelet, but it is more ringing. Consequently the objective functions and
gradients are more oscillatory than the ones shown in previous figures.

Figure shows the objective function computed using the highly-ringing zero-phase
wavelet when F = Fp and 7w = 1.0; it corresponds to the objective function computed
using the Ricker-derived wavelet and shown in Figure [I4h. With this new wavelet, the
objective function is not any more convex, and the total (FWI-like plus WEMVA-like term)
gradient (Figure ) has two zero-crossing on each side of s. On the contrary, the objective
function computed with F = F¢ (Figure 21h) is still convex; its total gradient (Figure 21p)
gets close to the horizontal axis, but it does not cross it, except at the expected zero-crossing
at s, = 5. This difference in behavior can be explained by comparing the WEMVA-like
gradient terms (Figure and Figure [21¢). The one computed with F = F¢ is smoother
than the one computed with F = Fp.
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Figure 14: Jpw (S,) computed with F = Fp and with: a) 7oy = 1.0, b) 7w = 0.5, and ¢)
7w =0.0. [ER] |biondol/. J-W-F-DSO

DISCUSSIONS

All the three approaches that we presented to solve the extended inverse problem show
promises to lead to inversion algorithms with robust global convergence. However, we have
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Figure 15: Jpw (s,) computed with F = Fg and with: a) rw = 1.0, b) 7w = 0.5, and c¢)
7w =0.0. [ER] |biondol/. J-W-F-Band
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Figure 16: VJgw (s,) computed with F = Fp and with: a) oy = 1.0, b) 7wy = 0.5, and c)
7w = 0.0. [ER] biondol/. Grad-F-DSO|
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Figure 17: VJgw (s,) computed with F = Fg and with: a) rww = 1.0, b) 7wy = 0.5, and c¢)
7w =0.0. [ER] |biondol/. Grad-F-Band]|
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Figure 18: VJpw (s,) computed with F = Fp and with: a) oy = 1.0, b) 7w = 0.5, and ¢)
7w =0.0. [ER] |biondol/. Grad-W-DSO
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Figure 19: VJpw (8,) computed with F = Fg and with: a) 7w = 1.0, b) 7wy = 0.5, and c¢)
w = 0.0. [ER] ’biondol/. Grad-W-Band
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Figure 20: a)Jpw (s,) computed with a zero-phase wavelet that was more ringing
than the Ricker-derived wavelet used for the previous figures. b) VJpw (s,), and c)
VJrw (So). All these three curves were computed with F = Fp and nw = 1.0. [ER|]
biondo1/. J-Grad-DSO-bp|
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Figure 21: a)Jpw (s,) computed with a zero-phase wavelet that was more ringing
than the Ricker-derived wavelet used for the previous figures. b) VJpw (s,), and c)
VJrw (So). All these three curves were computed with F = Fg and 7w = 1.0. [ER]
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not sufficiently developed our analysis to draw firm conclusions on the rate of convergence
of the proposed methods. Since the development of efficient inversion algorithms is one of
our main goals, further work in this direction is needed.

The 1D wave-propagation problem we used to analyze the proposed inversion methods
has two useful advantages: 1) it enables comprehensive analysis of global convergence be-
cause it is computationally fast and 2) objective functions and gradients can be analyzed
as simple 1D plots. However, it has also two (related to each other) main shortcomings:
1) it models transmitted events but not reflected ones, and 2) its model space (a simple
scalar) cannot be decomposed into different scales, and thus does not enable insights on how
different model scales (long vs. short wavelengths) behave during the inversion process.
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Deblending using the radiality attribute

Joseph Jennings and Shuki Ronen

ABSTRACT

The non-uniqueness of simultaneous source deblending inversion is a challenge in si-
multaneous source separation. We propose to add another constraint to this inversion
using radiality, an attribute that can be computed from multicomponent data that
are commonly recorded during ocean-bottom node (OBN) or multi-sensor streamer
surveys. We describe a simple, proof-of-concept scheme that demonstrates the use of
radiality as an additional constraint and show results on an OBN field dataset.

INTRODUCTION

Simultaneous source shooting is an emerging method used to reduce acquisition costs while
still providing high quality seismic data. Additionally, it is used to improve data quality
while keeping the cost constant. In order to accurately image these data, there exist many
challenges due to the cross-talk from interfering sources. The process of separating the data
and removing the seismic interference between the simultaneous sources is called deblending.

One proposed solution for deblending is to separate the interfering source from the
dominant source via a sparse inversion approach (Abma et al., 2010; Ayeni et al., 2011)). In-
trinsically, this approach poses a highly-underdetermined problem that must be constrained
via a regularization term in addition to the data fitting term in the objective function. Ef-
fective choices for this regularization have been using continuity in the common-receiver
domain.

We propose an additional constraint for deblending inversions from using multicom-
ponent data. We show that using additional information from the other components of
an ocean-bottom node (OBN) dataset can provide a better starting model for deblending
inversion. As of now, we are using four component OBN data. However, this method is
applicable to three component multi-sensor streamer data and perhaps also with attributes
calculated from single- or dual-component conventional streamer data with the in-line hori-
zontal component computed from the in-line spatial derivative of the data and the cross-line
horizontal component unknown.

In Jennings and Ronen| (2016), we described both radiality and source similarity at-
tributes. In this report, we further develop the radiality attribute. We first describe how
using the radiality attribute can provide additional information that can aid deblending
inversions and show examples on a synthetically blended field dataset from the North Sea
(Alves, 2015)). We then provide a simple proof-of-concept method that shows that using
radiality, we can create more accurate starting models for a deblending inversion and we
demonstrate these results on the same North Sea dataset.
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METHODOLOGY

Additional information from multicomponent data

To understand how using multicomponent data can aid in deblending seismic data, let us
consider a simple example. Figure [I| shows the acquisition geometry of a synthetically
blended dataset from the Forties oil field in the North Sea. Note that because these data
were blended synthetically, this creates a worst case scenario in terms of signal to noise
ratio.

1600

Figure 1: The simultaneous source
acquisition geometry over the For-
ties oil field in the North Sea. Only
two sources were used in the blend-
ing of these data and their locations EO
are indicated by the red and blue cir- ~ 3
cles. Both sources circled around a ™
platform under which ocean-bottom
nodes were positioned. The black
star indicates the location of the re-
ceiver node use in this study. [ER|]
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For the purpose of explaining the radiality attribute, let us consider only two shots
that have a source-receiver azimuthal difference of approximately 90°. These two source
positions and the node location are shown in Figure[2] The corresponding multicomponent
data recorded at the node location from these two shots are shown in Figure [3| Examining
the hydrophone and vertical components (Figures and , we can clearly observe
both source 2 and source 1 as expected from a trace of the blended common receiver gather.
In Figure we observe the radial trace rotated toward the azimuth of source 1. It is
apparent that after rotation, source 1 is the dominant source on the radial component and
source 2 has much less energy. Likewise, on the transverse component (Figure , which
points almost directly toward the source 2 azimuth, source 2 is the dominant source and
source 1 has much less energy. This is because almost all the waves that radiate from any
acoustic source have radial polarity.

We observe a similar result when the data are rotated toward the azimuth of source
2. Figure [4] shows the result of rotating the data toward the azimuth of source 2. Again,
observing the radial and transverse components (Figures and , it is clear that by
rotating into the azimuth of source 2, we can identify the dominant source at any time on
a blended trace.
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Figure 3: Data recorded from source locations shown in Figure ‘DA’ indicates direct
arrival. Source two was recorded first and then source one. Also note that source two is much
stronger than source one in amplitude due to its proximity to the node. Panel (a) shows
the hydrophone component, (b) the vertical component, (c) the radial component rotated
toward the azimuth of source 1, and (d) the transverse component (rotated perpendicular
to the azimuth of source 1). Note how source 1 is distinct in (c) and source 2 in (d). [ER]
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Figure 4: Same as data shown in Figure |3| but now rotated into the azimuth of source
2. As in Figure [3] ‘DA’ indicates the direct arrival. Panel (a) shows the hydrophone
component, (b) the vertical component, (c) the radial component rotated toward the az-
imuth of source 2 and (d) the transverse component (rotated perpendicular to the az-
imuth of source 2) Note how source 2 is distinct in (¢) and source 1 in (d). [ER]
’josephl/. b21-h-raw624-anno, b21-v-raw624, b21-r-raw624, b2l-t—raw624‘

Radiality and deblending

To turn this identification capability into a deblending method, we produce a radiality
attribute which may be used as a constraint in an inversion problem. Using radiality, we
can detect the presence of the dominant source at any time on a blended trace from a
multicomponent common receiver gather. This information stems from the fact that when
rotating into the different source-receiver azimuths, one source is significantly more radial
than the other relative to the location of the node. Therefore, we desire to quantify how
radial the data are at any given time. In|Jennings and Ronen (2016|), we defined the radiality
of a trace as the ratio of the radial and transverse envelopes. Thus, the radiality is small
when non-radial interfering sources are recorded. As an extension of radiality, we define a
new attribute as the ratio of the transverse envelope and the radiality. Mathematically, this
may be written as:

E E E?
transverse _ Itransverse _ transverse

Radiality =~ —_Lradial Fradial

transverse

which is just the ratio of the square of the transverse envelope and the radial envelope. We
denote this new radiality attribute as T%. Figure 5| shows the overlay of this attribute over
the hydrophone component. From this figure, it is clear that the 72/R attribute detects
the interfering source relative to the dominant source. Note that from this point onward
when referring to the T2 /R attribute, we use the term “radiality attribute”.
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Figure 5: Radiality attribute overlain on the hydrophone component. The radiality
attribute of source 1 is shown in panel (a) and the radiality attribute from source 2
is shown in panel (b). In panel (a) the radiality attribute is maximum over the di-
rect arrival of source 2, the interfering source. Likewise, in panel (b), the radial-
ity attribute is maximum over source 1, the interfering source in this panel. [ER|]
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RESULTS

As a simple proof-of-concept of how this radiality attribute can be used in a deblending
inversion, we use it to mute the data from the interfering source and then interpolate to
fill in the gaps. The interpolated data give us a better starting model for a deblending
inversion. Figure [6] shows 1000 traces of the blended hydrophone component of a common
receiver gather from the same North Sea, Forties oil field dataset described previously. The
computed radiality attribute on this common receiver gather is shown in Figure The
oscillating light and dark regions are indicative of the azimuthal difference of the sources
(i.e. brighter regions indicate an azimuthal difference closer to 90°). Figure shows the
deblended data after muting the interference and linearly interpolating from shot to shot.

Comparing Figures |§| and it is clear that in the regions of approximately 15-
90°azimuthal difference between the sources, much of the interference was removed. How-
ever, in areas where this is not the case, the interference is still largely present. Figures
8(a)H8(c)| show a zoom-in of each step of the deblending scheme. Again, from these figures
it is clear that the radiality attribute has successfully detected much of the interference in
regions of large azimuthal difference. In regions where the azimuthal difference is small, the
interference has been largely untouched.

As we only linearly interpolated from trace to trace, in regions where there exist steep
events or large gaps, the linear interpolation will not be very accurate. If we first flatten
the data with a normal moveout correction (NMO), and interpolate the flattened gathers,
we achieve better interpolated data. The results of interpolating in the NMO domain are
shown in Figure The difference between this result and the original unblended data
(shown in Figure is shown in Figure In this figure, it is clear that much of the
interference has been removed. Note also the errors in interpolation near the direct arrival
(between the shot range 200-250 and 500-600).
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Figure 6: 1000 traces from the hy-

drophone component of a blended —w
common receiver gather from the o~
Forties oil field data. [ER] gm
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DISCUSSION

One limitation of this method, as shown in Figure [§] is that if the interfering source is in
the same azimuth as the primary source, or 180° away, the radiality attribute is of little use.
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Figure 7: (a) The radiality attribute computed over the 1000 traces shown in Figure @ (b)
The deblended data obtained via muting the interfering shots and then linearly interpolating
from shot to shot. Note in panel (a) that the oscillating dark and light regions occur due to
the changing source azimuths. From panel (b) it is clear that where the radiality attribute
is high (the regions where the azimuthal difference between the sources is approximately
15-90°), our deblending scheme removes the interfering sources with much greater success.
[ER] |josephl/. t20r-002b12, interped-002b12|




130 Jennings and Ronen SEP-165

Shot number Shot number
200 300 400 500 600 200 300 400 500 600

0.2

<« <«

~¥ :
n o o

2

E

ol €4
o o

0.8

200 300 400 500 600 200 300 400 500 600
o T — : et o

0.4

Time (s)

0.6

0.8

200 300 400 500 600 200 300 400 500 600

0.8

()

Figure 8: A zoom-in of the common receiver gather from shot 200 to 600. (a) The
synthetically blended data. (b) The data after muting the interfering shots using the
radiality attribute (Figure [7(a)). (c) The muted data linearly interpolated from shot
to shot. (d) The muted data linearly interpolated from shot to shot in the NMO
domain. (e) The original unblended data included for comparison and (f) the differ-
ence between the deblended data shown in (d) and the unblended data (e). [ER]
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While it is possible to extend the method to 180° separation, it is inherently impossible to
extend it to 0° separation. Another limitation, which was not apparent in the deblending
demonstration of Figure [§] but is a potential problem, is related to the synchronization of
the sources. If the sources are synchronized, then filling in the declared missing data with
interpolation will be impossible as the gaps will extend laterally from one trace to another
on a common receiver gather. Both of these limitations can be mitigated by survey design to
minimize the shots with small azimuthal difference and to avoid synchronization between the
sources. For example, avoiding synchronization could be done if each source vessel moved
at a slightly different velocity. Mitigated or not, with these limitations, radiality provides
additional information and serves as an additional constraint for deblending inversions.

Another limitation of the method is that primary source waves may arrive on a non-
radial direction if they are reflected or scattered from the side. Using radiality, such waves
may erroneously be identified as seismic interference. For this reason, in the future it will
be important to develop a more sophisticated constraint on the seismic interference using
a probability instead of a harsh mute as we have shown so far.

CONCLUSION

We have shown that using radiality, an attribute computed from the horizontal components
of the geophone or ocean-bottom node, we can identify the presence of the dominant source
at anytime given that the source vessels have different source-receiver azimuths. We pro-
vided a simple proof-of-concept example in which using the radiality attribute, we zeroed
the energy from the interfering source. We then interpolated the zeroed data which pro-
vided a result that has less interference than the blended data and thus could prove to be
a more accurate starting model as input to a full deblending inversion.
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Detecting karst caverns by pattern recognition

Fantine Huot and Robert Clapp

ABSTRACT

Strong localized heterogeneities in the subsurface, such as karst caverns and sinkholes,
cause scattering of seismic waves, thereby degrading the images obtained in conven-
tional processing. We explore the possibility of using pattern recognition techniques for
detecting these strong heterogeneities from seismic data. Through synthetic models,
we generate data with significant scattering. We then perform reverse time migration
(RTM) and use various pre-processing techniques to engineer features fit for supervised
learning algorithms. Eventually, we use support vector machines (SVM) to classify
these features and retrieve the approximate cavern locations.

INTRODUCTION

The Tengiz carbonate platform in northwestern Kazakhstan is one of the largest producing
oil fields in the world. Recently, exploration has targeted karst-like zones with cavernous
porosity along the margin of the platform. [Lester et al. (2015) showed that these karst
caverns appear as localized high-amplitude events on seismic volumes but can also resem-
ble residual noise that may have persisted through processing and imaging. Such localized
features induce positional uncertainty in the migrated velocity model and can represent
drilling hazards. While various methodologies such as diffraction migration or beam migra-
tion (Fomel et al., [2007; |Berkovitch et al., 2009} Lester et al., [2015) have been proposed to
address the issue of imaging these strong heterogeneities, herein we investigate the potential
of techniques commonly used in pattern recognition.

The first algorithm for pattern recognition was introduced 80 years ago (Fisher} 1936]).
With the advent of computers and the information age, statistical learning has become a
highly explored field in many scientific areas as well as marketing, finance, and other business
disciplines. In recent years, new and improved software packages have significantly eased
the implementation burden for many statistical learning methods, providing scientists and
practitioners with complete toolkits for training, testing, and deploying models with well-
documented examples for all these tasks (Collobert et al.,|2002; |Pedregosa et al 2011} James
et al., 2013} |[Jia et al., [2014). With algorithms automatically tracking faces in photographs
(Osuna et al.,[1997), what would prevent us from training machines to detect specific seismic
responses in our data?

We first generate synthetic seismic data from a cavern model. We then perform reverse
time migration (RTM) and apply various pre-processing techniques, such as continuous
wavelet transforms (CWT) and principal component analysis (PCA), to build appropriate
input features for our pattern recognition problem. We then train a support vector machine
(SVM) classifier to detect the migrated seismic signature associated with caverns and apply
this classifier to different portions of the data to retrieve the approximate cavern locations.
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SYNTHETIC DATA GENERATION

Cavern model

The methodology used in this study is based on the one presented by Huot and Clapp|
(2016). We start by generating seismic data from a synthetic cavern model.

For this purpose, we create a three-dimensional synthetic model of an underground karst
channel system in a limestone bedding as illustrated in Figure[I] Caverns of different scales
are inserted at random locations in the model and connected with channels partially filled
with water. In the following, we use four 2D slices along the y-axis to generate data which
we use to train our machine learning model, and a 2D slice along the x-axis to generate
data to test our classification performance.

500 1000 1500 2000 2500 3000 3500
X(m)

500 1000 1500 2000 2500 3000 3500 4000 4500
P-Wave velocity (m/s)

Figure 1: 3D synthetic cavern model built for this study. It features a randomly generated
karst channel system in a limestone bedding. The model is color-coded by P-wave velocity.
The detailed description of this model is provided in Huot and Clapp (2016). [NR]

‘ fantinel/. model ‘

Data modeling

For each of these 2D model slices, we generate synthetic seismic data using wave propagation
code based on the one developed by . We use a Ricker-type explosive source
with a peak frequency of 20Hz. The recordings for a single shot clearly illustrate the
scattering effect associated with the presence of the caverns (Figure 2(b)). From the zero-
offset common midpoint (CMP) gathers, we observe that the caverns incoherently scatter
the reflected energy (Figure , thereby preventing accurate identification of the cavern
locations.

BUILDING FEATURES FOR MACHINE LEARNING

We now process the generated data to build features with a suitable format for machine
learning algorithms.
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Figure 2: (a) One of the 2D model slices from which we generate data to train our clas-
sification algorithm. (b) Single shot gather obtained from this model slice with a source
located at the surface at x = 2000m. (c) Zero-offset common midpoint gather. (d) RTM
image generated from this model slice. We clearly distinguish the scattering effect due to
the presence of the caverns. [CR] ‘fantinel /. train,shot,cmp,rtm
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To set up a classification problem, we need to associate each portion of the data with
a binary label indicating whether or not it corresponds to a cavern location. Therefore,
we first perform reverse time migration (RTM) in order to map the data to model space,
allowing us to label the migrated image points using the synthetic model slices as reference.
Figure provides an example of one of these RTM images. The RTM image also suffers
from the strong scattering due to the presence of the caverns.

Starting with the labeled RTM images, we then apply various processing steps to com-
pute multiple data features:

We perform both acoustic and elastic modeling and migration, creating two sets of
features.

We apply a Laplacian filter on the RTM images to attenuate the migration artifacts
(Biondi, [2006).

We apply gain power with depth to compensate for amplitude attenuation.

We apply Gaussian smoothing and spatial frequency bandpassing to reduce high fre-
quency jitter.

We apply continuous wavelet transforms (CWT). CWT are commonly used in pattern
recognition, as they have the ability to decompose complex patterns into elementary
forms. They measure the similarity between a signal and an analyzing wavelet by
comparing the input signal to shifted and compressed or stretched versions of the
wavelet. An overview of CWT is provided in [Huot and Clapp| (2016|). In this study,
we use both Ricker and Morlet wavelets as the mother wavelets, producing multiple
sets of features. To each image point, we associate the full panel of dyadic frequencies
obtained after applying CWT, as described by Huot and Clapp (2016).

e We run a sliding window of three different sizes (8m x 8 m, 12m x 12m, 16 m x 16 m)
over the image. We associate the full set of features captured by each sliding window
to the image point located at its center.

e We standardize all the variables to have zero mean and standard deviation one.

e For faster computation, we perform principal component analysis (PCA). When faced
with a large set of correlated variables, principal components allow us to summarize
the dataset with a smaller number of representative variables that collectively explain
most of the variability in the original set. A full overview of PCA is provided in
Huot| (2016). Herein, for each feature set, we use the minimum number of principal
components that collectively explain at least 90% of the total variance.

Using different combinations of these processing steps, we build multiple sets of features
and data characteristics associated with binary labels. We obtain distinct sets of training
features and testing features using the data generated from the different 2D model slices.
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CLASSIFICATION

Support vector machines (SVM)

In the following, we set up a classification algorithm to retrieve the cavern locations from
the data features we have designed. As our problem contains highly correlated features,
we decide to use support vector machines (SVM), known to be efficient for these type of
problems (Hsu et al., [2003; [Hastie et al., [2005).

SVM classifiers use large sets of labeled training data to build a decision function. They
can then be applied on other portions of data to predict the corresponding labels. SVM
classifiers are effective in high dimensional spaces, and use only a subset of training points in
the decision function, making them memory efficient. They are versatile as many different
kernel functions can be specified for the decision function, making it possible to define non-
linear boundaries. An overview of the theory behind SVM is provided in [Huot and Clapp
(2016)).

Implementation

In recent years, new and improved software packages have significantly eased the implemen-
tation burden for many statistical learning methods. In this study, we use the following
Python packages:

e For data visualization and performing operations on data: pandas
(http://pandas.pydata.org/)

e For machine learning models: scikit-learn (http://scikit-learn.org/stable/)

e For plotting data: matplotlib (http://matplotlib.org/)

e For progress monitoring: tqdm (https://pypi.python.org/pypi/tqdm)

Evaluation score

To evaluate how well our SVM classifier retrieves the cavern locations, we have to introduce
an evaluation score. Common metrics used for binary classification are precision, recall
and Fl-score (Hastie et all [2005)). A visual representation of these metrics is provided in
Figure Precision is the fraction of retrieved instances that are relevant, while recall is
the fraction of relevant instances that are retrieved:

True positives

Precision = — —
True positives 4 False positives

True positives
Recall = P

True positives + False negatives

The F1-score is the weighted harmonic mean of precision and recall, and hence provides

a combined measure: o
Precision - Recall
F=2

" Precision + Recall
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relevant elements
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selected elements
Figure 3: Visual representation of common metrics used
for binary classification: precision and recall. Source:
en.wikipedia.org/wiki/Precision_and_recall /media/File:Precisionrecall.svg [NR|
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Classification results

We build an SVM classifier for each different feature set. We use a radial basis function
(RBF) kernel. For each classifier, we select the SVM cost parameter C' that provides best
evaluation score among 7 different values : 0.001, 0.01, 0.1, 1, 10, 100, 1000. A detailed
description of these parameters is provided in [Huot and Clapp| (2016]).

The feature sets that yield best classification results are those that have CWT in the
pre-processing steps. The sliding window also improves classification results significantly.
However, even the best classification results we obtained return many false positives, as
illustrated in Figure [l The associated performance metrics are provided below:

Precision Recall F1l-score
Limestone bedding 0.99 0.95 0.97
Caverns 0.40 0.80 0.53
Avg / total 0.97 0.94 0.95

When examining the classification results, it appears that the classifier also returns a
certain number of false positives on the training data, indicating that our classification
model suffers from high bias. This problem can potentially be improved by adding more
features. Instead of testing sets of features one-by-one to identify which features yield best
evaluation score, it may be preferable to provide the classifier with the full set features that
can be computed from all the pre-processing steps, and skip the PCA.

It also appears that the test error decreases with the number of 2D model slices used
for the training data, suggesting that a larger training set will help.
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Figure 4: (a) 2D model slice on which we test our classification algorithm. (b) Classification
results. While we seem to retrieve the approximate cavern location, the classifier returns
many false positives. [CR] ‘fantinel /. test,result

DISCUSSION

The classification results indicate that it is possible to retrieve approximate karst cavern
locations from seismic recordings using pattern recognition algorithms. Migration is an
essential step for accurate labeling of caverns. However, the classification tests returned
many false positives. These results seem to indicate that the classifier would benefit from
using more input features and larger training data. Another idea would be to change
classification algorithm for an edge detection method.

The next step would be to explore whether a classifier could be trained on synthetic
data, which can be conveniently labeled, and be used to predict cavern locations on field
data. We were provided a with a three-dimensional mapping of the cavern locations of the
Lechuguilla channel system from the Carlsbad Caverns National Park. It features a fine
and intricate channel system with caverns of various scales. This would allow us to generate
data on a configuration that is closer to reality than our simplistic synthetic model.
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Automatic wave mode identification using machine learning

Ohad Barak and Fantine Huot

ABSTRACT

In addition to reflection data, seismic recordings contain many different wave modes
that are either unwanted or unneeded, degrading overall data quality. We use support
vector machines (SVM), a type of supervised learning algorithm, for automatic wave
mode classification. We decompose multicomponent translational and rotational seis-
mic data from a field survey into polarization vectors, by applying continuous wavelet
transforms (CWT) followed by singular value decomposition (SVD). We train an SVM
classifier to distinguish surface waves from body waves from these polarization vectors,
and show classification results on different portions of the field data. Our method does
not rely on spatial continuity, and can therefore be applied to spatially aliased data.

INTRODUCTION

In addition to reflection data, seismic surveys are cluttered with many other seismic re-
sponses that are either unwanted or unneeded, resulting in recorded data containing many
different wave modes (Yilmaz, 2001). In the case of land acquisitions, high amplitude
ground roll noise can obscure signal, degrading overall data quality.

Ground roll is the main type of coherent noise in land seismic surveys and is characterized
by low frequencies and high amplitudes. Common processing techniques for attenuating
ground roll include frequency filtering (Yilmazl, 2001), Radon transform (Liu and Marfurt,
2004])), wavelet transforms (Deighan and Watts, 1997), and the curvelet transform (Yarham
and Herrmann), 2008). However, these techniques can be limited when ground roll is spatially
aliased and has non-linear moveout, and it is notoriously difficult to model ground roll with
sufficient generality. Therefore, ground noise removal remains a tedious task.

Barak and Ronen (2016) demonstrate how to use combined translational and rotational
data to identify and separate particular wave modes. They apply continuous wavelet trans-
forms (CWT) followed by singular value decomposition (SVD) to identify the polarization
signature of the particular wave modes associated with ground roll. A filter is then applied
to attenuate sections of the data with similar polarization signatures.

Nonetheless, this methodology requires selective manual picking of events on the data
section. Moreover, it is based on the underlying assumption of stationarity of wave modes
along offset, although there is no guarantee that the polarization signature of a certain wave
mode at a particular offset should remain similar at other offsets. Therefore, we extend this
process by incorporating pattern recognition algorithms as described by [Huot and Clapp
(2016). We use support vector machines (SVM), a set of supervised learning methods used
for classification, to identify the waves modes associated with ground roll, at all times,
offsets and azimuths.
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We train an SVM classifier to identify specific wave modes from the polarization vectors
computed on field data, and then test our classification on different portions of the data
where the wave modes are clearly distinguishable to assess the quality of our classification.

PREPARING DATA FEATURES FOR MACHINE LEARNING

Continuous Wavelet Transform (CWT)

The continuous wavelet transform (CWT) is defined as:

Cilatig.v0) = [ s (20 a 1)

where g;(t) is the input signal of the i** data component, 1 (t) is a mother wavelet, ¥* is a
daughter wavelet, which is the complex conjugate of the mother wavelet stretched by scale
a and time-shifted by b. It is common to use the Morlet wavelet as a mother wavelet, and
we do so in this paper. For brevity, we will use C; (a,b) := C; (a,b; g;(t), (1))

The continuous wavelet transform effectively shows how correlated our time-series is
with a particular daughter wavelet. Since the correlation is done in running time windows
(shifted by b), the transform retains the temporal sense of the data and yet decomposes
it to wavelet scales, which are in essence similar to frequency. We use this time-frequency
decomposition to identify wave modes of particular frequencies that appear at particular
times in multicomponent data.

Singular Value Decomposition (SVD)

We apply singular value decomposition to a time slice of a single continuous-wavelet trans-
formed multicomponent trace Cj;(a,by), where by is the time index of the slice, a ranges
through the wavelet scales and i represents the data component. Therefore, we have an
N, X N, data matrix D where the rows are the wavelet scales and the columns are the data
components. SVD is a method of finding the waveform u, magnitude o, and polarization v
of the signal that is present in the data D. The SVD of the data D is given by

D =UxVT, (2)

where D is the product of an N, x N, matrix U, an N, x N, diagonal matrix 3, and the
transpose of an N, X N, matrix V. The unit left and right singular vectors u; and v; are
the column-vectors of U and V. The singular values o; are the diagonal elements of X.
They are ordered such that |oq]| is the greatest and |oy,| the smallest. The left and right
singular vectors are mutually orthogonal, such that UTU =1 and VV7 =1

The right singular vectors v; display the polarization of the data within the particular
frequency window along the data axes. We transpose and multiply the matrix V by the
singular value matrix ¥, to obtain the scaled polarization vectors:

S =xv7T. (3)
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Support Vector Machines (SVM)

The polarization vectors obtained after applying CWT and SVD are used as input for clas-
sifying the different wave modes. From here, we set up the classification problem according
to the methodology described in Huot and Clapp| (2016).

Support vector machines (SVM) are a supervised learning algorithm that have been
shown to perform well in a variety of settings, and are often considered one of the best “out
of the box” classifiers. To train the classifier, we build a training dataset of NV sample pairs,
(x1,21), (2,y2), -+ , (xN,yNn), where the z; € R, represent the features, which are the p
values of the polarization vectors, and the y; € {—1,1} are the binary labels indicating to
which wave mode the sample belongs, namely, whether it is a surface wave or a body wave.

The support vector classifier determines the optimal hyperplane separating the two
classes in the features space, given a certain amount of slack £ = (£1,&2,- -+ ,&nN) to account
for the fact that the samples are not perfectly separable. If we define a hyperplane by the
following:

{z: f(z) =28+ o =0}, (4)

where (3 is a unit vector and [y a constant, the classification rule induced by f(x) can be
expressed as:

G(x) = sign[z" 3 + Bo]. (5)

With these notations, the support vector classifier for the nonseparable case is commonly
expressed as:

yi(zi T B+ Bo) > 1— &, Vi

&>0,Vi and > & < K. (6)

min ||3|| subject to
min 9] subj {

By bounding the sum »_ &; , we bound the total proportional amount by which predictions
fall on the wrong side of their margin. Misclassifications occur when &; > 1, so bounding
Y& at a value K bounds the total number of training misclassifications at K.

However, the support vector classifier subsequently described is limited to finding linear
boundaries in the input feature space. To achieve better training-class separation, we intro-
duce the idea of enlarging the feature space using basis expansions. Linear boundaries in
the enlarged space translate to nonlinear boundaries in the original space, thereby making
the problem more flexible. Once the basis functions h,,(z), m = 1,---, M are selected, the
procedure is the same as before. We fit the support vector classifier using input features
h(z;) = (h1(x;), ho(x;), - ,hyp(zi)), @ = 1,--- , N, and produce the (nonlinear) function
f(x) = h(2)T B + fo. The classifier is G(z) = sign[f(x)] as before.

In practice, we need not specify the transformation h(z) at all, but require only knowl-
edge of the following kernel function:

K(z,a') = (h(x), h(z")), (7)

that computes the inner products in the transformed space. For particular choices of h,
these inner products can be computed very efficiently.
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Three popular choices for K in the SVM literature are shown in the following:

d—degree polynomial: K (z,2') = (1+ (z,2'))%, (8)
Radial basis: K(z,2') = exp(—|jz —2'|?), (9)
Neural network: K (z,2’) = tanh(ki(z,z’) + k2). (10)

A more complete overview of the implementation of support vector machines is described
in Huot and Clapp (2016).

SVM TRAINING AND TESTING WITH KETTLEMAN DATA

The 2D Kettleman survey comprised multiple types of sources and multiple types of re-
ceivers, both on the surface and at depth. The shot line length was 1.6 km long. The seis-
mic sources used were a vibroseis truck, an accelerated weight-drop, and buried dynamite
charges. At one end of the shot line there were five 3 component (3C) linear accelerometers,
which were closely spaced at a 2.1 m interval inline. Additionally, near the center of the shot
line there were two adjacent 3C geophones buried at 1 m depth, spaced at a 2 m interval
inline.

Although the survey also had 3C rotation sensors, the signal to noise ratio of these sen-
sors was very low for offsets greater than 300 m. Therefore, we derived the pitch rotational
component by differencing adjacent vertical geophones and accelerometers at each receiver
station. Derivation of rotational components from translational data is described in [Barak
and Ronen| (2016)), Barak et al. (2015), |Muyzert et al.| (2012) and |Brokesova and Malek
(2015).

Since the sensors were arrayed only in the inline direction, we could not derive rotational
data for the roll and yaw components. Consequently, our analysis here includes only the
vertical and radial translational components and the pitch rotational component. Figure
is the vertical component receiver gather at station 335 shot with the vibroseis source,
Figure is the radial component, and Figure is the pitch component. AGC has
been applied for display.

The P body-wave reflections are visible at earlier times and longer offsets, but most of
the section is dominated by various modes of surface waves, which is typical in land data.
There is a very slow Rayleigh wave mode propagating at around 250 m/s, and a faster mode
propagating at 400 m/s. Henceforth we will refer to these wave modes as “slow” and “fast”
ground roll. There is yet another, faster mode, propagating at 600 m/s - 700 m/s, which is
not part of the analysis here.

Standard seismic processing requires that the surface waves (“ground-roll”) be removed,
as the data we are commonly interested in are the P body-wave reflections that are obscured
by the surface waves. However, as a first step, the unwanted energy must be identified.

SVM training data for classification of surface waves

In order to separate the surface waves from the body waves, we train an SVM classifier on
the data from receiver station 335. We decompose the training data into scaled continuous-
wavelet polarization vectors by applying CWT followed by SVD, as in equations [I] and
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Figure 1: Receiver gathers at station 335 for the vibroseis source. a) Vertical ac-
celerometer component. b) Radial accelerometer component. c¢) Pitch component de-
rived from differencing two adjacent inline vertical accelerometers. AGC has been
applied for display. Note the various types of surface waves present. [ER]
lohad1/. Vib65-st335-vz-bp,Vib65-5t335-vx-bp,Vib65-st335-vz-dx|

Since we are using three data components, for each offset and each time sample we obtain
three polarization vectors. We use only the first polarization vector as our input feature
vector for the SVM classification, since most of the energy is contained within the first
vector.

The feature vectors are illustrated in Figure We can clearly distinguish high am-
plitude parcels corresponding to the specific seismic signature of the different wave modes.
Figure represents the same feature vectors plotted by color code, red for slow ground
roll and blue for all other wave modes. We can see that the wave modes have distinct
behaviors in the feature space.

In order to train the classifier, we label the training data manually by selecting particular
wave modes in the data from receiver station 335. The selection was done using a linear mute
function that windowed only the ground-roll energy. Figures [3(a)], [3(b)| and [3(c)|illustrate
which regions were labeled as slow ground roll, fast ground roll and total ground roll. For
each of these selected wave modes, we trained an SVM classifier using the aforementioned
polarization feature vectors as input. The ground roll is labeled as “Class 1”7, while all the
other wave modes are labeled as “Class 0”.

We then test the SVM'’s fitting capability. The classification prediction results obtained
on the training data are illustrated in Figures [3(d)] B(e)] and [3(f)] They are highly similar
to our hand-picked labels, indicating that our classifiers fit the training data well, with a
low training error.
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Figure 2: The training data at receiver station 335 for the SVM. a) Fea-

ture vectors for each time sample at offset 180m. b) The same feature
vectors color coded by their respective classification, ’Class 1’ being the
slow ground roll mode and ’Class 0’ representing everything else. [ER|
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SVM prediction of surface waves on test data

Testing on other receiver stations

We then tested our previously trained classifiers on data from other receiver stations for
the same vibroseis source type.

Stations 336 and 337 are adjacent to stations 335 (the training data station) near the
end of the shot line, and therefore the data at these receiver stations should be similar to
the training data. This enables us to estimate how well the classifier predicts the ground
roll wave mode on these test data. Figure is the vertical component at station 336.
Figures|4(b)} [4(c)|and [4(d)|are the predicted slow ground roll, fast ground roll and combined
slow—+fast ground roll wave modes at this station, respectively. Recall that this prediction
is done using the classification generated by labeling the data at station 335. Observe that
the classifier has managed to identify the ground roll in these test data relatively well, and
it does not misclassify the body wave energy as ground roll.

The prediction seems to be better when both ground roll modes are combined, as show
in Figure It seems that it is more difficult for the classifier to differentiate between the
two types of ground roll (slow vs fast) than between the ground roll and body waves. The
same conclusions can be drawn for the prediction results for station 337, shown in Figures

[0} B(g)| and @(h)}

Station 191 is about 1 km away from station 335. At station 191 there were geophones
installed, rather than accelerometers as at stations 335, 336 and 337. Furthermore, the
geophones were buried at 1 meter depth, whereas at stations 335, 336 and 337 the ac-
celerometers were on the surface.
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Figure 3: SVM training data and fitting results from station 335, for the vibroseis source. a)
Slow ground roll mode training data. b) Fast ground roll mode training data. ¢) Combined
(slow+fast) ground roll modes training data. d) SVM fitting of slow ground roll mode on
training data. e) SVM fitting of fast ground roll mode on training data. f) SVM fitting of
combined (slow+fast) ground roll modes on training data. [ER|] |0had1 /. 3a,3b,3¢,3d,3e,3f |
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Figures 4(j)} 4(k)| and |4(1)| are the predicted slow ground roll, fast ground roll and
combined slow-+fast ground roll wave modes at station 191, respectively. The classifier
seems to have more difficulty differentiating between the slow and the fast ground roll
modes at this station. Additionally, it has misclassified a small portion of the body wave
energy as ground roll, as can be seen on the left Figure at t = 0.4 s. However, by
and large, the classification does enable the identification of ground roll energy, despite the
differences between the data at station 191 vs station 335, on which we trained our SVM
classifier.

Testing on other source types

We then tested the classifier on the same station that provided the training data (335), but
for alternate seismic source types.

Figures and are again the receiver gather of the vertical component at station
335, and portion of combined (slow+fast) ground roll labeled as “Class” 1 for the training
data.

Figure is the receiver gather of the vertical component at station 335 for an acceler-
ated weight-drop source. Note that the sampling for this source type was much denser than
the vibroseis source. The ground roll wave modes visible in this section are similar to those
in Figure however they are not aliased. Figure shows the SVM’s prediction of
the combined (slow+fast) ground roll modes for the accelerated weight drop data. Despite
the fact that the source type is different, the classification is able to correctly predict the
ground roll in this section. Figure is remarkably similar to Figure albeit with a
better sampling.

Both the vibroseis and the accelerated weight-drop source were on the surface. Figure
is the receiver gather at station 335, but for a dynamite source buried at 25 m depth.
The ground roll energy has a different appearance in this section. Figure is the SVM
prediction of the slow-+fast ground roll wave mode for the dynamite source. Note that the
energy classified as ground roll does indeed seem to have the same linear moveout as the
ground roll in the vibroseis section. The classifier even picks up on a portion of a faster
surface wave mode that does not appear in the vibroseis data.

In both test cases shown in Figures and |5(f)| there is no misclassification of the
body wave energy as ground roll.

DISCUSSION

Standard seismic processing may utilize some known attributes of ground roll to identify it.
For example, ground roll has a much slower moveout than body waves in common shot or
receiver gathers. Additionally, in multicomponent data the elliptical polarization associated
with Rayleigh waves may be employed to identify ground roll.

The approach of machine learning is very different however. Standard methods use
an a priori, analytical model of ground roll, such as moveout or elliptical polarization. A



SEP-165 Automatic wave mode identification 149

offset (m)

offset (m) o =),

200 400

fiset (m)
offset (m) °
200 b . 200 400

o N =]

=~ ~ IS
- = = =
g 3 3 3
@ —~ —~ —~
e a2 @ w O
o @ o o @ @ o
e e e e

21
21

2T

offset (m) offset (m) offset (m)
offset (m) 200 400 200 400

200 400

(oos)owury

offset (m)

offset (m) offset (m)
400 400 800

400 800 1200 400 800 1200

1200

70
¥0
¥0

80
80
80

80
(09s)owr)

(o@s)aurry
(0os)owury
(0os)owury

2T

2T

)

Figure 4: SVM prediction of surface wave modes on test data, for the vibroseis source.
a,e,i): Vertical component at receiver stations 336, 337 and 191. b.f,j): prediction of slow
ground roll mode for stations 336, 337 and 191. ¢,g,k): prediction of fast ground roll mode
for stations 336, 337 and 191. d,h,]l): prediction of combined (slow-+fast) ground roll modes

for stations 336, 337 and 191. [ER] |ohadl/. 4a,4b,4c,4d de,4f 4g,4h 4i,4j 4k 41 |
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Figure 5: SVM prediction of surface wave modes at station 335, for different seismic source
types. a) Vertical component of vibroseis source. b) Vertical component of accelerated
weight-drop source. c¢) Vertical component of dynamite source. d) The portion of the
combined (slow+fast) ground roll mode labeled as class 1 from the vibroseis source data.
e) prediction of combined (slow-+fast) ground roll mode for the accelerated weight-drop
source. f) prediction of combined (slow+fast) ground roll mode for the dynamite source.
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machine learning approach does away with any predetermined model, and substitutes a
model learned from the data themselves. The advantage of such an approach is that it may
work in cases where a useful, representative model is beyond our capability to represent
analytically.

The case of surface waves (ground roll) is of particular interest in this respect, since
the near surface of the Earth is commonly very complex, and in general it is difficult to
accurately model wave propagation in the near surface. For example, Rayleigh waves do not
always have elliptical polarization, nor are their moveouts necessarily predictable. Surface
waves may also be generated by body waves incident on near surface scatterers, in addition
to being radiated directly away from the source position. Therefore, the prospect of enabling
an algorithm to learn from the data what ground roll may look like in multiple scenarios is
compelling.

We have used the continuous-wavelet polarization vectors of multicomponent seismic
data to train an SVM algorithm to identify ground roll. The classification results using the
test data indicate that the SVM is indeed able to identify ground roll based on this (rather
minimal) training.

There remain several open questions with respect to practical application of this machine
learning algorithm:

1. In order to have a good representation of the various ways each wave mode may be
polarized at multiple times/offsets /azimuths (given a set of data components), massive
amounts of seismic data are required. How can we classify massive quantities of data?

2. Can an SVM trained on a particular dataset be used for classification of another
dataset?

3. Are more components necessarily better for the SVM’s classification of wave modes?
If not, which minimal set of components would be the most useful?

The Kettleman dataset is instrumental in showing the possibility of identifying wave
modes in land data using machine learning, since it has multiple components, both transla-
tional and rotational, which enable identification by polarization. However, the Kettleman
dataset is very small, and therefore we cannot answer the questions stated above with it.
For that, we would require a very large, 3D multicomponent land or OBS dataset.
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Detection and removal of coherent anthropogenic noise from
passive seismic data

Ethan Williams and Eileen Martin

ABSTRACT

We analyze the impact of identifying and removing coherent anthropogenic noise
on synthetic Green’s functions extracted from ambient noise recorded on a shallow
trenched, dense, linear distributed acoustic sensing (DAS) array. Low-cost, low-impact
urban seismic surveys are possible with ambient noise recorded by DAS, which uses
dynamic strain sensing to detect seismic waves incident to a buried fiber optic cable.
However, ambient noise data recorded in urban areas include coherent, time-correlated
noise from near-field infrastructure such as cars and trains passing the array, in some
cases causing artifacts in estimated Green’s functions and yielding potentially incor-
rect surface wave velocities. Based on our comparison of several methods, we propose
an automated, real-time data processing workflow to detect and reduce the impact of
these events on data from a dense array in an urban environment. We show the effect
of removing such unwanted noise on estimated Green’s functions from ambient noise
data recorded in Richmond, CA in December 2014 and Fairbanks, AK in August 2015.

INTRODUCTION

Urban seismic surveys are an essential tool for many areas of geoscience and civil engineering,
including the design of earthquake-resistant structures and the quantification of seismic
hazard in cities. However, conventional seismic surveys are all but impossible in the urban
environment because of the high impact of active sources and the difficulty of deploying
a sizable receiver array. Recent experiments have successfully shown the applicability of
ambient noise interferometry on recordings made with distributed acoustic sensing (DAS)
as an alternative to conventional surveys that is both low-cost and low-impact (Martin
et al., 2015; |Daley et al., [2013; |Ajo-Franklin et al., 2015)). In a DAS survey, an interrogator
unit regularly transmits a coherent laser pulse along a fiber optic cable network and records
the Rayleigh backscatter intensity, which is converted into an approximate seismogram.
The ambient noise recorded using DAS can then be correlated to extract synthetic Green’s
functions through seismic interferometry, as has been successfully done by [Martin et al.
(2015) and |Ajo-Franklin et al.| (2015)).

One important barrier to the wide application of DAS surveys in urban areas is the pres-
ence of coherent transportation-related noise from sources such as cars or trucks passing near
the array. During correlation, these events correlate with themselves to produce artifacts
in Green’s functions (Martin et al., 2015). In order to improve Green’s function estimates
in these environments, there have been efforts to identify and automatically down-weight
high amplitude noise (Lindsey, 2016)). Here, we build on these methods more specifically
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to identify strong moving sources of noise related to transportation. First, we propose a
real-time processing workflow that develops a catalog of times where strong transportation-
related noise has been recorded. Our method utilizes the short-term average over long-term
average (STA/LTA) algorithm from the field of earthquake detection and takes advantage
of the density of the data recordings to minimize the number of false triggers. Second, we
demonstrate a method for down-weighting these events during interferometry that improves
the strength and coherency of Green’s functions estimates on the test data. The methods
discussed in this paper have been developed for use with real-time traffic monitoring and
the removal of near-array transportation-related noise in the DAS ambient noise survey on
Stanford campus that began in September 2016.

CHARACTERIZING NOISE SOURCES

Several sources of noise contribute to any ambient noise recording. Generally, incoherent
noise from microseism dominates at low frequencies and incoherent anthropogenic noise from
freeways and other infrastructure dominates at high frequencies. Additionally, recordings
often include signals from earthquakes and coherent noise from infrastructure near the array,
such as passing cars.

Seismic interferometry posits that the correlation of a diffuse wavefield in a medium will
return the impulse response of that medium (Wapenaar et al., 2010). Applied to the Earth,
this means that the cross-correlation of ambient noise recorded on different channels in an
array with that recorded on a single channel produces an approximate Green’s function,
which represents the response of the Earth to a receiver acting as a virtual source. Greens
functions constructed from ambient noise can be used to monitor changing properties in
the subsurface or for tomographic investigations. The presence of coherent, time-correlated
noise in an ambient noise recording violates the diffuse wavefield assumption and results in
artifacts in the estimated source response that resemble multiple virtual sources.

Ambient noise recorded using DAS in Richmond, CA in 2014 and in Fairbanks, AK in
2015 contained visually identifiable coherent noise from passing traffic (Ajo-Franklin et al.,
2015; |[Martin et al., 2016). Incoherent noise from urban infrastructure far from the recording
array is the primary noise source used for high frequency ambient noise interferometry
because it is a diffuse component of the ambient spectrum (e.g. Nakata et al.| (2011))), but
coherent noise from traffic sources near the recording array is the primary cause of artifacts.
This is because traffic passing the array is in two ways time-correlated. First, surface waves
generated by a passing vehicle have visually identifiable group moveout across the array at
traffic speed, giving the wave package associated with any given car a temporally-correlated
velocity relationship. Second, surface waves generated by the vehicle do not originate at
the source channel but rather at road bumps and other features that lie along the array,
causing additional virtual sources within the response estimate. An example recording of a
vehicle passing the Fairbanks array is shown in Figure

The geometry of relevant roads and their distance from the array determine the prop-
erties of the coherent transportation-related noise recorded. In Fairbanks, the closest cars
travelled on a road very near and parallel to the array, so that their traffic speed was easily
identifiable as the group move out of the ground roll at approximately 25 m/s. In Richmond,
the closest cars travelled on a road slightly farther from and oblique to the array, so that
the traffic speed was difficult to discern but the surface waves were still highly coherent.
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The following methods were designed on both data sets, and we present suggestions for
modifying proposed processing workflow to best suit recordings with different geometries
and noise intensities.

COMPARISON OF METHODS

In the earthquake detection literature, three principal methods for event detection exist:
(1) autocorrelation, (2) waveform comparison methods, and (3) short-term average over
long-term average (STA/LTA) (Withers et al. 1998).

One prominent feature of data recorded with DAS is optical noise spikes at random
intervals over several channels due to vibration of the laser interrogator unit. The auto-
correlation method for event detection entails partitioning each channel’s record into short-
time windows and cross-correlating all possible combinations of these windows. For data
recorded with DAS, optical noise correlates with itself, creating artificially high correlation
coefficients and making transportation-related events difficult to distinguish. Even more
importantly, this method can only operate on a single channel, so performing this method
across an array of several thousand channels proves to be too slow to run in real time with
ordinary computational resources.

While waveform comparison methods have been shown to be the quickest and most
effective method of identifying earthquakes (Yoon et al., 2015|), waveform comparison tests
are impossible to implement for data recorded with DAS because there are no catalogs of
transportation-related event recordings to build a database. Because of DAS’s low signal-
to-noise ratio compared to conventional seismic recording instruments and because the
traces themselves are only derived indirectly from strain rate approximations, ambient noise
recorded with DAS cannot be compared with conventional data.

The STA/LTA method effectively detects impulsive events with high signal-to-noise ra-
tio by comparing the squared amplitudes of data summed over two moving windows of
differing lengths. Equation [1| takes two parameters—STA window length (/4,) and LTA
window length (¢;,)—which need to be set manually based on the signal-to-noise ratio and
other parameters of the data. The long-term window finds the average amplitude of the data
for some number of samples ¢;;, before sample i, which is representative of the background,
and the short-term window finds the average amplitude of the data for a shorter number
of samples £, before sample 4, which is representative of the signal at . When amplitude
increases significantly at some iteration of sample i, the STA/LTA ratio increases. Thus,
in conventional earthquake detection, STA/LTA is a trigger-based algorithm, meaning that
the user pre-sets a threshold STA/LTA value and when the STA/LTA ratio calculated on
a seismogram exceeds this value, an event is cataloged. The STA/LTA method is advan-
tageous for real-time event detection simultaneously across channels on a large recording
array because it can be easily vectorized across channels and it is often implemented using
a recursive algorithm, making it the cheapest detection method by far.
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PROCESSING WORKFLOW

STA/LTA

We first import a single 60 s file and apply basic pre-processing steps, including a de-
spiking tool to reduce the number of optical noise spikes. Because our data were recorded
at fs = 1 kHz, we lowpass filter the data and downsample by a factor of 10, which improves
computational speed without reducing the quality of the STA/LTA image. We then calcu-
late STA/LTA on all channels of the file for the complete record length using a recursive
algorithm (Equation 2) that approximates the actual STA/LTA ratio very closely.

STA(i) = ’“;?‘2 +(1— 1t ) x STA(i — 1) )
LTA() = |“€(Z)|2 +(1- Ezlt) x LTA(i — 1)

We found that /s, = 0.5 s and ¢, = 10 s were effective parameter choices for data
recorded in both Richmond and Fairbanks. Smaller £/}, reduces the event-to-background
contrast, whereas higher (g, /¢, reduces the sharpness of event arrivals (see Figure [2)).

Amplitude
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I
o

STAILTA
o
o n =
g

STAILTA
o
o n
T

STAILTA
o
o wn

l MLHMMMAM lass I ! L “
0 1 2 3 4 5 6
Time (ms) x 10"

Figure 2: Examples of different f4, and ¢, parameter choices. Data must be padded
with £, — 1 samples to prevent the spike at the beginning, which occurs because the
LTA window is only partially filled. From the top, (a) the original trace (raw data), (b)
lsta = 0.5 8, iy = 28, (¢) lstg = 058, g = 10 s, (d) lsse = 0.1 s, £ = 10 s. [CR]
’ ethanl/. stalta-examples ‘
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Window check

After calculating STA/LTA on the file and storing these values, we apply two threshold-
based tests to determine whether events are present. First, we zero all STA/LTA values
below the STA/LTA threshold (7gq/1q) in order to improve the STA/LTA signal-to-noise
ratio (i.e., the contrast of events from background noise). As with fs and li1a, Tsta/ita
must be chosen by trial and error on a short data sample (5-10 minutes). Specifically,
a threshold value that is less than the average STA/LTA value of all visually identifiable
transportation-related events but greater than the average STA/LTA value of background
intervals between events is preferred.

Second, we calculate the square of sums for each time sample on a running time window
across all channels. For each file, this yields a single vector containing the short-term energy
of the STA/LTA ratio averaged over the all channels at any given time, which we denote
€sta/ita- Values of €514, that exceed an energy threshold 7. are marked as events, producing
a binary event catalog of record length with 1 at time samples where a transportation-
related event has been detected and 0 otherwise. The energy threshold 7. must also be set
by experimentation on a small dataset. Because this is the most sensitive parameter for
distinguishing true events from both background and optical noise, 7. performs better when
designed on as large a sample dataset as possible. In particular, 7. may need to change with
the balance of traffic and background noise intensities during night time and rush hour in
order to perform most effectively. For the Fairbanks dataset, we found 7y,/11, = 3 and
7. = 500 to be effective threshold values.

On the Richmond dataset, where the geometry of the array relative to traffic results
in no discernible group moveout of vehicle-induced surface waves, the short-term energy
sum can be applied with a horizontal window that examines all channels at the same time
sample, because the phase moveout of events at apparent surface wave velocities is effectively
instantaneous relative to the sample rate fs =1 — 2 kHz (see Figure |3)).

The Fairbanks dataset, however, showcases one of the potential challenges of this detec-
tion method because the geometry of the array relative to traffic results in a group moveout
at low velocity (approx. 25 m/s). This means that a horizontal window will only ever in-
clude a portion of the event, and the sensitivity of €., /11, Will be reduced because channels
of background noise will be averaged with any real event. Additionally, a down-weighting
filter designed on the resulting event catalog will remove a significant quantity of usable
data. To address this challenge, we correct the STA /LTA matrix for linear moveout (LMO)
at the approximate traffic speed before calculating €414, S0 that events are parallel to the
moving time window and have a stronger signature. This is similar to slant stacking.

Because traffic can be traveling in two directions on any given road, €4,/1;, must be
calculated twice with LMO in either direction. We distinguish the favorable direction (which
catalog to use, i.e., the direction in which most cars are traveling in any file) using the
properties of the energy distribution with time. For a file containing a single car (a unimodal
energy distribution with time), the kurtosis of €4, /11, Will be less for the favorable direction
because the window will sum across a flat event as compared to an event with significant
move out. For files containing multiple cars (a multimodal energy distribution with time),
the skewness of €44/11, Will be greater for the favorable direction for a similar reason. When
an LMO correction has been applied during event detection, a direction variable must be
passed with the event catalog in order to design a down-weighting filter with the correct



SEP-165 Detection and remowval 159

o i p f o j
100 200 300 400 500 6C 100 200 300 400 500 6C
Channel # Channel #

(a) (b)

Figure 3: (a) The STA/LTA image of an example 60 s file from the Richmond dataset.
(b) Shading shows the region included in the final catalog, superimposed over (a). [CR]

’ ethanl/. richmond-stalta,richmond-energy

shape. If a file records cars traveling in multiple directions at the same time (e.g., Figure
, this method selects the direction with the strongest events, and either will catalog the
entire interval where events in the opposite direction occur or will not successfully identify
these events, depending on their relative strength.

Down-weighting

When calculating cross-correlations on the data, we use a simple down-weighting scheme
to remove events using the catalogs which were produced by running the tools outlined
above in real time as the data were recorded. First, a data file is imported along with
its event catalog and basic processing is done, including de-spiking (Martin et al.l |2015]),
temporal normalization, and spectral whitening (Bensen et al., 2007)). Second, a filter is
applied to the data which is zero at every time sample corresponding to a 1 in the event
catalog and one at every time sample corresponding to a 0 in the event catalog, except at
the edge of events, where it follows a Gaussian taper. This taper prevents sharp transitions
in the down-weighted file and should ensure that imperfect detection parameters which
only identify portions of events are still effective at reducing their contribution to the final
correlations. When a LMO correction has been applied during event detection, the direction
variable associated with the event catalog is used to extrapolate the filter from one channel
to the next. Figure [6]shows an example of a down-weighting filter applied to a file from the
Fairbanks dataset.
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Figure 4: (a) The STA/LTA image of an example 60 s file from the Fairbanks
dataset. (b) The €y, calculated with LMO correction in the correct direction.
(c) The €gq/1q calculated with LMO correction in the incorrect direction. (d) Shad-
ing shows the region included in the final catalog superimposed over (a). [CR]
‘ ethanl/. fairbanks-stalta,fairbanks-energy,fairbanks-wrong,fairbanks-catalog ‘
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Figure 5: (a) The STA/LTA image of an example 60 s file from the Fairbanks dataset
where multiple events cross. (b) Shading shows the region included in the final catalog

superimposed over (a). [CR] ’ethanl /. fairbanks-badstalta,fairbanks-badcatalog

RESULTS ON THE TEST DATA

We calculated cross-correlations on 40 minutes of ambient noise from the Fairbanks dataset
following the methods of Martin et al.| (2015) and Bensen et al. (2007)), with the goal
of showing the effectiveness of our proposed processing workflow. Lindsey| (2016]) showed
that manual identification and removal of transportation related noise improved extracted
Greens functions significantly. Using a smaller test dataset and less refined pre-processing
tools, we were able to show a decrease in the strength of artifacts in cross-correlation images
and a small increase in the degree of convergence of the Rayleigh wave fundamental mode
associated with the virtual source channel (see Figure [7]). More refined workflows, such as
in [Lindsey| (2016)), have the potential to improve the image further.

CONCLUSIONS

Overall, the use of an automated processing workflow for identifying and removing coherent
anthropogenic noise from ambient noise data recorded by a dense DAS array improved the
quality of extracted Greens functions. Our proposed method calculates the STA /LTA ratio
on each file, uses a running window check to pick out events, and down-weightes these
events in the final correlations. The method is adaptable to different recording geometries,
and we present one example of a variation of the method that corrects for apparent group
moveout at road speeds.

This processing workflow is most effective when applied to recordings with low to mod-
erate levels of traffic-related noise, because it is unable to recover significant high-quality
ambient noise data from recordings capturing more than 3-4 vehicles or where vehicles trav-
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Figure 6: Effect of downweighting on an example 60 s file from Fairbanks. (a) The raw data.
(b) The binary catalog determined as above. (c¢) The downweighting filter designed using the
event catalog derived from (b) and the direction of the LMO correction. (d) The data after

downweighting. [CR] ‘ethanl /. fairbanks-raw fairbanks-cat,fairbanks-filter,fairbanks-dw
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Figure 7: Cross-correlations on 40 mins of ambient noise data recorded by the trenched
DAS array in Fairbanks, AK. The left image (a) was created using the complete recordings,
and the right image (b) was created using recordings where transportation-related events
had been down-weighted. [CR] ‘ethanl /- before,after‘

eling in two directions frequently cross the array at the same time. The method is able to
recover the most usable data from recordings capturing 1-3 vehicles traveling in the same
direction or where vehicles traveling in two directions do not cross the array at the same
time. This extends the amount of daytime recordings that we are able to use in interferom-
etry without generating strong artifacts. By increasing the fraction of recorded data that
can be used in interferometry, we are increasing the potential of this method for time-lapse
monitoring of the near-surface because reliable Greens functions can be extracted more
frequently, providing a higher temporal resolution in monitoring studies.

Future development of this method has the potential to include a more sophisticated
filter design process which is able to down-weight cars that cross paths along the array,
as well as the consideration of metrics which determine whether an entire file needs to be
thrown out without following the entire processing workflow. This method will be applied
in a survey currently taking place on Stanford campus in order to test the potential of
ambient noise recorded with DAS to monitor traffic and to develop an event catalog that
can be used in future processing work.
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Exploratory data analysis of the
SOLA land dataset

Fantine Huot

ABSTRACT

Seismic surveys provide us with an abundance of data characteristics. Is there an
informative way to visualize a survey’s metadata? Using exploratory data analysis
(EDA) tools, we investigate a land survey’s metadata to detect trends among the
observations. We derive indicators of the quality of a seismic trace.

INTRODUCTION

With the advent of multi-component sensors, we are faced with an abundance of data char-
acteristics which may contain precious information about our survey. For example, within
a seismic survey, noise levels vary by receiver location, source location, offset, frequency,
time of the day, etc. While bad traces are easy to pick out, the study of data characteristics
can yield criteria for assessing the quality of a seismic trace.

High noise levels degrade seismic images. Thus, significant efforts are deployed in seis-
mic signal processing to attenuate and remove noise from the signal (Yilmaz, 2001), while
stacking techniques are commonly used to improve signal to noise ratio (Claerbout and
Black, 2008]). Once bad traces are identified, they can be selectively left out of the imaging
process using weighing and penalty functions as introduced by |Claerbout| (2014).

Therefore, it would be extremely useful to derive indicators of noise level or recording
quality from a survey’s metadata. However, what would be an informative way to visualize
these metadata? How can we efficiently discover trends among the variables or among the
observations? Which are the important variables?

Exploratory data analysis (EDA) refers to a diverse set of techniques for answering ques-
tions such as these. Herein we use R, a free software environment for statistical computing,
to perform our analysis. We conduct our study on the metadata of the SOLA dataset.

THE SOLA LAND DATASET
Acquisition geometry

The SOLA survey is a three-component 2D array land acquisition conducted during summer
2015. It has 3,600 receivers arranged into 54 hexagonal arrays and 4,000 shots. The arrays
are 200m to 600 m wide, with 63 to 110 receivers per array. In order to record a wide
range of frequencies while still providing comprehensive coverage, the arrays are irregularly
sampled: the receiver spacing varies from 5 to 10 m on the inside of the array to 50 m on the
outside. The survey has about 7 million traces, but for this study we were provided with

165
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the data characteristics of a subset of 350,000 traces. This subset’s acquisition geometry is
illustrated in Figure
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Figure 1: (a) The SOLA acquisition geometry. (b) Zoomed in portion of the sur-
vey. In order to record a wide range of frequencies while still providing comprehen-
sive coverage, the receivers are arranged in irregularly sampled hexagonal arrays. [ER|]

’ fantine2/. geom1,geom?2

The metadata we will be considering for this study contains two types of entries: de-
scriptive headers and data characteristics.

Descriptive headers

The descriptive headers cover all acquisition parameters for each seismic trace, such as
source and receiver location, shot times, offset and azimuth (Figure . The complete list
of headers is provided for reference in the appendix. Certain headers were left out from this
study for they were redundant or did not vary over the selected subset, leaving us with 25
variables.

Data characteristics

The data quality varied greatly over the survey, and the acquisition recorded various levels
of surface noise. To capture this variability, a certain number of data characteristics were
computed for each trace. These data characteristics include variables such as first break
pick, average amplitude, and average frequency or spikiness of the signal (Figure . When
possible, they were computed both over the full trace and over various time windows,
constituting a total of 52 variables. The complete list of computed data characteristics is
provided in the appendix.
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Figure 2: Examples of parameters contained in the survey’s descriptive headers. (a) Inline

and crossline offset. (b) Source and receiver elevation. [ER] |fantine2 /. headerl,header2|
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Figure 3: Examples of the computed data characteristics. (a) Sum of amplitudes over each

trace. (b) Weighted average frequency of each trace. [ER] |fantine? /. datal,data2
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Using both the header information and the computed data characteristics, we herein
seek to identify trends in the noise variability.

DATA VISUALIZATION

Combining the descriptive headers and data characteristics, we have a total of n = 350, 000
observations over p = 77 different variables. We could visualize these data by plotting two-
dimensional scatter plots, each of which contains the n observations’ measurements on two
of the p variables. However, there are (’2’) = p(p —1)/2 = 2,926 such scatter plots, which
makes it prohibitive to look at all of them. Moreover, most of them would not be very
informative since they each contain only a small fraction of the total information present in
the dataset.

Principal component analysis (PCA)

When faced with a large set of correlated variables, principal components allow us to sum-
marize the dataset with a smaller number of representative variables that collectively explain
most of the variability in the original set. The idea is that each of the n observations lives
in a p-dimensional space, but not all of these dimensions are equally interesting. Principal
component analysis (PCA) seeks a small number of dimensions that are as interesting as
possible, where the concept of interesting is measured by the amount that the observations
vary along each dimension. The dimensions found by PCA are called principal components.
Principal components are a sequence of linear combinations of the p variables, mutually un-
correlated and ordered in variance. They are the directions along which the original data
is highly variable.

In the following, we provide a brief overview on how to compute the principal components
of a dataset, based on formulations by |Hastie et al.| (2005]). The first principal component
Z1 of a set of variables X7, X, ..., X}, is the normalized linear combination,

Z1 = 11 X1 + 9021 X2 + ... + Pp1 X,

that has the largest variance. The elements ¢11, ..., ¢p1 are called the loadings of the first
principal component. Together, they make up the principal component loading vector,
b1 = (11 021 --. qﬁpl)T. As an arbitrarily large value of these loadings would result in an
arbitrarily large variance, the loadings are normalized such that Z?Zl gb?l = 1.

Let’s consider a certain n x p dataset X. As we are only interested in variance, we assume
that each of the variables in X has been centered to have mean zero. The first principal
component of X is computed by finding the linear combination of the sample variable values
of the form z;; = ¢117i1 + P21%i2 + ... + Pp1T4p, that has largest sample variance, subject
to the constraint that Z?:l ¢]2‘1 = 1. In other words, the first principal component loading
vector solves the following optimization problem:

n p 2 p
1
max < — E bj1T4j subject to E ¢?1 =1. (1)
P11sespr | M = =

The objective in Equation [1] can be re-expressed as + Yoy 22, Since %2?21 z;j = 0, the

n
average of the z11, ..., 2,1 Will be zero as well. Hence the objective that we are maximizing
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in Equation [I] is just the sample variance of the n values of z;;. Equation [I] can then be
solved via an eigen decomposition (Golub and Van Loan| 1983]).

Once the first principal component Z; has been determined, the second principal com-
ponent is the linear combination of X1, X», ..., X}, that has maximal variance out of all the
linear combinations that are uncorrelated with Z;. Constraining Z, to be uncorrelated
with Z7 is equivalent to constraining the loading vector ¢2 to be orthogonal to ¢1. As a
consequence, to find the second principal component, we solve a problem similar to the one
expressed in Equation [I], with ¢o replacing ¢, and with the additional constraint that ¢o
is orthogonal to ¢;.

Data projection

By projecting the data along the first few principal component directions, we can build two-
dimensional representations that capture most the dataset’s variability. PCA was performed
on the SOLA metadata after standardizing each variable to have zero mean and standard
deviation one. Figure [4| represents the dataset projected along its three first principal
components.

This representation allows us to visualize the nature of the first principal components.
The first principal component puts weight mostly on source and receiver elevation, common
depth point location, and average energy over various time windows. The second principal
component accounts for absolute offset, first break pick and average frequency over various
time windows. The variability over the seismic traces seems to be mostly explained in terms
of source and receiver elevation and absolute offset as far as the descriptive headers are
concerned, and average energy and frequency content for the data characteristics. Among
the various time windows on which the summed energy and average frenquencies were
computed, 2.8 to 3.2s seems to carry most weight. The variables that accounted for the
spikiness of the data have little to no impact on the first principal components, and only
start carrying weight from the 11th component onwards.

Proportion of variance explained

Although there are a possible p = 77 principal components, approximately 23 account for
90% of the total variation, while the first three ones account for 46%. Together, the first
seven principal components explain around 65% of the variance in the data. This may not
seem a large amount of variance. However, from the plots in Figure[5| we see that while each
of the first seven principal components explain a substantial amount of variance, there is a
marked decrease in the variance explained by further principal components. This suggests
that there may be little benefit to examining more than seven principal components.

IDENTIFYING TRENDS IN THE DATA

Variables that are located close to each other in the PCA projection indicate potential
correlations, enabling us to identify trends in the data. Each panel of Figures [6] and 9]
is a scatterplot for a pair of variables whose identities are given by the corresponding row
and column labels.
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Figure 4: Projection of the SOLA metadata on its first principal component directions. The
dots represent the projected metadata, while the arrows indicate the loadings associated to
each variable. For readability reasons, only the loadings greater than 0.05 are labeled. The
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Figure 5: (a) Proportion of variance explained by each principal component. (b) Cumulative
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Amplitudes seem to decrease with receiver elevation (Figure @ The average frequency
variation narrows down with receiver elevation (Figure . As to be expected, the time of
first break is highly correlated with the absolute offset (Figure . However, the decrease
of energy with offset only shows on the variables computed on early time windows. Unsur-
prisingly, the quality of first break pick is closely linked to the amplitudes before and after
first break, and the first break’s maximum amplitude (Figure [9).

IDENTIFYING NOISY TRACES

Using the data characteristics computed on various time windows, we can identify portions
of the signal which deviate from the remainder of the signal by unacceptable amounts, as
these are likely to correspond to noise bursts.

In order to flag outliers, we use the interquartile range (IQR), which is the difference
between the upper and lower quartiles of the data (IQR = Q3 — 1), as a measure of sta-
tistical dispersion. According to Tukey’s range test (Tukey, 1977), outliers are observations
that fall outside the range:

[Ql - kIQR7 Q3 + kIQR] )

where k is a positive constant. In our study, we use £ = 1.5, a value commonly used in
statistics. On a normal distribution, this value flags less than 1% of the data as outliers.

Figure [10| plots the outliers on the data characteristics both in PCA projection and over
the survey’s acquisition geometry. It appears that certain receiver locations accounted for
noisy measurements. For comparison, Figure [11] represents the same plot, but only marks
the outliers associated with spikiness of the signal.
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STATISTICAL ROBUSTNESS

For statistical soundness, each operation presented in this study was performed on ten
different subsets of the data, where each subset contained 90% of the original data sampled
at random. The different subsets did not show any significant change in the trends presented
here.

DISCUSSION

Statistical computing provides useful tools for exploring new datasets and searching for
outliers and trends. Free software environments such as R ease the implementation burden
for scientists and practitioners. The operations conducted in this study reflect some basic
steps commonly used in exploratory data analysis. While the results obtained may not
seem surprising to the trained geoscientist, a deeper study may yield more intricate trends.
Therefore, it would be of interest to extend this study to the full scope of the original 7
million traces.

Moreover, a statistical approach may help identify and quantify different types of noise
by flagging traces that deviate significantly from the remainder of the signal. By extending
this study to a larger set of traces, it would be possible to visualize whether noise levels
vary in this survey by time of the day, or day of the week. Clustering techniques may help
identifying different type of noise.
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APPENDIX

The complete list of descriptive headers is provided below. The headers marked with a
* symbol were left out from this study for they were redundant or did not vary over the
selected subset, leaving us with 25 header variables.

SOUX Source X coordinate

SOUY Source Y coordinate

SOU_ELEV Source elevation

DEPTH* Source depth

UPHOLE* Source uphole time

SIN Source internal index number
SOU_SLOC External source location number
FFID* Field file index number
SOURCE* Live source number

S_LINE Swath or sail line number
RECX Receiver X coordinate

RECY Receiver Y coordinate
REC_ELEV Receiver elevation

GEO_COMP* Geophone component (x,y,z)
CHAN Recording channel number
REC_SLOC Receiver index number
SRF_SLOC External receiver location number
R_LINE Receiver line number

CDhP. X X coordinate of common depth point
CDP.Y Y coordinate of common depth point
OFFSET Signed source-receiver offset
AOFFSET Absolute value of offset

OFF_IL Inline offset

OFF_XL Crossline offset

SR_AZIM Source-receiver azimuth

SR_COS Cosine of source-receiver azimuth
SR_SIN Sine of source-receiver azimuth
ARRAY _ID Array index number
YER_SHOT*  Year

DAY _SHOT Day

TIM_SHOT Time of the day

TRC.TYPE* Trace type
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The complete list of the 52 computed data characteristics is provided below.

FB_PICK3
FB_.QUAL3
FB_NDIFF
TR_ENER
TR_AVGF
PRE_FB
FB_PEAK
FB_ENER
FB_SHARP
POST_FB
R_PREFBI
R_PREFB2
SPIKT_AL
SPIKF_AL
ENER_05
ENER._10
ENER_15
ENER_20
ENER_25
ENER_30
ENER_35
ENER_40
ENER .45
ENER_50
ENER_55
AVGF_05
AVGF_10
AVGF_15
AVGF_20
AVGF_25
AVGF_30
AVGF_35
AVGF_40
AVGF 45
AVGF_50
AVGF_55

Huot

First break pick

Quality of fine tuned first break
FB_PICK3 - FBLNAVG

Sum of amplitudes of trace
Weighted average frequency of trace
Pre-first break energy, normalized
Max amplitude of first break

Energy from first break to 0.5s afterwards

First break sharpness

Energy from 0.5 to 2.0s after first break

FB_ENER / PRE_FB

POST_FB / PRE_FB

Spikiness of time data

Spikiness of frequencies

Average amplitude from 0.2 to 0.8 s
Average amplitude from 0.8 to 1.2
Average amplitude from 1.2 to 1.8
Average amplitude from 1.8 to 2.2
Average amplitude from 2.2 to 2.8 s
Average amplitude from 2.8 to 3.2s
Average amplitude from 3.2 to 3.8s
Average amplitude from 3.8 to 4.2s
Average amplitude from 4.2 to 4.8
Average amplitude from 4.8 to 5.2s
Average amplitude from 5.2 to 5.8
Average frequency from 0.2 to 0.8s
Average frequency from 0.8 to 1.2s
Average frequency from 1.2 to 1.8s
Average frequency from 1.8 to 2.2s
Average frequency from 2.2 to 2.8s
Average frequency from 2.8 to 3.2s
Average frequency from 3.2 to 3.8s
Average frequency from 3.8 to 4.2s
Average frequency from 4.2 to 4.8s
Average frequency from 4.8 to 5.2s
Average frequency from 5.2 to 5.8s

SEP-165
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SPIKF05
SPIKF10
SPIKF15
SPIKF20
SPIKF25
SPIKF30
SPIKF35
SPIKF40
SPIKF45
SPIKF50
SPIKF55
R_FB_1S
R_FB_2S
R_FB_3S
R_FB_4S
R_FB_5S

Ezxploratory data analysis

Spikiness of frequencies from 0.2 to 0.8 s
Spikiness of frequencies from 0.8 to 1.2s
Spikiness of frequencies from 1.2 to 1.8s
Spikiness of frequencies from 1.8 to 2.2s
Spikiness of frequencies from 2.2 to 2.8 s
Spikiness of frequencies from 2.8 to 3.2s
Spikiness of frequencies from 3.2 to 3.8s
Spikiness of frequencies from 3.8 to 4.2s
Spikiness of frequencies from 4.2 to 4.8 s
Spikiness of frequencies from 4.8 to 5.2s
Spikiness of frequencies from 5.2 to 5.8 s
Ratio of energy from 0.5-1.0s after first break to 1.5-2.0s
Ratio of energy from 0.5-1.0s after first break to 2.5-3.0s
Ratio of energy from 0.5-1.0s after first break to 3.5-4.0s
Ratio of energy from 0.5-1.0s after first break to 4.5-5.0s
Ratio of energy from 0.5-1.0s after first break to 5.5-6.0s
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Stanford Exploration Project, SEP165, October 8, 2016

Overview of a C++ Helmholtz solver library

Joseph Jennings and John Washbourne

ABSTRACT

SEP received a Helmholtz solver during a visit from Chevron researchers. We describe
a high-level overview of the workings of the solver and provide simple examples of how
this solver may be used for performing full-waveform inversion.

INTRODUCTION

Since the onset of research on full-waveform inversion (FWI) at SEP, the majority of our
implementations have been performed in the time domain (Moral |1987; [Shen, 2014; |Biondi
and Almomin, [2014)). Time-domain methods have the advantage that they are relatively
straightforward to implement with explicit finite differences and thus require relatively less
memory (Wang et al.l [2011)). In comparison, frequency domain techniques that solve the
Helmholtz equation require factorizing a large, asymmetric, sparse matrix (the Helmholtz
operator). In spite of this, frequency-domain methods offer the advantage that they solve
the wave-equation for a single frequency, easily allowing for frequency continuation methods
that have been used to mitigate cycle-skipping (Bunks et al., [1995). Computationally, they
also lend themselves to multiple-source modeling as the factorized matrix can be reused for
additional source vectors (Marfurt, |1984)). In turn, this property becomes very useful for
iterative inversion schemes such as Gauss-Newton and Full-Newton algorithms that require
many forward propagations for primary and secondary sources at each iteration (Pratt et al.),
1998). For these and other reasons, frequency-domain FWI is becoming more common in
the geophysical exploration industry (Washbourne et al., 2013]).

As part of the Chevron Center of Research Excellence (CoRE) at Stanford, Chevron
researchers visited SEP this summer and shared a Helmholtz solver with SEP researchers.
The solver is written in C++ in an object-oriented fashion and utilizes the UMFPACK
factorization libraries from SuiteSparse (Davis et al.,|2014). The solver consists of three op-
erators: a non-linear forward operator for solving the non-linear wave equation, a linearized
operator that maps a perturbation in velocity to a perturbation in the data, and lastly the
adjoint of the linearized operator.

In this report, we first give a brief introduction to numerically solving the Helmholtz
equation. We then describe the different operators of the Helmholtz solver. With each
operator, we provide a simple example for how it might be used in an FWI context.

DISCRETIZATION OF THE HELMHOLTZ EQUATION

We begin with the constant-density acoustic wave equation,

183
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1 0%u(x,t)
c(x)?  ot?

— Vu(x,t) = f(x,t). (1)

If we then take the temporal Fourier transform of equation [I} we arrive at the well-known
Helmholtz equation,

c(x)Qu(X’w) — Vu(x,w) = f(x,w).

Discretizing the Laplacian with second-order finite differences, we write the discrete Helmholtz
equation as:

w? u(w)i—1; — 2u(w)ij + w(w)ivrj| | [wlw)ij—1 —2u(w)ij +u(w)ij+1

Grouping terms by spatial index, we can write the system of equations as a matrix vector
product:

Au=f, (2)

where the coefficients of A depend on the spatial samplings (Ax, Az), velocity (c) and the
frequency (w). Note that A is nonlinear in the velocity ¢(x) and is independent for each
frequency.

EXAMPLES

The Helmholtz solver contains four principal operators. These operators consist of three
wave equation operators: the nonlinear modeling operator, the linearized modeling opera-
tor, the adjoint of the linearized modeling operator and a receiver restriction operator that
interpolates the wavefield onto the receiver locations. Each of the wave-equation opera-
tors has the capability of performing conventional phase and amplitude, phase-only and
normalized-amplitude modeling. In the following subsections, we provide examples of how
to use these operators on simple synthetic models.

Nonlinear forward operator

The nonlinear forward wave equation operator maps an input source function f to a data
vector d given a velocity model:

d=RA'f, (3)

where A is the Helmholtz matrix as defined in equation [2[ and R is a restriction operator
that interpolates the wavefield to the receivers. Note that intermediately, we compute the
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wavefield u = A~'f. When we do this, we only need to factorize A once and thus we can
apply A~! to multiple sources.

As A is quite large, sparse and asymmetric, sparse LU decomposition algorithms can be
used to factorize A into two lower and upper triangular matrices. In this Helmholtz solver,
this is done with the UMFPACK libraries within SuiteSparse.

To factorize A and perform the nonlinear modeling, we must construct both A and f.
To construct A we need to choose a velocity model and frequency. The velocity model for
this particular example is shown in Figure [I] and the frequency of choice is 1.0 Hz. For
all of these examples, the velocity contains no imaginary component. Note that another
advantage of frequency domain modeling is that it is trivial to implement attenuation by
providing an imaginary component to the velocity.

2000 4000 6000 8000

O [se)
o
+
(]
o N
S [av)
Figure 1: The velocity used in the o
nonlinear modeling. For this exam- ,\§ o,
ple it contains no imaginary compo- E %E
nent. [ER] ’ joseph2/. Voz—vel‘ 3 ®
2]
o
o
o 2]
<t o
+
©

For velocity model shown in Figure [I] and a frequency of 1.0 Hz, the Helmholtz matrix
A is shown in Figure 2] Note that, A is banded but not symmetric. This asymmetry is
due to the use of one-sided derivatives used in the Engquist/Majda absorbing boundaries.
(Ajo-Franklin, |2005; Engquist and Majdal 1977). The width of the bands depends on the
length of the stencil used for computing the Laplacian. For higher frequencies and faster
velocities, the stencil size must be increased to avoid numerical dispersion. This in turn
increases the computational cost of factorizing A. For this reason this solver implements
a compact 9-point stencil that is based on a Padé-like approximation (Singer and Turkel,

1998).

In order to construct the source vector f and the receiver restriction operator R, the
solver must be provided with the source and receiver coordinates. Note that this solver does
not assume that the sources and the receivers are located on the same grid as the velocity.
Figure 3| shows the overlay of the acquisition geometry for the nonlinear modeling and also
that the sources and receivers are placed on a different grid than the velocity grid.

With each of the components of equation [3|built, we can perform the nonlinear modeling.
The real part of the result of the modeling performed is shown in Figure and the real
part of the recorded data is shown in Figure
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Figure 2: (a) The sparsity pattern of A. (b) A zoom-in on the upper diagonal of the
matrix (first 70 elements). Note the three bands on the main diagonal and the outer
fringes. Also note two stray points near the main diagonal. These stray points appear due
to the one-sided derivative at the boundary and are the cause of the asymmetry of A. [ER|]
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Figure 3: (a) The acquisition geometry for the nonlinear modeling overlain on the velocity
model shown previously in Figure [1 Note that the velocity here is shown only to 2000 m
in depth. (b) A zoom-in on the source, receiver and velocity grid. Note that the source,
receiver and velocity grid all have different spatial sampling intervals and are not co-located.
[ER] ’ joseph2/. vel—geom—ovrly,srsrecmod‘
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Figure 4: (a) The real part of the wavefield for a wavelet of 1Hz .(b) The real part of
the data obtained after modeling at all source locations and the application of R. [ER|]
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Linearized operator

We can express the linearized operator in terms of the Helmholtz matrix by first expressing
A~ as a first-order Taylor-series expansion around myg:

OA~!(myg)

AN m)f ~ A (mo)f + ( —————Am | f

(m) (mo)f + ( m m) ,

where m is a vector of length nm containing the velocity ¢(x) and m = mg + Am. myg is
the initial (background) model and Am is our model perturbation. We can further expand
the derivative as:

Au = (M) f= (—A‘lMA_lAm) f, (4)

om om

where Au is the linearized Born wavefield. As A /Jm is a tensor, we need to sum over the
different components of m to write equation [4] as a chain of operators:

Au = —A_l(mo) —AmiA_l(mo)f. (5)

At this point in our derivation, the physical interpretation is quite clear. Starting from
the rightmost side of equation [5, we have the background wavefield from the application
of A~! to the source f. We denote this as ug. This is then scaled by a perturbation and

a second time derivative is applied with the application of g—%. The output of these two

operations (g—n‘%qumi) is commonly known as the secondary source in linearized modeling,

and serves as input to another propagation A~!, thus resulting in the single-scattered or
Born wavefield (Au). If we consider only perturbing one single point in the model space
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(i.e. Am contains only one non-zero component), at model point j then we can drop the
summation and rewrite equation [b| as:

Au = A" 'DugAm,
where D = E?TAJ» and Am = Am;. With the application of R, we now have a linear
relationship between a perturbation in the data and a perturbation in the model parameters:

Ad = RAu = RA™!'DugAm. (6)

To perform the linearized modeling in the solver, we use the layered velocity which consists
of the smooth background and the perturbation. These are shown in Figure The real
part of the wavefield that resulted from applying the chain of operators in equation [5| to the

perturbation shown in Figure is shown in Figure Figure shows the recorded
data.
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Figure 5: (a) Total velocity model (m = mg + Am), (b) background veloc-

ity mo (low-pass filtered version of (a)) and (c) velocity perturbation Am. [ER|]
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Figure 6: (a) The real part of the Born wavefield modeled Au as result of applying the
chain of operations in equation |5[to to the perturbation shown in Figure (b) The real
part of the data perturbation obtained after Born modeling at all source locations and the
application of R. [ER] ’ joseph2/. lwfldreal llyr-real

Adjoint of linearized operator

With a simple conjugation and reversal of the operators in equation [6] we obtain the ex-
pression for the application of the adjoint Born operator that relates a perturbation in the
data to a perturbation in the model parameters:

Am = up*D*(A")*R*Ad.

Using the solver, we first attempt to map the data perturbation computed in Figure
back to the model space. This is shown in Figure In this migrated image, we can
faintly see the first velocity contrast that occurs at 1500 m depth (Figure is included
for reference). As a second example, we compute a monochromatic sensitivity kernel for
homogeneous velocity that is shown in Figure

CONCLUSION

We have presented a Helmholtz solver written in C++ that can be used for performing
frequency domain FWI. This solver contains three main operators that implicitly solve
the Helmholtz equation to compute the monochromatic non-linear, linearized and adjoint
wavefields and data. While in this report only conventional amplitude plus phase modeling
was performed, this solver has the machinery to also perform phase-only and normalized-
amplitude modeling as well. While factorizing the Helmholtz matrix is more involved than
solving wave equation via explicit finite differences, the frequency domain implementation
has many advantages such as frequency-continuation, straight-forward implementation of
attenuation and cheap multi-source modeling. We have presented examples of performing
forward modeling and computing gradients in hopes that this software may be used among
SEP researchers.
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Figure 7: (a) The adjoint of the linearized operator applied to the data perturbation shown
in Figure |6(b)l (b) The model perturbation in Figure shown again for comparison.
Note that the image and perturbation are shown from 1000 m depth. Also note the faint
reflector at 1500 m depth in the image that corresponds to the first reflector in the model.
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Figure 8: FWI gradient (sensitivity kernel). Note that this example used only one source and
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Reproducibility through containers

Robert G. Clapp

ABSTRACT

In order to achieve truly reproducible results the underlying software architecture must
be captured. Docker containers, a lightweight alternative to a virtual machine, can be
used to snapshot all software dependencies and allow anyone to reproduce an author’s
results with minimal effort. We demonstrate the effectiveness of Docker containers in
several contexts including reproducible research, computer labs, and writing LaTeX
documents.

INTRODUCTION

Reproducible research is one of the fundamental building blocks of scientific advancement.
Claerbout| (1990) and |Schwab et al. (1996) designed a framework for authors to follow to
make their work reproducible. Their basic concept was to introduce generic targets of
build (build all results), view (view the results), burn (remove the results), clean (remove
all intermediate files) that each author would define for each paper. A limitation of their
approach is that when their underlying software dependencies changed, reproducibility (or
even the ability to compile) is not guaranteed. Fomel and Claerbout| (2009) went a step
further incorporating papers into the software building process. As a result, in theory,
papers stay reproducible because any bugs introduced into the software are caught and
fixed in the build process. This approach, in addition to producing an ever larger, and
more complex building/debugging requirement, still makes assumptions that all possible
underlying software requirements have been tested/debugged.

The difference in development and production environments is a well known problem in
the broader software development field. Virtualization, which creates a virtual machine
running within a system, is one approach. Virtualization has drawbacks such as slow
provisioning, performance degradation, and a large memory footprint when running multiple
virtual machines on a single server. A newer approach is containers (Wikipedia, 2016). The
current leading container approach are ‘Docker containers’. In the context of reproducible
research, a Docker container will include: the rules to build a paper, the software needed
to build the paper, the underlying operating system which the user built the paper on, and
how that underlying operating system was constructed.

In this paper we demonstrate how to use Docker containers to build a reproducible
environment. We demonstrate their utility by using them for report articles, labs, and even
building documents.
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INTRODUCTION TO DOCKER CONTAINERS

At a very basic level a container can be thought of as a virtual machine. You have an
additional operating system that is taking a part of a host’s resources. In general, the
operating system of the virtual machine exists in the computer’s memory instead of on
disk. The advantage of the virtual machine concept is that we can construct the perfect
environment for my application to run in. In terms of reproducible research, once we’ve
tested that the code works in a given virtual machine, that working state is preserved
forever. We can distribute the virtual machine image to anyone and it will simply work
without much, or any, effort on their part. In addition, we can run multiple virtual machine
images on a single host, each running completely independently.

The complete independence of each virtual machine is also one of its major drawbacks.
Imagine using virtual machines to do a parallel task, because each virtual machine is com-
pletely independent each will have its own complete copy of the operating system. Con-
tainers work a little differently. We normally think of a filesystem as consisting of a series
of directories and files. The directories and files may sit on different disks or servers but
only a single version of a given directory exists for a given machine. As we make a Docker
image, we are building up the filesytem in a series of layers. Each command in the Docker
build process takes a difference between the state of the filesytem before and after a build
command. Each layer of the Docker image is read-only. By default any changes we make to
the Docker filesytem while running a given Docker image is making changes to a temporary
additional filesystem layer. When we exit, all of these changes will be lost (we will discuss
read/write filesystem layers later). When running multiple Docker virtual machines the
read-only layers will be shared between the Docker instances resulting in a much smaller
memory footprint.

In addition Dockers run on the host operating system, allowing it to share a lot of the
host resources. As a result while a virtual machine can take minutes to start a Docker often
starts in less than a second.

Building a Docker image

A Docker image is built from a Dockerfile. A Dockerfile consists of a series of commands
to build the Docker image. As an example we are going to step through a Dockerfile that
builds SEPIlib on a Centos-7 machine.

From centos:7
MAINTAINER Bob Clapp <bob@sep.stanford.edu>

The beginning of my Dockerfile indicates that we want to start with another Docker
image, in this case, CentOS version 7 (the colon is how you indicate a version number to
Docker). SEPIlib uses SU’s library for reading SEG-Y headers so before we build SEPIlib
we are going to build SU. The CentOS image is quite small, with the minimum number of
packages. In order to build SU we need to install sum X11 libraries, make, gcc, and wget
using yum. The RUN keyword indicates system commands that need to be run to build the
image.

RUN yum -y install make 1ibX1ll-devel libXt-devel gcc wget; yum -y clean all
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After we’ve installed these packages we need to create a directory for SU and then download
and compile it. We need to do a little bit of work because SU wants to have this section be
interactive.

RUN mkdir /opt/SU && cd /opt/SU ; \
wget ftp://ftp.cwp.mines.edu/pub/cwpcodes/cwp_su_all_44R1.tgz &&\
cd /opt/SU ; tar xf cwp_su_all_44R1.tgz;cd /opt/SU/src  &&\
cd /opt/SU/src ;touch cwp_su_version LICENSE_44_ACCEPTED MAILHOME_44 &&\
cd /opt/SU/src; echo "echo boo" >chkroot.sh &&\
cd /opt/SU/src; chmod 777 chkroot.sh  &&\
cd /opt/SU/src; CWPROOT=/opt/SU make install xtinstall &&\
rm -rf /opt/SU/cwp_su_all_44R1.tgz /opt/SU/bin

Docker compares the filesystem before and after each command. By combining all of the
installation steps and cleanup on a single line we reduce the overall size of my Docker image.
Once we have the parts of the SU that we need to install some additional software packages
the SEPIib uses that SU does not.

RUN yum -y install make automake autoconf libtool csh git \
libXt-devel 1ibXll-devel libXaw-devel gcc gcc-gfortran flex &&
yum -y clean all

We need to download, compile, and install SEPIlib.

RUN mkdir /opt/SEP &&\
git clone http://zapad.Stanford.EDU/bob/SEPlib.git /opt/SEP/src && \
cd /opt/SEP/src; autoreconf -vif &&\
cd /opt/SEP/src; ./configure --prefix=/opt/SEP --with-su=/opt/SU && \
cd /opt/SEP/src; make install &&\
cd /opt/SEP/src; make clean

Finally, we are going to add the environmental variables SEPlib needs to the root user’s
environment.

RUN echo export PATH=$PATH:/opt/SEP/bin >> ~/.bash_profile &&\
echo export SEP=/opt/SEP >> ~/.bash_profile &&\
echo export SEPINC=/opt/SEP/include >> ~/.bash_profile &&\
echo export PYTHONPATH=/opt/SEP >> ~/.bash_profile

Once we’ve written my Dockerfile we can build my Docker image using

docker build -t rgc007/seplib:8-centos .
where -t rgc007/seplib:8-centos indicates that the tag -t for this image is seplib
version 8-centos for the Docker account rgc007. The . indicates the directory where the

Dockerfile and any additional files we might add to my image exist. After the image is
built we can run:
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docker run -it rgc007/seplib:8-centos /bin/bash

The run command will check to see if the image exists locally. If not, it will it will attempt
to download the layers needed for the Docker image from from the Docker account rgc007.
Any layers that don’t exist locally will then be downloaded. Finally it will give me a bash
shell within the container containing a full version of SEPlib. we can push this image to
Docker by using the command docker push rgc007/seplib:8-centos. Once Docker is
installed the reader can reproduce the SEPIlib build by typing make buildSEPRepo or enter
the Docker image by typing make enterSEP.

USING DOCKERS

There are many uses for containers. Below we discuss four examples of using Dockers in a
research university environment. The Dockerfile described above sets up an image with a
basic SEPIlib environment. My reproducible research Docker is going to begin by inheriting
my SEPIlib image.

From rgc007/seplib:8-centos
MAINTAINER Bob Clapp <bob@sep.stanford.edu>

We could follow the same procedure described above to build and enter my Docker but
we wouldn’t be able display any X11 graphics. There are several different options to get
graphics working. The one we are going to choose is to add a local ssh server to my Docker.
Using a ssh server approach has the advantage of working on Linux, MacOSX, and with the
right ports and an X11 client, Windows. First we need to install ssh, passwd, and xauth.

RUN yum -y install openssh-server passwd xauth; yum clean all

Next we are going to add to the Docker a script that creates a non-root user, sets its
password, and copy roots environment. In addition it is going to set the SEPIlib datapath
to

tmp.

ADD start.sh
where start.sh contains

#!/bin/bash

__create_user() {

# Create a user to SSH into as.

useradd user

SSH_USERPASS=newpass

echo -e "$SSH_USERPASS\n$SSH_USERPASS" | (passwd --stdin user)
echo ssh user password: $SSH_USERPASS

echo datapath=/tmp/ >~user/.datapath
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cp “root/.bash_profile “user/.bash_profile

by

# Call all functions
__Create_user

To run the ssh daemon we need to create an additional directory and generate an ssh key.

RUN mkdir /var/run/sshd
RUN ssh-keygen -t rsa -f /etc/ssh/ssh_host_rsa_key -N ’’

We are then going to run the start.sh script.

RUN chmod 755 /start.sh
RUN ./start.sh

We are then going to add to my new Docker a local folder derivative containing a Makefile
and a simple code that applies a first derivate to a 2-D field.

ADD derivative /home/user
RUN chown -R user /home/user

Finally we need to indicate that to enter this image that to enter it one should use ssh.
ENTRYPOINT ["/usr/sbin/sshd", "-D"]

Once we've built this image (e.g. docker build -t rgc007/testReport), We can start
the image using

docker run -d -p 22 -t rgc007/testReport

in this case we are running the Docker in detached mode and mapping port 22 of the
Docker to an available port on my local machine. We can get what port my Docker image
mapped port 22 to using docker ps. Finally, we can login to my Docker image using ssh
-Y user@localhost -p XXXX where XXXX is the port number I found from the docker
ps command! We use the password newpass to login and We are now in a complete linux
environment where we can use make build, burn, clean, view. The reader can build the
reproducibility Docker by typing make buildSEPRepo. You will need to enter the password
newpass at the prompt.

Another use, in an academic research context, is to use a Docker to build LaTex en-
vironment. The Docker image consists of a series of read-only file system layers. As a
result even though we can modify a file within the Docker filesystem those changes will be
lost once the Docker image is stopped. For the reproducible research example above the

1t is useful to add -Y -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no to avoid having
to edit your known host file.
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read-only nature of the file system is sufficient. When writing a paper we need to have some
persistency in our filesystem. The solution to what Docker refers to as Docker data volume.
The basic concept is to map a directory from our host system into a directory inside Docker
images. Any changes made in the directory of the Docker image is seen on the host and vice
versa. To create a Docker volume we simply add an option to the docker run command
line option of the form --volume=/local/path:/docker/path where local/path refers to
a directory on the host machine and /docker/path refers to the directory in Docker image.
The reader can build the SEP LaTeX environment by typing make buildSEPTeX and enter
the image by typing make enterSEPTeX.

SEP has a series of four classes that it requires every student to take. Ome of the
challenges are making sure that peculiarities of a given SEPIib release, compiler, user envi-
ronment, etc. do not distract from the purpose of the lab. Dockers solve this problem. Once
a Docker image is built and works once it will work without needed additional changes. This
also allows us to provide our labs to the world without the challenges of completely setting
up their environment. The lab Docker combines elements of the LaTeX and reproducible
research Docker. The Docker can be built using make buildSEP1Lab and entered using
make enterSEPLab, again using the newpass password.

Another interesting use for a Docker is to distribute single software executables. The
entrypoint of a Docker can be running a unix command. When used in conjunction with a
Docker data volume, theoretically a full processing system could be written using Docker
containers. A CMD is added the Dockerfile specifying what program should be run and any
potential arguments. As an example typing make showModel will first build a 3-D synthetic
model and then display it using SEPIlib’s 3-D viewer.

CONCLUSIONS

Dockers represent a more complete step along the path of reproducible research. They can
be used to capture not only the user’s code but the user’s full environment. Dockers also
provide effective solutions for code distribution, computational labs, and building LaTeX
documents.
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