
SEP Vector: C++ Features in Code

Eileen Martin
Library development done with Bob Clapp, Huy Le, Chris Leader

March 11, 2014

Abstract

Many students in SEP primarily code in Fortran 90, so this document gives an overview of
some of the features of the C++ SEP inversion library that are not commonly used in Fortran 90
with the goal of helping more people understand, use, and contribute to the library.

1 Navigating the Source Code Directories

Currently, the top level of the code looks like this

• base, a folder containing the source code and unit tests

– Lots of source code files that should be navigated using the documentation in the docs
folder

– utests, a folder containing all the unit tests of the source code. This contains some
useful examples of how to use the library.

• config.defs, Makefile Files used to make the source code into a library in lib and obj,
folders that are automatically created when make all is run

• Doxyfile, a documentation configuration file automatically generated when the command
doxygen -g Doxyfile is run in the top level directory.

• docs, a folder holding the documentation files generated by Doxygen, which are automatically
organized into two subdirectories, latex and html

– handWrittenDoc, a folder containing this document. Don’t delete this folder.

• gee examples, a folder containing examples from [?] which are currently being built

– inverse nmo.cpp, NMO example using NMO operator defined in Nmo.h and Nmo.cpp

– regSolver.cpp, code for the regularized solver from section 3.4 using multi-spaces and
multi-operators that combine linear interpolation from lint1.cpp/h and deriv2nd1D.cpp/h

1.1 Automatic Documentation

Currently, the documentation is sitting in the docs folder. To update the documentation when
you add new code or comment code, just run doxygen Doxyfile, where Doxyfile is the con-
figuration file. Once this is generated, you can navigate the html documentation by opening
docs/html/index.html in a browser, or run docs/latex/refman.tex through pdflatex to create
a reference manual in pdf format.

The documentation that is automatically generated shows namespaces, class hierarchy, inputs and
outputs of functions and methods, variables belonging to classes, file structure, and any comments
denoted in the code by special markers. One way to create comments that will be included in this
documentation is by putting at least two consecutive lines starting with /// in the implementation
of a function or method. For example, this code can be found in Space.cpp:

void SEP : : MultiSpace : : zeroElement (dataContainer ∗ x) const {
/// Zero out any vec to r in the MultiSpace by ze ro ing
/// i t out in the two spaces making up the mult i space .
SEP : : MultiDataContainer ∗x2=(SEP : : MultiDataContainer ∗) x ;
sp1−>zeroElement (x2−>getData1 ()) ;

1

sp2−>zeroElement (x2−>getData2 ()) ;
}

The corresponding part of the auto-generated HTML code looks like:

2 Namespaces

Where is it in the code? When browsing the Doxygen documentation, one of the first notice-
able features of the code’s structure is that literally everything is contained in the SEP namespace.
Browsing the source code, nearly every class definition is contained in a using namespace SEP{}
statement.

Why is it used? If this code is used in isolation, this feature is largely useless 1, but this
feature makes it much easier to combine this code with other C++ code. Many of our classes have
relatively common names like Vector, Space, Operator, Map. Say that a user wishes to combine the
inversion library with a visualization library. There is a good possibility that the visualization li-
brary could have a class by the same name, so the user would specify the namespace they reference.

How do I use it? Use the scope resolution operator, ::, as

NamespaceName::ClassFunctionOrMethodName

to call a function, method or class in the namespace called NamespaceName. When implementing
methods of classes in the SEP namespace, follow this example from Operator.cpp, which specifies
the domain associated with a SEP::Map:

//outputType NamespaceName : : ClassName : : MethodName(inputs) {
void SEP : : Map : : setDomain (Space ∗dom) {

domain=dom;
}

Going back to the visualization library example, say the user wants to use the inversion library
alongside a visualization library which has a class called Vector under the namespace VisLib. The
user might wish to plot a SEP::Vector using VisLib and would distinguish between the two types
of vectors as follows:

SEP : : inCoreFloat1D sp (10) ; // c r e a t e sp , 10−D space f o r in core computing
SEP : : Vector vs(&sp) ; // c r e a t e vs , a SEP Vector in the space sp
vs . random () ; // f i l l vs with ten random numbers
// . . . use some SEP namespace methods to manipulate t h i s vec to r . . .
VisLib : : Vector vs2 (vs) ; // c r e a t e a VisLib Vector , vs2 , from vs
vs2 . Make1DPlot () ; // c a l l a Make1DPlot method o f VisLib Vector

3 SEP Vectors

The design of SEP::Vectors is inspired by the Rice Vector Library [?]. Typically when we hand
write code, our operators might have some minimal amount of error checking- something along the
lines of asking whether the dimension of the input and output are correct. What happens when
two spaces, just happen to have the same dimensions? The user must be very careful to get the

1We chose to capitalize Vector and Map with the intention of not overlapping names with the standard C++
namespace which has std::vector and std::map containers.

2

operator order correct, which can be especially tricky when there is a chain of many operators.
When each vector has an associated space, and each operator has a domain space and range space,
the software can help users avoid these types of errors.

Vector

Space Data
Container

*sp *dc

*array dimensions

Boost
multi_array

(dimensions)

Each Vector has a pointer to a concretely implemented Space, and a pointer to a concretely
implemented dataContainer. Every type of Space implemented thus far has dimension, but it
is okay if down the line someone decides to implement a Space that does not have dimensions.
Each dataContainer contains some dimensions, and a pointer to a multi-dimensional array which
is managed by the Boost multiArray library. Note that the dataContainer is actually created by
the Space so these will be compatible. The Boost library has a nice interface, so we can treat it as
a black box.

4 Abstract Classes, (Pure) Virtual Methods

What are they? Any base (i.e. parent) class in C++ can have some concretely implemented
methods, but any methods that are preceded by the word virtual can be redefined in the derived
classes. An abstract class is a class that is never meant to be instantiated, but rather serves as a
base class to its concretely implemented derived classes. It must have at least one function, known
as a pure virtual function, which has literally no definition in the base class. These are denoted
by a virtual marker at the beginning, and a =0 at the end. These pure virtual functions must
be defined in every concrete derived class of the abstract base class. We can then use pointers to
abstract base classes to reduce the amount of code, and they are able to be type compatible with
their derived classes.

How are they used in the code? Some examples of abstract classes include the dataCon-
tainer, Vector and Space classes. Often you will see implementations that simply refer to some
*dataContainer or *Space. When the code is executed, the specific concrete implementation for
that type of dataContainer or Space is then carried out. To illustrate, here’s an example of the
abstract dataContainer class from dataContainer.h:

c l a s s dataContainer {
pub l i c :

dataContainer () { ;} // cons t ruc to r
v i r t u a l void my type () =0; // pure v i r t u a l f c t . makes c l a s s ab s t r a c t
v i r t u a l ˜ dataContainer () { ;} // de s t ru c t o r
char name [1 0 0 0] ;

p r i va t e : // no p r i va t e members
} ;

Here’s dataInCoreFloat, an abstract class derived from dataContainer from DataInCoreFloat.h:

3

c l a s s dataInCoreFloat : pub l i c dataContainer {
pub l i c :

dataInCoreFloat () {} ;
void setup omp () ;
s td : : vector<long long> ∗get b omp () { re turn &b omp ;} // f o r v e c t o r i z a t i o n
std : : vector<long long> ∗get n omp () { re turn &n omp ;}
f l o a t ∗ getF loatPtr () { re turn va l s ;} // f o r a c c e s s i n g data
void se t n123 (long long n) { n123=n ;} // to s e t dimensions
i n t ge t nth () { re turn nth ;} // to get dimensions
void random(dataContainer ∗x) const ;
v i r t u a l void my type () = 0 ; // s t i l l keeps c l a s s ab s t r a c t
v i r t u a l ˜ dataInCoreFloat () { // need to be ab le to ove rwr i t e

d e s t ru c t o r
c l eanInCoreFloat () ;

}
pub l i c :

f l o a t ∗ va l s ;
p r i va t e :

s td : : vector<long long> b omp , n omp ;
void c l eanInCoreFloat () ;
long long n123 ;
i n t nth ;
i n t vec to r beg ;

}

An example of one of the concrete classes derived from dataInCoreFloat is data2DFloat , also
defined in DataInCoreFloat.h:

c l a s s data2DFloat : pub l i c dataInCoreFloat {
pub l i c :

data2DFloat (long long n1 , long long n2) {
base 2d (n1 , n2) ; // c r e a t e empty n1xn2 boost : : mu l t i a r ray

}
data2DFloat (std : : vector<long long>n) {

base 2d (n [0] , n [1]) ;
}
data2DFloat (long long ∗n) {

base 2d (n [0] , n [1]) ;
}
v i r t u a l void ∗ returnData () { re turn (void ∗) array ;}
v i r t u a l void my type () { std : : ce r r<<” I am dataInCoreFloat2D ”<<std : : endl

;}
v i r t u a l ˜data2DFloat () { de l e t e array ;}

pr i va t e :
void base 2d (long long n1 , long long n2) ;
f l o a t 2 d ∗ array ;

} ;

5 Memory Management

Note that we use raw pointers, so the arrays that are created must be manually freed. In managing
the data structures, each concrete dataContainer destructor (denoted by a ClassName() in the
class definition) calls some clean method, which deletes the data that the *array points to. For
example, in DataInCoreFloat.cpp, you see the cleanup method for a data1DFloat :

void SEP : : data1DFloat : : c l ean 1d () {
de l e t e array ;
array = NULL;

} ;

Note that any pointers created in the user’s code must also be manually cleaned up.

4

6 The Boost::MultiArray Library

Why use this? The Boost MultiArray library gives an easy interface to access and modify multi-
dimensional arrays [?]. It avoids the extra costs associated with creating a matrix as a vector
of vectors, or the difficult indexing of a multidimensional array stored as a big single dimensional
array in a contiguous block of memory. By using this library, we are able to avoid dealing with some
of the details of working with multidimensional array. This library has been tested much more
than we would be able to test our own structures. Further, many Linux and Unix distributions
already have pre-build Boost packages, and it is easy to download and install, so it will not hinder
the portability of this code.

Where is it used? Only the dataContainers ever actually deal with the Boost library. Here’s
an example from DataInCoreFloat.h, which starts out with renaming the boost::multi array’s.

typede f boost : : mul t i a r ray<f l o a t , 1> f l o a t 1 d ;
typede f boost : : mul t i a r ray<f l o a t , 2> f l o a t 2 d ;
// more typede f statements up to 7d
// d e f i n i t i o n o f dataInCoreFloat c l a s s
// d e f i n i t i o n o f data1DFloat through data7DFloat c l a s s

The example in the previous section shows how data2DFloat is implemented as a concrete class.
Later in DataInCoreFloat.cpp, we see the implementation of the base 2d call, which calls a Boost
constructor:

void SEP : : data2DFloat : : base 2d (long long n1 , long long n2) {
array= new f l o a t 2 d (boost : : ex t ent s [n1] [n2]) ;
long long n=n1 ;
n∗=(long long) n2 ;
s e t n123 (n) ; // s e t s dimensions o f array
va l s=(f l o a t ∗) array−>data () ; // f i l l s array with data
setup omp () ; // s e t s up b lock ing o f array

}

7 Pointer Aliasing and the restrict keyword

What is pointer aliasing? What happens when two pointer variables with different names point
to the same memory location? In Fortran, all pointers are assumed to not be aliased, but In C++,
we need to use the restrict keyword to suggest to the computer that a pointer does not alias
any other pointer. This means the compiler is able to make optimizations to the code because it
has more information about the independence of two pointers.

Where is it seen? Here is an example of a restrict in its natural habitat. Remember
that when an operation like scaling a Vector in a Space needs to happen, the user’s call on the
Vectors vy and vx, vy = vx.scale(a), looks like it just acts on the Vector. Really the operation
is implemented as a method of the Space. The restrict statements below tell the computer
that x and y, the pointers to the dataContainers of vx and vy, point to data stored in different
locations, so it knows it’s solving vy = a · vx and not vx = a · vx.

void SEP : : inCoreFloat : : s c a l e (f l o a t a , dataContainer ∗x , dataContainer ∗y)
const {

dataInCoreFloat ∗ s=(dataInCoreFloat ∗) x ;
dataInCoreFloat ∗ t=(dataInCoreFloat ∗) y ;
s td : : vector<long long> ∗b omp=s−>get b omp () ,∗n omp=s−>get n omp () ;
f l o a t ∗ r e s t r i c t my=t−>getF loatPtr () ;
f l o a t ∗ r e s t r i c t t h e i r=s−>getF loatPtr () ;
// F i r s t few e n t r i e s o f vec to r
f o r (long long i =0; i < b omp−>at (0) ; i++) my[i]= t h e i r [i]∗ a ;
i n t i t h ;
#pragma omp p a r a l l e l
i t h=omp get thread num () ;
long long j =0;
SIMD constant c0 ;
SIMD Float16 : : setConstant (c0 , a) ;
SIMD Float16 mine ;
// Vector i zed c a l l s in b locks
f o r (long long i=b omp−>at (i t h) ; j < n omp−>at (i t h) ; j++, i+=BLOCK SIZE) {

5

mine . loadu(& th e i r [i]) ;
mine∗=c0 ;
mine . stream(&my[i]) ;

}
// Fin i sh i t up
i n t nth=s−>get nth () −1;
f o r (long long i=b omp−>at (nth)+n omp−>at (nth) ; i< n123 ; i++) my[i]= t h e i r [

i]∗ a ;
}

8 Error Handling with Exceptions

Why is it used? This is a way of dealing with errors that occur in a certain chunk of code,
enclosed in a try { } statement. If the code encounters some bad conditions, it may throw an
exception. Following this part of the code is a catch { } statement, which handles that ex-
ception, perhaps printing out information about what type of exception was thrown. After an
exception is caught, the computer continues to execute the code after the catch { } block. More
simplistic error handling might just stop execution after encountering a problem, but the use of
exceptions allows the code to continue if possible.

Where is it seen? Exception handling is seen in many of the unit tests, but also in Space.h
where the equality of two spaces is checked:

v i r t u a l bool operator ==(const Space & otherSpace) const
{

t ry {
i f (t h i s == &otherSpace) re turn true ;
throw ”MultiSpace don ’ t match” ;

}
catch (const char ∗xx) {

throw SEPException (xx) ;
}

}

References

[1] Ronald Garcia, Jeremy Siek, Andrew Lumsdaine,
http://www.boost.org/doc/libs/1 55 0/libs/multi array/doc/index.html

[2] Jon Claerbout, Sergey Fomel, Last update March 3, 2014,
http://sepwww.stanford.edu/sep/prof/gee/book-sep.pdf

[3] William Symes et. al., The Rice Vector Library, http://trip.rice.edu/software/rvl/doc/html/index.html

6

