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ABSTRACT

We implement multiparameter full-waveform inversion (FWI) in the isotropic
acoustic media with the nonlinear conjugate gradient (CG) method. The perfor-
mance of the FWI is evaluated using different combinations of acoustic parame-
ters, including velocity, density and acoustic impedance. Simultaneous inversion
of velocity and density leads to smoother results, when compared with the in-
version results for velocity and acoustic impedance. We discuss the crosstalk
between parameters for different parameterizations of FWI. We show the second
order method can be used to reduce the crosstalk by applying the approximated
inverse of the Hessian to the gradient.

INTRODUCTION

Full-waveform inversion (Tarantola, 1984; Virieux and Operto, 2009) is a challenging
technique that estimates the high-resolution subsurface model by minimizing the
mismatch between the observed data and the synthetic data. The first order derivative
is needed for FWI, and the Hessian is used in Newton-based methods. It is known
that the adjoint-state method is an efficient method to compute the Frechet derivative
(Tromp et al., 2005; Plessix, 2006) and the Hessian (Fichtner, 2011; Fichtner and
Trampert, 2011) for FWI.

FWI is a useful tool for time-lapse (4D) seismic imaging problems (Maharramov
and Biondi, 2013). For this purpose, it is reasonable to use multiparameter FWI be-
cause both the velocity and density change during production. Geomechanical effects
have been observed, which leads to change in the anisotropic and elastic parameters.

In this paper, we implement multiparameter FWI in the acoustic media with the
nonlinear CG method (Nocedal and Wright, 2006; Maharramov and Biondi, 2013).
Two acoustic parameters are estimated simultaneously. We discuss the crosstalk
between different parameters, and test the feasibility of scaling/rotating the gradient
using the approximated inverse of the Hessian.

The Marmousi model with non-constant density is used to test our implementa-
tion of the FWI. We first use the constant-density wave equation to fit the data by
neglecting density variation. The effect of density leaks into the velocity model during
the inversion. We test multiparameter FWI with different parameterizations (Operto
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et al., 2013). The inversion results are smoother for the (v, p) parameterization when
compared with the results for the (v, I,,) parameterization, where v is the velocity, p
is the density and I, is the acoustic impedance.

We study the crosstalk for (K, p), (V,p), and (V, I,) parameterizations, where K
is the bulk modulus. For (K, p), the gradients for K and p have similar amplitude.
However we cannot distinguish the contribution from each parameter. Proper rotation
of the gradients would improve the FWI results. For the (V| p) parameterization, the
gradient for V has higher amplitude when compared with the gradient for p, and the
FWI does not update the density model effectively unless we scale the gradient. To
scale/rotate the gradient, we apply the approximated inverse of the Hessian using
the CG method. The crosstalk is reduced significant after applying the approximated
inverse of the Hessian to the gradient.

METHOD

We use the least-squares misfit function for FWI in the time domain (Tarantola, 1984)
as follows:

s =5 3 [ 118 :um) ~ a 1)

where S, is the sampling operator for the receivers, d, is the observed data at the
receiver r, u is the synthetic pressure wavefield, and m is the model parameter.

The pressure field u is computed using the acoustic approximation of the wave
equation with a non-constant density, as follows:

(5 -V-(19)|u =
u(r,t =0) = (2)
du(r,t =0) =0,

where v is the p-wave velocity, p is the density, and f is the source wavefield. Numeri-
cally, we solve Equation (2) in the time domain using a staggered-grid finite difference
method, starting from ¢t = 0 to maximum recording time ¢ = T.

We choose our model parameters as follows,

m, = log(v/v), (3)
m, = log(p/po) (4)
mg = log(K/Ky), (5)
mp, = log (Ip/Lpo) , (6)

where K is the bulk modulus and 7, is the acoustic impedance. vy, po, Ko and I,y are
the initial models. We can recover the physical parameters after the inversion, e.g.,
v = vg exp(my,).
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The wave equation can be parametrized by choosing any two of the model param-
eters: m,, m,, mg, and m;. Different parameterizations for elastic wave equation
have been studied (Alves, 2015). The gradients for (mg,m,), (m.,, m,) and (m,, mz,)
parameterizations can be computed as follows:

aJ
or [ ] [ ®EOVW .
8 - - Y
(mc, my) 2 —1L(\ )
aJ 2
or | ] w1t ) 5
(M, a Bl ’
(mo,my) | o1 AL — AL
and,
8J B 3(2;1]0 B ilt()‘v U) + [U_pI:t()‘a u) (9)
d(my, my,) % iItO" u) — ﬁI;v()\, )
where we define two imaging operators as follows,
T
Li(up,up) = / w1 O uydt, (10)
0
T
L(u,up) = / (V*uy) - (Vugy) dt. (11)
0

While the first-order methods suffer from crosstalk between parameters, the second-
order methods can reduce the crosstalk. Suppose M is the model that we want to
estimate, where M can be (m,,m,) or (m,,my,), etc. Then AM computed from

Equation (12) has less crosstalk when compared with the gradient 8‘9—]\‘]4,

aJ
HyAM = ——— 12
where Hj,; is the Hessian with respect to M. The expression of the Hessian for
(mg,m,) parameters is as follows,

Ampy % (FIt<)\, 57//1) + It(:“’u u) - FAmKIt()\’ U,))

Hon _ . (13)
Am, 5 (SFLX dur) = Lo(p,u) — FAm,L(, u))

where F' = 1 for the full Hessian, and F' = 0 for the Gauss-Newton Hessian. The
Hessian for other parameterizations are readily obtained from H ;. m,) by linear
transformation because the Jacobian matrix is constant for different pairs of param-
eters,
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Hy, = GTHy,G, (14)
oM,
— , 1
G o0, (15)

The wavefields used in the expression for the gradient and the Hessian can be
computed as follows,

1, = 1 B
[UT,)@ - V-(;V)]u = f (16)
[%a,? ~V- (EV)]*A = > Si(Swu—d,), (17)
v2p p .
1, = 1 B OL
[UTpat -V (;V)](Sul = — (8mAm) u, (18)
1 S )
[vaaf—v-(;V)] fa = S;Spouy, (19)
1o o dow, oL :
o= pa+ Fpu (21)

SINGLE PARAMETER FULL-WAVEFORM INVERSION

The FWI code is tested on the Marmousi model in this section. The true velocity
model is shown in Figure 4(a) and the starting velocity model is shown in Figure 4(b).
A constant density Marmousi model is used for the first numerical study. The same
wave equation is used for both modeling and inversion. The limitation of our inversion
results comes from the band-limited data and incomplete illumination coverage. The
velocity is first estimated using the data with frequency centered at 5 Hz to avoid
cycle skipping issues as shown in Figure 1(c). The final inversion result using the data
centered at 30 Hz is shown in Figure 1(d). Figure 2 shows the data residual before
and after fitting the data centered at 5 Hz. The data residual is reduced significantly
except for the reflection from the deep corner caused by insufficient illumination from
the diving wave.

When the true model contains density variation, we can attempt to fit the data by
updating the model (m,, m, = 0), where the density model is forced to be constant.
The wave equation used for the inversion is simpler than the wave equation used for
the modeling. The velocity model is used to predict the kinematics and reflectivity
simultaneous by estimating,

Vinversion ~ Vtrue (22)

Ptrue
Vinversion ~ Iptme/pwater = Vtrue . (23>
Pwater
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Figure 1: Panel (a) shows the true Marmousi velocity model. Panel (b) shows the
initial Marmousi velocity model. Panel (c) shows the estimated velocity model using
the data centered at 5 Hz. Panel (d) shows the estimated velocity model with the
data centered at 30 Hz. [CR]
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Figure 2: Panel (a) shows the data residual for the initial velocity model. Panel (b)
show the data residual after FWI using the data centered at 5 Hz. [CR]
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The effect of density on reflectivity will leak into the velocity model in the FWI
workflow as shown in a previous study (Tang and Lee, 2015), thereby contaminating
the inversion results. For the Marmousi model it is hard to identify the leakage
visually because the density and the velocity model have a similar structures. Figure
3 shows the inversion results for velocity by forcing p = 1 in the FWI workflow.
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Figure 3: Panel (a) shows the estimated Marmousi velocity model using using the
data centered at 5 Hz, with p = 1. Panel (b) shows the estimated Marmousi density
model after using the data centered at 30 Hz, with p = 1. [CR]

MULTIPARAMETER FULL-WAVEFORM INVERSION

Two acoustic parameters can be estimated for the wave Equation (2). First we
estimate the velocity model and the density model simultaneously. The impedance
I, is obtained by multiplying velocity and density after the inversion. We can see the
true models in Figures 4(a), 4(c) and 4(e). The initial models are shown in Figures
4(b) and 4(d). We start from data centered at 5 Hz to to avoid cycle skipping issues.
The final inversion results are shown in Figures 5 using data centered at 30 Hz. The
shallow area has been estimated properly except for the features below resolution
because we use band-limited data. The lower left corner around z = 1200 m shows a
clear crosstalk between velocity and density.

Once (m,,m,) has been estimated after inversion, we would like to know the
feasibility of predicting acoustic impedance with Equation (24) as follows,

I, = vp = vpe™ X ppe™”. (24)

Figure 5(c) shows the estimated impedance model using Equation (24). In this syn-
thetic experiment, Equation (24) predicts the impedance model with high quality.

We also parameterize the wave equation using (m.,,mz,). The final inversion
results are shown in Figure 6 after the same procedure shown in the (m,,m,) pa-
rameterization. The density model is computed by dividing the impedance model
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Figure 4: Panel (a) shows the true Marmousi velocity model. Panel (b) shows the
initial Marmousi velocity model. Panel (c¢) shows the true Marmousi density model.
Panel (d) shows the initial Marmousi density model. Panel (e) shows the true Mar-
mousi impedance model. [ER]
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Figure 5: Panel (a) shows the estimated Marmousi velocity model using (m,,m,)
parameterization. Panel (b) shows the estimated Marmousi density model using
(my, m,) parameterization. Panel (c) shows the estimated Marmousi impedance
model by multiplying Panel (a) with Panel (b). [CR]
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over the velocity model. The acoustic impedance is sensitivity to reflection seismic
data because it controls reflectivity. Thereby the results in Figure 6 look sharper
when compared with the results from (m,, m,) parameterization in Figure 5. The
division may potentially damage the quality of the density model (Operto et al., 2013;
Tang and Lee, 2015), because the velocity model and impedance model have different
frequency content.

p=1/v=1Le"rv, e ™. (25)
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Figure 6: Panel (a) shows the estimated Marmousi velocity model using (m,,m;,)
parameterization. Panel (b) shows the estimated Marmousi impedance model using
(my, my,) parameterization. Panel (c) shows the estimated Marmousi density model
by dividing Panel (b) over Panel (a). [CR|]

REDUCING CROSSTALK USING THE HESSIAN

In this section, we study the crosstalk for different parameterizations and the feasi-
bility of reducing the crosstalk using second-order methods.
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We build a synthetic model with Gaussian perturbations. For (mg,m,) parame-
terization, the model perturbations are placed in a checkerboard pattern as shown in
Figures 7(a) and 7(b). The gradients 0.J/0mg and 0.J/0m, have similar pattern with
comparable amplitudes (in the opposite direction), as can be seen in Figures 7(c) and
7(d). This similarity is an indication that the off-diagonal components of the Hessian
are as strong as the diagonal components. We apply the approximated inverse of the
Hessian to the gradient, and the predicted model perturbations are shown in Figures
7(e) and 7(f). The crosstalk has been reduced significantly.

For (m,, m,) parameterization, the model perturbations and gradients are shown
in Figure 8. The gradient for velocity 0.J/dm, has much higher amplitudes when
compared with the gradient for density 0.J/0m,. One can imagine that gradient
based methods will have a slow convergence because the density model updates less
compared with the velocity model for the first few iterations. We apply the approx-
imated inverse of the Hessian to the gradient, and predict the model perturbations
in Figures 8(e) and 8(f). The amplitudes for the predicted velocity perturbation and
density perturbation are balanced.

We repeat the same procedure for the (m,, m;,) parameterization, and the results
are shown in Figure 9. We observe similar results as in the (m,, m,) parameterization.

CONCLUSIONS

We implemented multiparameter FWI in the acoustic media in this paper. We tested
the FWI implementation on velocity estimation problem. FWI with different com-
binations of acoustic parameters were compared. Numerically, we found the (v, p)
parameterization leads to smoother inversion results when compared with the (v, 1)
parameterization. The crosstalk between parameters for different parameterizations
was studied. We showed that the crosstalk can be reduced by applying the inverse of
the Hessian to the gradient.
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Figure 7: Panel (a) shows the bulk modulus perturbation. Panel (b) shows the density
perturbation. Panel (¢) shows the gradient for mg. Panel (d) shows the gradient
for m,. Panel (e) shows the estimated bulk modulus perturbation by applying the
approximated inverse of Hessian to the gradient. Panel (f) shows the estimated
density perturbation by applying the approximated inverse of the Hessian to the
gradient. [CR]
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Figure 8: Panel (a) shows the velocity perturbation. Panel (b) shows the density per-
turbation. Panel (c) shows the gradient for m,. Panel (d) shows the gradient for m,.
Panel (e) shows the estimated velocity perturbation by applying the approximated
inverse of Hessian to the gradient. Panel (f) shows the estimated density perturbation
by applying the approximated inverse of the Hessian to the gradient. [CR]
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Figure 9: Panel (a) shows the velocity perturbation. Panel (b) shows the impedance
perturbation. Panel (c¢) shows the gradient for m,. Panel (d) shows the gradient for
my,. Panel (e) shows the estimated velocity perturbation by applying the approxi-
mated inverse of Hessian to the gradient. Panel (f) shows the estimated impedance
perturbation by applying the approximated inverse of the Hessian to the gradient.
[CR|
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