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ABSTRACT

I develop a time-domain method for anisotropic full waveform inversion based on
the second-order system of pseudo-acoustic wave equations in vertical transverse
isotropic media. I use a synthetic model with both reflections and diving waves
to test the method’s performance. Three inversion passes are carried out in a
frequency continuation manner using three source wavelets with peak frequencies
at 5 Hz, 10 Hz, and 20 Hz. The residual is reduced significantly after each pass,
and the inverted models converge toward the true ones. I also investigate the
use of the Hessian to precondition the objective function’s gradient and to re-
duce crosstalks between different parameters. The synthetic examples show that
the inverse of the Hessian spatially balances the amplitude of the gradients, fo-
cuses energy to the actual model perturbations’ locations, and reduces parameter
crosstalks.

INTRODUCTION

Full waveform inversion seeks to match the modeled data and the observed data
in both kinematics and amplitude. Its practical applications, however, have been
focusing on the kinematics, based on acoustic wave equations (Gholami et al., 2013b;
Warner et al., 2013). As more field data are acquired with longer offsets and wider
azimuths, it is necessary to incorporate anisotropy in order to match the kinematics
accurately.

The pseudo-acoustic anisotropic wave equations were introduced by Alkhalifah
(2000), and has been demonstrated to accurately capture the kinematics of seismic
waves. Several of formualtions for these equations have been used in the industry.
They differ in their exact details but are all equivalent to the originally proposed
system by Alkhalifah (2000). Here I choose a system similar to the one used in Dune-
neck and Bakker (2011). Expressed in second-order form, this system of equations
has been studied for imaging and inversion purposes (Fletcher et al., 2009; Zhang
et al., 2011; Bube et al., 2012; Warner et al., 2013). For the simplest anisotropic
model, vertical transverse isotropic (VTI), the system can be written as:{

∂2
t p = c11∂

2
xp + c13∂

2
zq + fx,

∂2
t q = c13∂

2
xp + c33∂

2
zq + fz.

(1)

Here p and q are the normal stresses in the x-direction and z-direction, fi are the
sources, and cij are the density-normalized stiffness coefficients, which are related to
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vertical P-velocity, vpz, horizontal P-velocity, vpx, and Thomsen’s parameters, ε and
δ, by:

c11 = v2
pz(1 + 2ε) = v2

px, (2a)

c13 = v2
pz

√
1 + 2δ, (2b)

c33 = v2
pz. (2c)

With m being the vector of model parameters, the modeled pressure field is defined
as the average stress, d(x, t;m) = 1

2
(p + q).

There are two issues with system 1. Firstly, it suffers from a so-called shear
artifact, i.e., the diamond-shaped event shown in Figure 1a. This artifact can be
reduced when the source is placed in an isotropic region, as in Figure 1b. Secondly,

for the system 1 to be stable, the stiffness matrix, C =

[
c11 c13

c13 c33

]
, has to be semi-

positive definite: {
c11 ≥ 0,

c11c33 − c2
13 ≥ 0.

(3)

In terms of Thomsen’s parameters, these constraints mean:{
ε ≥ −1

2
,

ε ≥ δ.
(4)

Failure to maintain these constrants leads to solutions that grow unstably (Figure
1c).

(a) (b) (c)

Figure 1: Snapshots of solution wavefield for system 1: (a) showing the diamond-
shaped shear artifact, (b) with the source in water, and (c) growing unstably when
the medium properties does not satisfy constraints 4, i.e. ε < δ. [ER]

ADJOINT STATE METHOD FOR FIRST DERIVATIVES

Full waveform inversion aims to find a subsurface model that best describes the ob-
served data by minimizing an objective function. This objective function can defined
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as the l2-norm of the difference between the modeled data, d(xr, t;m), and the ob-
served data, d0(xr, t):

χ(m) =
1

2
‖d(xr, t;m)− d0(xr, t)‖2

2. (5)

Following the adjoint state method outlined in Fichtner (2011), the first derivatives
of the objective function with respect to model parameters are computed as cross-
correlations of the adjoint wavefields, p1 and q1, and the forward modeling wavefields,
p and q:

∂χ

∂c11

=

∫ T

0

p1∂
2
xpdt, (6a)

∂χ

∂c13

=

∫ T

0

(p1∂
2
zq + q1∂

2
xp)dt, (6b)

∂χ

∂c33

=

∫ T

0

q1∂
2
zqdt. (6c)

The adjoint wavefields are solutions to the adjoint equations, for which the sources
are the data residual injected at receivers’ locations:{

∂2
t p1 = ∂2

x(c11p1 + c13q1) + 1
2
(d− d0)δ(x− xr),

∂2
t q1 = ∂2

z (c13p1 + c33q1) + 1
2
(d− d0)δ(x− xr).

(7)

I use a simple synthetic model to demonstate the potential of using equations 1
to estimate anisotropic medium parameters. The initial model for c11 are shown in
Figure 2. It consists of a water layer, a velocity gradient layer, and a basement. Initial
models for the other two parameters, c13 and c33, have similar structures. The true
models include three perturbations, shown in Figure 3, at different locations for three
parameters. I use 800 receivers and 40 shots uniformly distributed on the surface.
Receiver spacing is 10 m and source spacing is 200 m. I use the nonlinear conjugate
gradient algorithm (Nocedal and Wright, 2006) to minimize the objective function.
Three inversion passes are performed using Ricker wavelets with peak frequencies at
5 Hz, 10 Hz, and 20 Hz. The final models of the lower-frequency inversion pass are
used as starting models for the higher-frequency inversion.

Figure 4 shows the inverted model perturbations plotted at the same clip as the
true perturbations (Figure 3). The perturbations’ locations are identified correctly.
The magnitudes of the inverted perturbations converge toward, but are still quite far
from, the true ones. c11 seems to be the best resolved parameter and c13 the least.
This observation is in agreement with a previous study by Gholami et al. (2013a),
who used radiation patterns to analyze parameter sensitivity. They showed that the
amplitude of the radiation pattern of c13 is three times less than those of the other
two parameters, which indicates weak influence of c13 to the observed data.

When plotted at a lower clip (Figure 5), the inverted perturbations show crosstalks
between parameters. Strong imprints of c11 and c33 on c13 are noticed, whereas there
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is a very weak leakage from c13 to the other two parameters and between c11 and
c33. This is because these two parameters are sensitive to different wave paths. c11

is sensitive to horizontally traveling waves while c33 is sensitive to vertically traveling
waves. Figure 6 shows the normalized objective functions for three inversion passes.
The objective fucntion is reduced significantly: almost 100% after the 5 Hz inversion,
80% after the 10 Hz inversion, and 65% after the 20 Hz inversion.

Figure 2: Initial model for c11 con-
sists of a water layer, a velocity
gradient layer, and a basement.
Initial models for c13 and c33 are
similar. [ER]

(a) (b) (c)

Figure 3: Perturbations in (a) c11, (b) c13, and (c) c33, that are included in the true
models. [ER]

ADJOINT STATE METHOD FOR SECOND
DERIVATIVES

Inversions carried out in the previous example utilize only the first-order information
of the objective function (its gradients). As a result, the final inverted models ex-
hibit crosstalks between different parameters. In this section, I investigate the use
of second-order information in the Hessian to reduce the crosstalks. Ajoint state
methods provide an efficient way to compute the Hessian’s application to a model
perturbation without explicitly calculating and storing it. This involves interactions
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(a) (b) (c)

Figure 4: Inverted model perturbations plotted at the same clip of the true pertur-
bations (Figure 3) for comparion: (a) c11, (b) c13, and (c) c33. [CR]

(a) (b) (c)

Figure 5: Inverted model perturbations plotted at a lower clip to show the crosstalk:
(a) c11, (b) c13, and (c) c33. [CR]

(a) (b) (c)

Figure 6: Normalized objective functions: (a) 5 Hz inversion, (b) 10 Hz inversion,
and (c) 20 Hz inversion. [CR]
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between four wavefields, two of which are already found when computing the gra-
dients: the forward wavefields p and q , and the primary adjoint wavefields p1 and
q1, and two additional ones: the forward scattering wavefields δp and δq, and the
secondary adjoint wavefields δp1 and δq1. As a result, the cost of computing one
application of the Hessian is about twice that of computing one gradient.

The forward scattering wavefields come from the first-order Born approximation.
They are the solutions of the linearized wave equations:{

∂2
t δp = c11∂

2
xδp + c13∂

2
zδq + δc11∂

2
xp + δc13∂

2
zq,

∂2
t δq = c13∂

2
xδp + c33∂

2
zδq + δc13∂

2
xp + δc33∂

2
zq.

(8)

The secondary adjoint wavefield are the resulting wavefields from scattering of the
forward and adjoint wavefields off a model perturbations They are the solutions of:{

∂2
t δp1 = ∂2

x(c11δp1 + c13δq1) + 1
4
(δp + δq)δ(x− xr) + ∂2

x(δc11p1 + δc13q1),

∂2
t δq1 = ∂2

z (c13δp1 + c33δq1) + 1
4
(δp + δq)δ(x− xr) + ∂2

z (δc13p1 + δc33q1).
(9)

The Hessian applied to a model perturbation, δm, is:

Hδm =


∫ T

0
(p1∂

2
xδp + δp1∂

2
xp)dt∫ T

0
(p1∂

2
zδq + q1∂

2
xδp + δp1∂

2
zq + δq1∂

2
xp)dt∫ T

0
(q1∂

2
zδq + δq1∂

2
zq)dt

 . (10)

The Gauss-Newton Hessian is obtained in the same fashion as the full Hessian,
except only the first source terms are injected for the secondary adjoint wavefield
(Equations 9). This means that the computation of Gauss-Newton Hessian requires
the propagation of three wavefields: the forward wavefield, the Born wavefield, and
the secondary adjoint wavefield. Consequently, the cost of this Hessian is about 1.5
times that of a gradient.

A Newton search direction can be obtained by solving the Newton equation:

Hp = −g, (11)

where H can be either the full or approximate Hessian, p is the search direction, and
g is the gradient. This equation can be solved iteratively with the linear conjugate
gradient algorithm (Nocedal and Wright, 2006).

Figure 7 shows the steppest descent directions, −g, computed for a similar model
as in the previous example. The steepest descent directions, or the gradients, are
contaminated with undesired, strong, long-wavelength energy from the sources at
the edge of the survey, especially in the water layer. The inverse of the Hessian
refocuses energy in the gradient to where the actual perturbations exists (Figure 8).
There is still quite noticeable crosstalk between the parameters after 100 iteration
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of linear conjugate gradient solving the Newton equation (Equation 11). A better
approximation to the inverse of the Hessian (after 1000 iterations of linear conjuagte
gradient) significantly reduces the crosstalk (Figure 9). Comparing the performance
of the two Hessian, Figure 9 and Figure 10, the Gauss-Newton Hessian seems to
do a better job than the full Hessian in focusing energy at the true perturbations.
However, strong energy from the perturbations in c11 and c33 are leaked into the
search direction of c13, whereas much weaker energy is leaked between c11 and c33 and
from c13 to the other two parameters. This behavior has been also observed in the
inversion results in the previous example (Figure 5).

(a) (b) (c)

Figure 7: Steepest descent directions for: (a) c11, (b) c13, and (c) c33. [CR]

(a) (b) (c)

Figure 8: Gauss-Newton search directions for: (a) c11, (b) c13, and (c) c33, after 100
iterations of linear conjugate gradient. [CR]

(a) (b) (c)

Figure 9: Gauss-Newton search directions for: (a) c11, (b) c13, and (c) c33, after 1000
iterations of linear conjugate gradient. [CR]
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(a) (b) (c)

Figure 10: Newton search directions for: (a) c11, (b) c13, and (c) c33, after 1000
iterations of linear conjugate gradient. [CR]

CONCLUSIONS

I have shown that the second-order system of pseudo-acoustic anisotropic wave equa-
tions in vertical transverse isotropic media can be used for estimating anisotropic
parameters. Tested on a simple synthetic model using a nonlinear conjugate gradi-
ent algorithm, my inversion scheme was able to reduce the difference between the
modeled data and the observed data significantly. Eventhough the inverted models
converge toward the true models, their magnitudes are still far from the true ones.
This leaves room for future improvements, for example with regularization.

I have also presented a method to compute the Hessian for this system of wave
equations and demonstated two benefits of using the Hessian. Firstly, the Hessian im-
proves the frequency content and balances energy spatially in the gradient. Secondly,
the Hessian shows the ability to reduce the crosstalk between different parameters but
at a very high computational cost when its inverse is more accurately approximated.
In these aspects, the Gauss-Newton Hessian performs better than the full Hessian
and it is also less expensive to compute. I have shown that search directions obtained
by solving the Newton equation show the same crosstalk patterns as in the inversion
results. In particular, when parameterized with stiffness coefficients, cij, strong en-
ergy from c11 and c33 leaks into c13, but very weakly in the other directions. Although
using the Hessian in full waveform inversion might not be practical, on small models
in which it is affordable, crosstalk between different parameters can be studied by
observing the Newton search directions.
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