
Fortran calling C: Clock drift correction

Stewart A. Levin

ABSTRACT

Seafloor nodal clock drift is a skew that is taken as distributed linearly across the
time between GPS synchronizations. When it came time to correct such skew
in a nodal field dataset, I wanted to use the well-tested, accurate 8 point sinc
resampler in the Colorado Schools of Mines Seismic Unix (SU) package while
staying within the existing Fortran 2003 code I was modifying. In this short note
I illustrate how I used the BIND features of modern Fortran to accomplish this.

INTRODUCTION

It is currently infeasible to synchronize actively deployed seafloor nodal recorders with
GPS signals. As a result, the internal clocks of the nodes can, and almost surely will,
drift away from the GPS standard between the time they are deployed and the time
they are retrieved. Lacking any other detail on the drift progress, it is assumed to be
linear with time.

Correcting for this drift requires some interpolation between samples, which, as
with statics corrections, is best deferred to as late as possible in any processing se-
quence in order to do the least damage to the signal. In most cases, the drift is
treated directly as a static. However, during extended recording such as multi-day
passive recording, the change in drift between the start and end of such traces should,
and can, be taken into account by adjusting the sample interval from, e.g., 2 msec
to 2.000004 msec, and then, for convenience, resampling back to the nominal sample
interval.

CWP TO THE RESCUE

While a quick and dirty linear interpolation was enough to generate some preliminary
displays of moved-out nodal common receiver records this summer, linear interpola-
tion is generally too damaging to higher frequency content than is normally accept-
able. (See, however, Levin (2012) for exceptions.) Fortunately, the widely used SU
software (www.cwp.mines.edu/cwpcodes) contains a high quality1 8-coefficient ap-
proximate sinc interpolator shfs8r written in C by Dave Hale that has a maximum
error less than one percent for frequencies up to 60% Nyquist.

1Admittedly, we caused a segfault the first time we used it! Bug fix sent to CWP.

SEP-160



Levin 2 Clock drift

Much of the software at SEP is written in Fortran. As the reader is proba-
bly aware, invoking a C routine from Fortran has traditionally been a system and
compiler dependent process, involving special wrappers to translate between naming
conventions and argument handling. Recognizing this, modern Fortran standards,
starting with the Fortran 2003 standard, provide a BIND language mechanism for
calling C routines. This, in effect, allows us to write a “universal wrapper” for the C
routine by means of an interface definition. For shfs8r this definition is:

interface

subroutine CWPshfs8r(dx,nxin,fxin,yin,yinl,yinr,nxout,fxout,yout) &

BIND(C,name="shfs8r")

use iso_c_binding, only: c_int, c_float

REAL(C_FLOAT), VALUE :: dx

INTEGER(C_INT), VALUE :: nxin

REAL(C_FLOAT), VALUE :: fxin

REAL(C_FLOAT), DIMENSION(nxin) :: yin(:)

REAL(C_FLOAT), VALUE :: yinl

REAL(C_FLOAT), VALUE :: yinr

INTEGER(C_INT), VALUE :: nxout

REAL(C_FLOAT), VALUE :: fxout

REAL(C_FLOAT), DIMENSION(nxout) :: yout(:)

end subroutine CWPshfs8r

end interface

where I opted to use a different Fortran name for shfs8r just to provide a clue as to
the C routine’s origin.

REFERENCES

Levin, S. A., 2012, Integral operator quality from low order interpolation: SEP-
Report, 147, 323–332.

SEP-160


