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ABSTRACT

L1/L2-regularization techniques often generate better results than the conven-
tional least-squares solutions for inverse problem in geophysics. We implement
a method to combine L1 regularization with steering filters. We obtain steering
filters iteratively from input data without using any prior information. The nu-
merical examples show significant improvement in comparison with the standard
least squares. We demonstrate our method is robust with respect to inaccurate
steering filters.

INTRODUCTION

L1-regularized optimization often yields more robost results in comparison with the
standard least-squares optimization and is useful in geophysics when data is con-
taminated by high-amplitude noise. It is also necessary, if we will apply a filter to
the model after inversion to seperate data from a different physical process, like the
primary-multiple separation. L1 regularization, as a sparsity-promoting technique,
is especially useful for time-lapse inversion, because the area of production-induced
change is bounded (Maharramov and Biondi, 2014a,b, 2015).

In our previous work (Ma et al., 2014), we solved Ll-regularized linearized wave-
form inversion (Tang, 2008, 2011) using a number of solution techniques: least-squares
with conjugate gradient (CGLS), iterative reweighted least squares (IRLS), alternat-
ing direction method of multipliers (ADMM) and Split-Bregman method (Goldstein
and Osher, 2009; Boyd, 2010), hyperbolic penalty function (HPF) with conjugate
directions (Claerbout, 2009; Zhang and Claerbout, 2010). While all the methods
performed well, we demonstrated that L1 regularization delivered a significant im-
provement over standard least squares. However, the results still suffer from lingering
effects of illumination gaps in the data. In this work, we address this issue by com-
bining L1-regularized inversion with the concept of steering filters (Clapp et al., 2005;
Prucha and Biondi, 2002).

Steering filters can improve the quality of inversion, especially in complex overbur-
den. We style the L1 regularization term in a way that favors specified dip directions
and sparsity in the direction orthogonal to the dip. We study the same test problem as
Zhang and Claerbout (2010), and demonstrate that with suitable prior knowledge of
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the dip structure, we can effectively compensate insufficient illumination and greatly
improve the inversion results.

In this work we demonstrate that even without prior geological information, and
using only seismic data, we can iteratively construct Ll-regularization steering fil-
ters, thereby achieving a quality of inversion comparable to that when good prior
information is available.

We begin by solving a least squares problem with the zero-order Tikhonov regu-
larization (minimal norm solution) that yields an estimate of the gradient field. We
then use this estimate to construct an initial steering filter. This steering filter is
incorporated into the L1 regularization term as described in Section 2.2, and we use
the results of subsequent regularized inversions to update the steering filter itera-
tively. We discuss techniques of regularizing estimated gradient field for the purpose
of constructing robust steering filters in the appendix.

OPTIMIZATION METHOD AND REGULARIZATION

We have implemented several L.1/1.2 solvers and an HPF solver in our Stanford Ex-
ploration Project (SEP)-Vector library. Previously we have tested solvers on a few
geophysical examples (Ma et al., 2014). We have shown that the quality of inversion
results and computational costs are comparable for all the solvers in the examples
we considered. The ADMM/Split-Bregman methods are deemed to be better than
IRLS for compressed sensing and denoising problems. However, because it is hard to
select the proper parameters of the ADMM /Split-Bregman methods, in this work we
conduct Ll-regularized linearized waveform inversion using our IRLS solver.

Regularization plays an important role in geophysical inverse problems. Regular-
ization prevents overfitting noisy measurements, and ameliorates ill-posedness due to
lack of data. Our mathematical model is only an approximation of a real physical
process, and a suitable regularization may mitigate the mismatch between model and
observation.

Regularization can be considered as “model styling”, imparting on our model
certain features considered desirable in the context of our problem (Claerbout, 2014).
In this sense, L1-regularized steering filters can be considered a constraint on model
inversion favoring the continuity of dip structures.

Adaptive regularization has been proposed before, e.g. based on Baysian analysis
(Zamanian et al., 2014). This typically requires solving auxiliary inverse problems. In
our deterministic approach, the Ll-regularization term is updated between solution
iterations.
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LINEARLIZED WAVEFORM INVERSION
Description of the problem and challenges

The target-oriented linearlized waveform inversion has been explored in several previ-
ous works (Clapp et al., 2005; Valenciano, 2006; Tang, 2008, 2011; Zhang and Claer-
bout, 2010; Ma et al., 2014). We are trying to solve:

Hm ~ mmig, (1)

where H is the Hessian operator,my,;e is called migrated data which is known, and
m is the model we want to compute.

A standard method to solve the problem is least squares inversion. Regularization
terms are usually included in the objective function for least squares inversion when
the modeling operators are singular and data contains noise.

In this specific example, we have several challenges, as can be seen from the true
reflectivity model and data used for inversion in Figure 1. The forward modeling is a
linear approximation of the true operator. We have poor illumination under the salt.
The existence of faults prevent us from getting a high quality model considering that
Hessian operator acts like “convolution” operator.
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Figure 1: (a) Reflectivity model. (b) input migrated image. [NR]

Power of L1 regularization and steering filters

Previous results (Zhang and Claerbout, 2010; Ma et al., 2014) using objective func-
tion:
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1
J(m) = S|[Hm — mypg||; + <[ml]s, (2)

suggest that we can get more sparse reflectors in the well-illuminated zone (the left
part of the model) using L.1/L2 solvers. However, we do not get significant improve-
ment under the salt. In addition, the data residues from L1/L2 solvers are more
correlated comparing with CG method, suggesting our results are not convincing.

To further improve the results, the regularization term is replaced by more geo-
logically plausible constraints, namely steering filters,

1
J(m) = Z|[Hm — Miig|[5 + 2ol [WaVem| |y + 20 [Wepm]|1, (3)

where W, and W}, control the strength of regularization at each point, because we
do not have equal illumination. The derivative V, is taken along the gradient prior.
The geological information is contained in W,, Wy, and r.

To test the power of L1 regularization and steering filters, we assume we already
have a good prior for W,, Wy, and r from external knowledge. r in Figure 2(a) is
used as a prior gradient field. The choice is natural, because previous constraints
Vxm would penalize dipping reflectors. Next, we set W, = 1. for x < 10000t and
Wy, = 0. for x > 10000ft, and W, = 1.. We made this choice based on knowing
the area under the salt is poorly illuminated, and we need more compensation from
steering filters.
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Figure 2: (a) x component of correct gradient prior. (b) x cpomponent of wrong
gradient prior. [ER]

The final results in Figure 3(e) are better comparing with CG method (Figure
3(a)) and previous L1/L2 results (Figure 4(a)). We have obtained sparse reflectors
as expected from hybrid L1/L2 solvers. The faults are correctly recovered and the
reflectors under the salts are properly inverted. The data residue in Figure 3(f) looks
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more random comparing with previous results. We have run 30 by 20 CG steps to
obtain the results in Figure 3(e), which is ~ 10 times more expensive than the CG
method. The cost is acceptable considering the improvement of inversion results.

Obtaining steering filters from the data iteratively

In the previous subsection, we have demonstrated L1 regularization and steering
filters can help in the inverse problems. However, it is not trivial to obtain proper
geological constraints. We can add external knowledge that is independent of seismic
data: geophysical, geological, and geomechanical information. Before we have enough
knowledge, we can squeeze the data and construct reasonable steering filters from the
seismic data.

Numerically, assume a prior gradient field is not available, though a little ”external
information” is known: the strongly dipping events at z ~ 4000 ft and = ~ 12000 ft
are artifacts. We use the following workflow. First, we do inversion with uniform
constraints as in equation 2. Next, we extract the gradient field r from the inversion
results and mute the dipping reflectors near z ~ 4000 ft and x ~ 12000ft. Then we
use the gradient field as prior to construct steering filters and do the inversion again
with equation 3 and repeat the process until the results converge. W,, Wy, should
also be changed iteratively based on previous inversion results; however, we adjust
them manually for simplicity.

We run the IRLS algorithm 6 times, and we can see the results in Figure 4. Signif-
icant improvement can be observed which means we can really get more information
from the data if we go beyond simple least squares inversion. However, we could not
match the results in the previous section (where we assume we know good prior).

Do the wrong steering filters ruin the inversion results?

We put our knowledge into the objective function as prior and we want to know
how our choice affects the results. Firstly, we are geophysicists, not data scientists.
When we solve an inverse problem, we rarely obtain our results exclusively from the
data. Even in the simplest case of geophysical inverse problem with regularization,
the extra terms V,m or m come from our geophysical knowledge of the previous
subsurface studies. Secondly, we iteratively construct steering filters and there is
inevitable inaccuracy.

Ideally, we want proper prior to promote correct reflectors in the poorly illumi-
nated area, and wrong prior has negligible effects. We can justify our assumption
qualitatively. Because the true model lies close to the null spaces of forward model-
ing operator H and correct regularization operator V., the correct objective yields
minimum norm solution within the intersection of the two null space. If the null
space is not large, we would expect the inversion results to be close to the true model.
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Figure 3: Comparison of linearized waveform inversion results and residues: (a) CGLS
inversion result. (b)CGLS inversion residue. (c¢) IRLS inversion result . (d) IRLS
inversion residue. (e) IRLS inversion result with gradient prior. (f) IRLS inversion
residue with gradient prior. All figures are clipped at the same level. [CR]
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Figure 4: Comparison of linearized waveform inversion results and residues: (a) 1st
iteration of inversion with no prior. (b) 2nd iteration of inversion with prior. (c¢) 3rd
iteration of inversion with prior. (d) 4th iteration of inversion with prior. (e) 5th
iteration of inversion with prior. (f) 6th iteration of inversion with prior. [NR]
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However, if we provide wrong constraints Vi, then Null(H) would be far away from
Null(Vz), and there is no way to fit them at the same time. Considering the weight
on the regularization term is small comparing with the weight of the data fitting term,
the wrong constraints will be negligible.

We use the same objective function as described in the previous subsection with
the wrong gradient prior as in Figure 2(b). We set W}, = 1 everywhere, because in
this case as we assume we do not know whether the gradient prior is good or bad.
We also twist the gradient prior as in Figure 2(b), and we can see the inversion result
in Figure 5(c). The correct gradient prior yields better results at the gaps under the
salt, while the wrong gradient prior does not introduce too many artifacts at the gaps,
which proves our method is robust against inaccurate steering filters.
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Figure 5: Comparison of linearized waveform inversion with different gradient prior:
(a), (b) Inversion result and residue with gradient prior in Figure 2(a). (c), (d)
Inversion result and residue with gradient prior in Figure 2(b). All figures are clipped
at the same level. [CR]
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CONCLUSIONS

In conclusion, we present a workflow to obtain better results from geophysical inverse
problems by combining L1 regularization with steering filters. We prove improvement
is possible when no prior knowledge is available. When applying the methods to a
real problem, we can use external knowledge like geomechanics to construct more
reasonable steering filters.
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APPENDIX A: CONSTRUCTION OF STEERING
FILTERS BASED ON LEAST SQUARES

In this appendix, a method to construct steering filters from images is presented. The
filters are used as prior information for the next iteration, before we understand how
to incorporate geomechanics into regularization.

We are interested in obtaining a smoothly varying gradient field. Correct gradient
direction boosts the desired events in the area of poor illumination. Incorrect prior
of gradient direction is ignored by the optimization process thus does not create
many artifacts, as proved previously by (Prucha and Biondi, 2002). In order to test
the strength and weakness of our method, we apply it to the example in Figure 6,
following the idea from Hale (2007).

Figure 6: Test model with all dipping directions. [ER]
Suppose we have a 2D image mq(x, z) from which we want to extract the gradient

field. We first use the Sobel filter to estimate d,mg and 0,mg, from which we can
compute the norm of gradient ||[Vmy(z, z)||2 and dipping angle 0y(x, z). It is obvious
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that 0y(z, z) cannot be directly used as prior gradient field for the next iteration. 6,
is not smooth because of the noise in the image and crossing events, etc. 6y is not
reliable when ||[Vmy(z, z)||2 = 0.

To fix those problems, we need to construct a weighting function W(z, z) to
suppress unreliable 6. We choose

Wz, 2) = [[Vmg(z, 2)[]s x (A + [mo(z, 2)]), (4)

where we have a smaller weight when ||[Vmg(z, z)||2 = 0 or |mg| ~ 0. With this
weight function we can set up a linear inverse problem with an objective function,

3(0) = LW (O — o) + 5190 ©

The first term is data fitting with larger weight on the reliable estimation of gradient
direction. The second term is regularization which promotes a smooth solution.

We can solve the optimization problem to obtain 6*, we can see 6, and 6* in Figure
7. There are some artifacts in 6y caused by the numerical issue with 3 by 3 Sobel
filter, and the artifacts are removed in 6*.
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Figure 7: Left: 6y — 7/2. Right: 0* — 7/2. [ER]

Once we obtain a smooth gradient field characterized by dipping angle, we can

construct local steering filter,
Ly« =V, , (6)

where % is perpendicular to the gradient direction associated with 6*. We apply
the local filter to the original image, and obtain the result in Figure 8(a). We can
see that our method works very well except for the vertical-dipping direction. The
reason is that our objective function is built on angle and suffers from branch cut
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problem. Removing the branch cut will lead to a nonlinear optimization problem
that is beyond the scope of this report.
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Figure 8: (a) Apply local filter to original image.(b) Reconstructed image from noise.
[ER]

We also test the local filter by solving an inverse problem with

1 o
F(m) = o [Lom — df + 5 ]}, (7)

where d is uniform random noise. We would expect m* obtained by minimizing F(m)
should have the same curvature as the original image. We can see m* in Figure 8(b).

Finally, in this paper, we apply our method to the example from the Sighee2A
model and the results can be seen in Figure 9(c). It is interesting to see that after
applying the local filter, we are able to see the fault and multiple more clearly.
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Figure 9: (a) 6y — 7/2. (b) 0* — w/2. (c) Apply steering filter to original image. (d)
reconstructed image from noise. [ER]
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