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Preface

The electronic version of this report1 makes the included programs and applications available
to the reader. The markings [ER], [CR], and [NR] are promises by the author about the
reproducibility of each figure result. Reproducibility is a way of organizing computational
research that allows both the author and the reader of a publication to verify the reported
results. Reproducibility facilitates the transfer of knowledge within SEP and between SEP
and its sponsors.

ER denotes Easily Reproducible and are the results of processing described in the pa-
per. The author claims that you can reproduce such a figure from the programs,
parameters, and makefiles included in the electronic document. The data must either
be included in the electronic distribution, be easily available to all researchers (e.g.,
SEG-EAGE data sets), or be available in the SEP data library2. We assume you have
a UNIX workstation with Fortran, Fortran90, C, C++, X-Windows system and the
software downloadable from our website (SEP makerules, SEPlib, and the SEP latex
package), or other free software such as SU. Before the publication of the electronic
document, someone other than the author tests the author’s claim by destroying and
rebuilding all ER figures. Some ER figures may not be reproducible by outsiders
because they depend on data sets that are too large to distribute, or data that we do
not have permission to redistribute but are in the SEP data library.

CR denotes Conditional Reproducibility. The author certifies that the commands are in
place to reproduce the figure if certain resources are available. The primary reasons
for the CR designation is that the processing requires 20 minutes or more, MPI or
CUDA based code, or commercial packages such as Matlab or Mathematica.

NR denotes Non-Reproducible figures. SEP discourages authors from flagging their fig-
ures as NR except for figures that are used solely for motivation, comparison, or
illustration of the theory, such as: artist drawings, scannings, or figures taken from
SEP reports not by the authors or from non-SEP publications.

Our testing is currently limited to LINUX 2.6 (using the Intel compiler), but the code should
be portable to other architectures. Reader’s suggestions are welcome. More information on
reproducing SEP’s electronic documents is available online3.

1http://sepwww.stanford.edu/private/docs/sep158
2http://sepwww.stanford.edu/public/docs/sepdatalib/toc html
3http://sepwww.stanford.edu/research/redoc/
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Resolving the effects of production-induced overburden
dilation using simultaneous TV-regularized time-lapse FWI

Musa Maharramov, Biondo Biondi and Mark Meadows

ABSTRACT

We present a field data application of the technique proposed by Maharramov and
Biondi (2015) for reconstructing production-induced subsurface model changes from
time-lapse seismic data using full-waveform inversion (FWI). The technique simulta-
neously inverts multiple survey vintages with total-variation (TV) regularization of
the model differences. We apply it to the Gulf of Mexico, Genesis Field data, and
successfully resolve negative velocity changes associated with overburden dilation and
demonstrate that the results are stable with respect to the amount of regularization
and consistent with earlier estimates of time strain in the overburden.

INTRODUCTION

Prevalent practice in time-lapse seismic processing relies on picking time displacements
and changes in reflectivity amplitudes between migrated baseline and monitor images, and
converting them into impedance changes and subsurface deformation (Johnston, 2013).
This approach requires a significant amount of manual interpretation and quality control.
One alternative approach uses the high-resolution power of full-waveform inversion (Sirgue
et al., 2010a) to reconstruct production-induced changes from wide-offset seismic acquisi-
tions (Routh et al., 2012; Zheng et al., 2011; Asnaashari et al., 2012; Raknes et al., 2013;
Maharramov and Biondi, 2014a; Yang et al., 2014). However, while potentially reducing the
amount of manual interpretation, time-lapse FWI is sensitive to repeatability issues (As-
naashari et al., 2012), with both coherent and incoherent noise potentially masking impor-
tant production-induced changes. The joint time-lapse FWI proposed by Maharramov and
Biondi (2013, 2014a) addressed repeatability issues by joint inversion of multiple vintages
with model-difference regularization based on the L2-norm and produced improved results
when compared to the conventional time-lapse FWI techniques. Maharramov and Biondi
(2015) extended this joint inversion approach to include edge-preserving total-variation
(TV) model-difference regularization. The new method was shown to achieve a dramatic
improvement over alternative techniques by significantly reducing oscillatory artifacts in
the recovered model difference for synthetic data with repeatability issues. In this work, we
apply this TV-regularized simultaneous inversion technique to the Gulf of Mexico, Genesis
Field data and demonstrate a stable recovery of production-induced model changes.

FWI applications in time-lapse problems seek to recover induced changes in the subsur-
face model by using multiple seismic datasets from different acquisition vintages. For two
surveys sufficiently separated in time, we call such datasets (and the associated models)
“baseline” and “monitor”. Time-lapse FWI can be conducted by separately inverting the
baseline and monitor models (“parallel difference”, Plessix et al. (2010)) or inverting them

1



2 Maharramov et al. SEP–158

sequentially with, e.g., the baseline supplied as a starting model for the monitor inversion
(“sequential difference”). The latter may achieve a better recovery of model differences in
the presence of incoherent noise (Asnaashari et al., 2012; Maharramov and Biondi, 2014a).
Another alternative is to apply the “double-difference” method (Watanabe et al., 2004; Denli
and Huang, 2009; Zheng et al., 2011; Asnaashari et al., 2012; Raknes et al., 2013). The
latter approach may require significant data pre-processing and equalization (Asnaashari
et al., 2012; Maharramov and Biondi, 2014a) across survey vintages. In all of these tech-

Figure 1: A north-south inline section of the baseline Genesis image produced by Chevron
(vertical axis two-way travel time in seconds, horizontal axis inline meters). [NR]
musa1/. cvxbase

niques, optimization is conducted with respect to one model at a time, albeit of different
vintages at different stages of the inversion.

METHOD

We propose to invert the baseline and monitor models simultaneously by solving the fol-
lowing optimization problem (Maharramov and Biondi, 2015):

α‖ub(mb)− db‖2
2 + β‖um(mm)− dm‖2

2 + (1)
δ‖WR(mm −mb)‖1 → min (2)

with respect to both the baseline and monitor models mb and mm. Problem (1,2) describes
time-lapse FWI with the L1 regularization of the transformed model difference (2). The
terms (1) correspond to separate baseline and monitor inversions with observed data d
and modeled data u. In (2), R and W denote regularization and weighting operators,
respectively. If R is the gradient magnitude operator

Rf(x, y, z) =
√

f2
x + f2

y + f2
z , (3)



SEP–158 TV 4DFWI field data example 3

then (2) becomes the “Total Variation” (TV) seminorm. This case is of particular inter-
est, because minimization of the gradient L1 norm promotes “blockiness” of the model-
difference, potentially reducing oscillatory artifacts (Rudin et al., 1992). Total-variation
regularization, known in image processing as the “ROF Model”, was applied earlier to full-
waveform inversion as a way of resolving sharp geologic boundaries (Anagaw and Sacchi,
2012). The solution of a large-scale optimization problem based on the ROF model us-
ing conventional methods is computationally challenging, prone to the “staircasing effect”
(Chambolle and Lions, 1997), and may require solution methods that involve splitting and
gradient thresholding (Goldstein and Osher, 2009). However, time-lapse FWI appears to be
a nearly ideal application for the ROF model, because significant production-induced sub-
surface model changes are spatially bounded and have magnitudes that can be roughly esti-
mated a priori from geomechanical and production data (Maharramov and Biondi (2014a),
supplementary material). More specifically, the weighting operator W may be obtained
from prior geomechanical information. For example, a rough estimate of production-induced
velocity changes can be obtained from time shifts (Hatchell and Bourne, 2005) and used to
map subsurface regions of expected production-induced perturbation.

Figure 2: Monitor and baseline image-difference obtained from the 3D time-migration im-
ages provided by Chevron which corresponds to the inline section of Figure 1. Production-
induced changes stand out at approximately 3.5 s (wet Illinoisan sands) and 4 s two-way
travel times—stacked Neb 1, 2, and 3 reservoirs—compare with Hudson et al. (2005). [NR]
musa1/. cvxdiff

APPLICATION TO FIELD DATA

The Genesis Field, operated by Chevron, is located 150 miles southwest of New Orleans in
the Green Canyon area of the central Gulf of Mexico, in approximately 770-830m of water
(Magesan et al., 2005). Oil was found in several late Pliocene through early Pleistocene
deep-water reservoirs. Most of the field’s oil and gas reserves are in the early Pleistocene
Neb 1, Neb 2, and Neb 3 reservoirs that are the primary subject of this study. First oil
production began in January 1999.

A 3D seismic survey was shot in 1990, and a time-lapse survey was shot in October 2002
with the aim of improving field management (Hudson et al., 2005; Magesan et al., 2005).
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Cumulative production from the field at the time of the monitor survey was more than 57
MMBO, 89 MMCFG, and 19 MMBW (Hudson et al., 2005).

In addition to fluid substitution effects, producing reservoirs compact, increasing the
depth to the top of the reservoirs and causing overburden dilation (Johnston, 2013). A
time-lapse study performed by Chevron (Hudson et al., 2005) indicated significant apparent
kinematic differences in the Pleistocene reservoir interval. Time shifts were observed both
for the producing reservoirs and Illinoisan wet sands above Neb 1 (see Figure 3). Kinematic
differences were attributed to a time shift caused by subsidence at the top of the uppermost
reservoir, subsidence of the overburden, and overburden dilation (Hudson et al., 2005).

Figure 3: Production-induced changes resulted in measurable time-shifts between the sur-
veys. Shown here are time-shifts between the baseline (blue) and monitor (red) common-
offset gathers, 1074 m offset. [CR] musa1/. timeshifts

Processing parameters for the baseline and monitor surveys and subsequent time-lapse
processing by Chevron were described by Magesan et al. (2005). The baseline survey had
a maximum offset of 5 km, and the monitor survey had a maximum offset of 7.3 km.
Both surveys used a bin size of 12.5 m by 37 m. For the purpose of time-lapse analysis,
the acquired data had been subjected to pre-processing and imaging steps that included
data equalization, spherical divergence correction, source and receiver statics, global phase
rotation, time shift, amplitude scaling, global spectral matching, and cross-equalization
(Magesan et al., 2005).

The data pre-processed for time-lapse analysis were used by Chevron in Kirchhoff time
migration of the baseline and monitor surveys, producing 3D images. A single inline section
of the baseline image is shown in Figure 1. The corresponding monitor and baseline image
difference is shown in Figure 2. As noted by Hudson et al. (2005), the image difference is
contributed to by time shifts at the Illinoisan sands (upper event) and Neb 1 (lower event)
in Figure 2—compare with Figure 1 of Hudson et al. (2005).

The purpose of this application was to see whether or not joint regularized time-lapse
FWI could resolve some of the production-induced model differences, thus providing ad-
ditional insight into reservoir depletion patterns and optimal infill drilling strategies. As
our first processing step, we performed separate baseline and monitor 2D full-waveform
inversion of a single inline section. We extracted a single north-south inline corresponding
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Figure 4: Inverted baseline velocity model. FWI resolved fine model features and oriented
them along the dip structure of the image in Figure 1 (vertical axis depth meters). [CR]
musa1/. base

to the image in Figure 1 from both surveys and sorted it into shot gathers with a mini-
mum offset of 350 m and a maximum offset of 4,700 m. This provided 1,264 shots with
up to 175 receivers per shot. A frequency-domain 2D FWI (Sirgue et al., 2008, 2010b)
was conducted over the frequency range of 3-30.7 Hz. Frequency spacings were selected
using the technique of Sirgue and Pratt (2004). The data provided to us had undergone
amplitude pre-processing that included a spherical divergence correction. Furthermore, ac-
curate handling of the amplitudes in 2D FWI of 3D field data requires a 3D-to-2D data
transformation (Auer et al., 2013). Because the data exhibited significant time-shifts at the
reservoir level (Hudson et al., 2005) that can be readily observed even at far offsets (see
Figure 3), we decided to use a “phase-only” inversion and ignored amplitude information
in the data (Fichtner, 2011).

The result of baseline inversion is shown in Figure 4. To build a starting model for the
FWI, we converted Chevron’s RMS time-migration velocity model to an interval velocity
using the Dix equation, and smoothed the result using a triangular filter with a 41-sample
window. Observe that FWI succeeded in resolving fine features, and oriented them consis-
tently along the dip structure of the time-migrated image in Figure 1. Close-up views of the
model area covering both the Illinoisan sands and the reservoirs are shown in Figures 6(a)
and 6(c).

The result of parallel differencing is shown in Figure 5(a). Although significant model
changes appear to be concentrated around the target area, this result is not interpretable,
either qualitatively or quantitatively, because it is contaminated with oscillatory artifacts
and overestimates the magnitudes of velocity perturbations. This result is consistent with
our earlier assessment of conventional time-lapse FWI techniques tested on synthetic data
(Maharramov and Biondi, 2014a, 2015).

Next, we solved the simultaneous, TV-regularized time-lapse full-waveform inversion
problem (1,2). We set α = β = 1 and carried out multiple experiments with the value of
the regularization parameter δ ranging from δ = 100 to δ = 1000. The weighting operator
W was set to 1 inside the larger target area shown in Figures 5(a) through 6(b), and tapered
off to zero outside.
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The results of inverting the model difference for δ = 100, 500 and 1000 are shown in
Figures 5(b), 5(c), and 5(d), respectively. Gradual increase of the regularization parameter
results in the removal of most model differences with the exception of a negative velocity
perturbation in the overburden, peaking at approximately 3.6 km and 3.9 km (see Fig-
ures 6(b) and 6(d)). Such perturbations are consistent with overburden dilation due to
the compaction of stacked reservoirs, with more significant dilation in the wet Illinoisan
sands than the surrounding shales (Rickett et al., 2007). The zone of negative velocity
change appears to extend upward into the overburden in a direction roughly orthogonal
to the reservoir dip—see Figure 5(d). Two negative velocity changes at approximately 10
and 11.5 km inline persist with increasing regularization, and may represent dilation effects
associated with the production from deeper reservoirs—compare with Figure 3 of Rickett
et al. (2007).

The estimated maximum negative velocity change of −45 m/s above the stacked reser-
voirs is consistent with the earlier estimates of time strain in the overburden (Rickett et al.,
2007). Indeed, local time strain, physical strain and partial velocity change are related by
the equation (Hatchell and Bourne, 2005)

dτ

dt
≈ ∆t

t
=

∆z

z
− ∆v

v
, (4)

where τ, t, z, and v denote the observed time shift, travel time, depth, and velocity. Assum-
ing, following Hatchell and Bourne (2005), that

∆v

v
= −R

∆z

z
, (5)

where the factor R is estimated to be 6 ± 2 for the Genesis overburden (Hodgson et al.,
2007), we obtain

∆v

v
= − R

R + 1
∆t

t
≈ −∆t

t
≈ −dτ

dt
. (6)

Maximum time strains in the Genesis overburden are estimated to be around +2% (Rickett
et al., 2007), yielding the maximum negative velocity change of

∆v ≈ −.02× 2, 800 m/s = −56 m/s, (7)

where the estimated P-wave velocity of 2,800 m/s at a 3.6 km depth was taken from the
output of our FWI.

CONCLUSIONS

Simultaneous time-lapse FWI with total-variation difference regularization can achieve ro-
bust recovery of production-induced changes, preserving the blocky nature of monitor-base-
line differences. Velocity changes caused by overburden dilation are within the resolution of
our method. However, velocity changes within thin reservoirs (e.g., caused by compaction)
can no longer be characterized as “blocky” on a seismic scale, and recovering such changes
may require a multi-norm model decomposition approach a la Maharramov and Biondi
(2014b), and will be the subject of further research.
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(a) (b)

(c) (d)

Figure 5: (a) Parallel difference and joint inversion results for (b) δ = 100, (c) δ = 500,
and (d) δ = 1000 in the target area. The parallel difference result is not interpretable
because of the presence of artifacts. Increasing the regularization parameter δ results in
gradual removal of most model differences except the negative velocity change in the over-
burden, peaking around the Illinoisan sands and near the top of the stacked reservoirs—see
Figures 6(a) through 6(d). [CR] musa1/. pardiff,diff100,diff500,diff1000
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Residual-moveout-based wave-equation migration velocity
analysis — field data example

Yang Zhang and Biondo Biondi

ABSTRACT

We apply our residual-moveout-based (RMO-based) wave-equation migration velocity
analysis (WEMVA) method to an industry scale 3-D marine streamers wide-azimuth
data set — E-Octopus III in the Gulf of Mexico. This 3-D field data set poses many
challenges for our implementation, including irregular geometry, abnormal traces, com-
plex 3-D salt geometry, and more importantly, huge data volume and large domain
dimensions. To overcome these hurdles, we apply careful data regularization and pre-
processing, and employ a target-oriented inversion scheme that focuses on the update
of sediment velocities in specific regions of interest. Such target-oriented scheme sig-
nificantly reduces the computational cost, allowing us to make our WEMVA method
affordable on our academic cluster. Our experiment result on a subsalt sediments target
region shows that the angles of illumination on the subsalt sediments are very limited
(less than 25 degrees) because of the complex salt overburden and the depth of the
target. Although the lack of angular illumination in this region severely reduces the
capability of any reflection tomography method that tries to resolve a better velocity
model, our RMO-based WEMVA method is still able to detect the curvatures of the
angle gathers and produce good velocity model updates that further flatten the angle
gathers and improve the quality of the structural image in the target region.

INTRODUCTION

Wave-equation migration velocity analysis (WEMVA) is a reflection tomography method
which uses a wave-equation rather than a ray-based model to retrieve the velocity model
from seismic data. The velocity information comes from the redundancy in the seismic data,
since each reflector point in the subsurface is illuminated by wave energy from multiple
directions. WEMVA exploits such redundancy by forming common-image gathers (CIG)
and then enforcing coherence among the CIG to improve the velocity model.

We recently proposed a WEMVA method named RMO-based WEMVA (Zhang and
Biondi, 2013) that describes the unflatness in the angle-domain common image gathers
(ADCIG) using residual-moveout (RMO) parameters. This method tries to improve the
velocity model using the moveout information. With the successful application of the RMO-
based WEMVA on 2-D problems such as the 2006 BP synthetic model (Zhang et al., 2013),
we have shown that this method does not suffer from cycle-skipping or require the picking
of moveout parameters, and it can robustly improve the flatness of the angle gathers.

However, although the theory of this method can be easily extended to 3-D, a realistic 3-
D data application remains very challenging. In this study, we examine a marine streamers

11
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3-D wide-azimuth (WAZ) seismic recordings acquired from offshore Gulf of Mexico (GoM)
by Schlumberger Multiclient. The remainder of this paper is organized as follows:

• In the first part, we give a brief recap of the 3-D theory of the RMO-based WEMVA.
In addition to the basic formulation that assigns a RMO parameter to every image
point, we present a refined formulation where the RMO parameters are assigned to
individual identified events. In order to support the refined formulation in practical
application, we propose the use of several image processing techniques to identify and
extract the events in the image.

• In the second part, we focus on the application of our RMO-based WEMVA method
on the aforementioned field data set. In the previous report (Zhang and Biondi, 2014),
we presented the overview of this WAZ data set, our data pre-processing procedures
and the initial 3-D migration images. Here we perform velocity estimation using the
RMO-based WEMVA on the data set in a target-oriented manner. The results show
improvements in the ADCIG flatness and in the migrated image, which has better
defined continuity and coherency in terms of sedimentary structure.

THEORY OF 3-D RMO-BASED WEMVA

In this section, we summarize the theory of the proposed RMO-based WEMVA approach
in 3-D. The detailed derivation (refer to Zhang (2015)) is beyond the scope of this paper.
Here, we only show key definitions and equations in the method formulation. The model
space is parameterized as slowness unless otherwise specified.

In the 3-D case, we denote the prestack image as I(z, γ, φ, x, y), in which (z, x, y) are
the depth and horizontal axes, respectively, γ is the reflection opening angle, and φ is the
subsurface azimuth. Assuming there are m samples along φ axis, then φ = {φi : i =
1, 2, ...,m}. Let us start from the classical stack-power maximization objective function:

J(s) =
1
2

∑
x,y

∑
z

[∑
i

∑
γ

I(z, γ, φi, x, y; s)

]2

, (1)

where s is the model slowness, and I(z, γ, x; s) is the prestack image in the reflection-angle
domain obtained by migration using the slowness s.

RMO-based WEMVA objective function and its gradient

The objective function defined in equation (1) is known to be prone to the cycle-skipping
problem. Recalling that the conventional ray-based reflection tomography does not show
such disadvantages, we can approximate objective function (1) at some initial slowness s0,
with an alternative one that focuses on kinematic changes of the ADCIG. Given I(s0) and I(s)
as the prestack images with initial and updated slowness, respectively, we define a residual
moveout parameter ρ and its moveout function ρ tan2 γ that describes (as accurately as
possible) the kinematic difference between I(s) and I(s0). Hence ρ is a function of both s
and s0. Because s0 will remain fixed during the calculation of the model gradient, we can
denote the dependence of ρ simply with ρ(s). We assign independent ρ to the ADCIG at
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each image point (z, x, y) and each azimuth φi because there can be many events in the
gathers, and each event can have a different moveout.

Next, we replace objective function (1) with one based on normalized moveout sem-
blance:

JSm (ρ(s)) =
∑
x,y

∑
z

∑
i

Sm(ρi(z, x, y), φi, z, x, y; s0), (2)

in which

Sm(ρi, φi, z, x, y; s0) =

∑
zw

(∑
γ I(z + zw + ρi tan2 γ, γ, φi, x, y; s0)

)2∑
zw

∑
γ I2(z + zw + ρi tan2 γ, γ, φi, x, y, ; s0)

. (3)

Maximizing the semblance-based objective function achieves the same goal as maximizing
the angle-stack because the optimal model s leads to optimal moveout parameters ρ such
that the angle gathers in I(s0) become flat after being applied the moveout, and flat angle
gathers will stack most coherently to yield maximum stacked amplitude. Note that in the
above equation, I use a local window of length L for zw (through this derivation, I assume
the summation interval for variable zw is always [−L/2, L/2]). When choosing a value for
L, the rule of thumb is that L should not be smaller than the span of the event’s wavelet,
and it should not be too large such that it contains more than one event in each window.

We use gradient-based methods to solve this optimization problem. The model update
given by the gradient of objective function (2) is

∂JSm

∂s
=
∑
x,y

∑
z

∑
i

∂ρi

∂s

∂JSm

∂ρi
. (4)

In the above equation, ∂ρ/∂s describes the relation between slowness perturbation and
moveout parameter perturbation, and ∂Sm/∂ρ indicates the search for better moveout
parameters to flatten the gathers. Without going into the details described in Zhang (2015),
we can summarize the calculation of these two terms as follows:

• ∂JSm/∂ρi is calculated by taking first order derivative along ρi on the semblance panel
Sm(ρi, φi, z, x, y; s0).

• As for ∂ρi/∂s, we can derive a relationship from the moveout perturbation ∆ρ to
the image perturbation ∆I, which is then back-projected into the model space as ∆s
using the image-space wave-equation tomographic operator.

The global objective function for RMO-based WEMVA

One problem in our RMO-based WEMVA formulation is that it is missing a global objective
function. The reason is that the semblance-based objective function (2) is formulated around
s0, the slowness model at the current iteration. Consequently, s0 will change as the WEMVA
method iterates, which makes it difficult to use this objective function as the global objective
function for model evaluation. In order to overcome this problem, we propose a global
objective function directly based on the semblance (3):

JG
Sm

(s) =
∑
x,y

∑
z

∑
i

∑
ρi

ρ2
i Sm(ρi, φi, z, x, y; s). (5)
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Note that the moveout parameter ρ is simply sweeping through the possible moveout value
range and is not associated with model s; in addition, the corresponding inversion aims to
minimize instead of maximize equation (5).

The reason we can replace objective function (2) with (5) for easy model evaluation
is that the two objective functions aim for the same goal. Equation (2) aims to find the
best model s such that the corresponding ρ(s) would flatten the angle gathers I(s0); this is
equivalent to finding the best model s under which the gathers I(s) are all flat. Meanwhile,
equation (5) is enforcing the same goal because it penalizes non-zero moveout in I(s),
which means that the optimal model it looks for is such that I(s) would have zero moveout
everywhere, i.e., be flat.

In summary, the RMO-based WEMVA formulation can be interpreted in the following
way: first it defines the global objective function (5) over the moveout semblance of the
ADCIG, aiming to flatten all gathers (driving moveout to zero); and then, at every iteration,
it approximates the global objective function with equation (2), which yields a superior
gradient.

Refined formulation for RMO-based WEMVA using event detection

During the actual implementation of the RMO-base WEMVA, we have noticed a major
aspect for improvement. Recalling the gradient calculation in equation (2) and (4), we made
an assumption that every image point (in domain (z, x, y)) has an independent moveout
parameter ρ. We also assumed the event windows (spanning over z axis) of all reflector
events are roughly of equal length and therefore can be summarized with an average event
window size L. The main rationale behind making such assumptions is for the simplicity of
formulation and coding implementation. However, assigning ρ for every image point is not
only unnecessary but also inconsistent with our method’s physical interpretation. Indeed,
we should assign moveout parameter ρ to individual events instead of individual image point
locations; moreover, we should assign a different window size for each event because there
can be large variations of the window sizes among different events.

Switching the assumption from moveout per image point to moveout per event is ex-
pected to improve the accuracy of the computed model gradient and also marginally reduce
the proposed method’s computation cost since it cuts the computation of image pertur-
bation. However, it also brings additional complexity for implementation because now we
need to identify individual events in the image gathers.

Automatic event detection

I propose a simple workflow for automatic event detection as follows:

• Our program first detects the center locations of individual events in the zero-offset
image I(z, x, y; s0) as “anchor points”, instead of blindly assuming that every image
sample is its own event.

• For each anchor point detected, the program detects the event width by measuring
the event signature (waveform) compactness around the anchor point location.
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To avoid clutter, we leave the details of the event detection implementation in the appendix
.

Formulation change after introducing event detection

Once we figure out how to do automatic event detection, the modification on our WEMVA
formulation becomes simple. We only need to slightly modify the summation indices in the
gradient calculation above. Instead of summing over every image point, our method now
sums over each identified event anchor point. For example, the semblance-based objective
function (2) now becomes

JSm (ρ(s)) =
|Sanchor|∑

k=1

∑
i

Sm(ρi(zk, xk, yk), φi, z, x, y; s0), (6)

in which Sanchor = {(zk, xk, yk)|k = 1, 2, ..., } is the set of event anchor points, and |Sanchor|
denotes the size of this set. Similarly, the gradient formula (4) becomes

∂JSm

∂s
=

|Sanchor|∑
k=1

∑
i

∂ρi(zk, xk, yk)
∂s

∂JSm

∂ρi(zk, xk, yk)
. (7)

In addition, I change the summation bounds of the local window variable zw in the semblance
formula (3). Originally the bounds are fixed at [−L/2,+L/2], but now the event window
sizes are automatically detected on individual bases. These formulation changes are very
easy to implement in terms of programming.

RMO-BASED WEMVA ON A 3-D WAZ FIELD DATA SET IN THE
GULF OF MEXICO

In this section, we discuss how we apply the RMO-based WEMVA method for subsalt area
velocity estimation on the E-Octopus WAZ field data set.

E-Octopus field data set overview

The data set we examine in this report is a WAZ streamer survey acquired offshore Gulf
of Mexico (GOM) by Schlumberger. Specifically, it is part of the “E-Octopus phase III”
survey in the Green Canyon area. The corresponding survey area is about 35 km by 30 km
(inline by cross-line). The offset range of a shot gather is [-4.2 km, +4.2 km] cross-line
and [−7.0 km,+7.0 km] in-line. The recorded data contains ∼ 10, 000 shots, amounting to
∼ 11 TB of raw disk space. The recording time per trace is 14 seconds. Please refer to our
previous report (Zhang and Biondi, 2014) for more details on the WAZ survey’s acquisition
setup and our data preprocessing workflow.

Initial migration images on E-Octopus field data set
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(a)

(b)

Figure 1: Three-panel display of the velocity model used for migration. Subplot (a) is sliced
at x=10 km,y=−9 km, subplot (b) is sliced at x=20 km,y=−0.99 km. Notice the strong
model variations along both X and Y directions. The color map ranges from 1450 m/s
(deep blue) to 4480 m/s (deep red). [ER] yang1/. fig8,fig9
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Figure 2: A three-panel view of the initial full 3-D image, in which the region of interest (ROI) for our target-oriented inversion is marked.
The image has been applied a z-power (similar to t-power) gain in order to boost up the amplitudes of deeper reflectors. The dimension
of ROI is 9 km by 6 km by 6 km. [CR] yang1/. fig12
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Figure 1 shows the best velocity model we received from Schlumberger. The velocity
plots show the sections of the same model at different slicing coordinates. As can be seen
from figure 1, there are strong lateral variations along both X and Y directions. Figure 2
shows one section of the full 3-D migrated image. As we can see from the figure, the image
quality of the sediments above the salt is very good, with continuous and coherent reflector
geometries, indicating accurate velocity. However, the subsalt areas are not as well imaged.
There are many discontinuities in the reflectors, as well as conflicting dips. We focus our
efforts in these regions because of these indications of a less accurate velocity model.

Focusing on subsalt sediments with a target-oriented approach

Applying WEMVA method to a data set at such a large scale will occur prohibitively
high computational cost. Even with all the precautions we make in the data preparation
stage, a full migration on the entire domain (such as figure 2) costs ∼5000 node×hours on
our academic cluster of 120 Intel Xeon nodes (two E5520 CPUs, each CPU is quad-core,
2.26GHz). It amounts to ∼ 50 consecutive hours at 100% cluster usage in the optimal
case. In practice, it takes us at least 5 days to complete a job at this scale. The turn-
around time would be too long for practical applications, given that the wave-equation
tomographic operator is even more expensive than the imaging operator, and that we have
to perform tens of iterations in a typical WEMVA inversion. Therefore, to apply expensive
wave-equation tomography methods on the target subsalt region, it is essential to adopt
a target-oriented approach which greatly shrinks the problem domain, thus significantly
reducing the computational cost.

Target-oriented tomography using generalized Born-modeling data

To make the computational cost affordable for our field data application, we use the target-
oriented tomography scheme proposed by Tang (2011). This scheme synthesizes a new data
set concentrating on the region of interest (ROI), which is able to preserve all kinematic
information that is related to the ROI in the original data set. Therefore, in addition to
shrinking the problem’s physical domain, this scheme reduces the size of the data set used
for WEMVA inversion, thus achieving high computational efficiency.

Tang (2011)’s method first computes the initial subsurface offset-domain common-image
gathers (ODCIG) in the target region using a starting velocity model. The initial ODCIG
are further normalized using the diagonal values of the imaging Hessian, which can be effi-
ciently computed using the phase-encoding method (Tang, 2011), to optimally compensate
for the uneven subsurface illumination. Tang (2011) demonstrates that the velocity infor-
mation about the seismic data is now transformed into the ODCIG. Therefore this method
uses the generalized Born modeling method, (which includes the ODCIG instead of merely
the zero subsurface offset image in the modeling process), to simulate a new data set right
on top of the target region. The user can design arbitrary acquisition geometry for the syn-
thesized new data set. Once the new data set is generated, the wave-equation tomography
is carried out exclusively on the new data set.

The target area we choose is a 9 km by 6 km by 6 km subsalt sediments region near the
center of the full imaging domain, as shown in figure 2. Figure 3 shows a close-up view



SEP–158 RMO-based WEMVA case study 19

of the velocity and stacked image of the same target region. We consider this area a good
target for WEMVA-based velocity improvement because there are a lot of discontinuities
among the imaged sediment layer interfaces, which indicates inaccurate medium velocity.
Additionally, the salt overburden above this region is relatively well imaged, therefore we
have more confidence in the correctness of the overhanging salt model. This leads us to
infer that the velocity errors mainly exist within the subsalt sediments, and our WEMVA
method is good at resolving these types of velocity errors.

The synthesized new data set

The first step in our target-oriented tomography workflow is to synthesize a data set that
sits right on top of the target region while preserving all velocity information around the
target region from the original data set. We choose plane-wave acquisition geometry for the
new data set because it results in fewer total number of shots that need to be simulated, and
the cross-talk effect usually caused by compound sources are kept minimum in plane-wave
data. To determine the acquisition parameters of the plane-wave survey, we refer to the fact
that the maximum subsurface illumination angle depicted in the ADCIG shown in Zhang
and Biondi (2014) is no more than 25◦, and the average velocity at the top of the target
region is ∼ 3000 m/s. The new acquisition samples 17 inlines and 17 crosslines (289 in total)
plane-wave directions, with the ray parameters ranging at ±160 us, this corresponds to at
least ±30◦ subsurface angle illumination with ∼ 3.75◦ sampling along angle axis. Because of
the reduction of the physical propagation domain, we reduce the recording time from 14.0
secs originally to 6.1 seconds. This translates to coarser sampling in the data frequency
domain. Therefore we sample 99 frequencies between 4 Hz and 20 Hz for the new data set,
compared to 208 frequencies for the original data set.

We take extra cautions dealing with the salt overburden when synthesizing the new
data. First we build a binary mask from the starting velocity model to mark the area
occupied by salt in the target region. Then we use this salt mask to erase out the subsurface
ODCIG that will be used for the generalized Born modeling because the salt reflection
does not provide any velocity information for the sediments below. In addition, as we
can see from the velocity model in figure 3(a), over half of the source and receivers in the
synthesized survey would be place in salt. The strong lateral variation in the velocity model
at the recording depth would cause extra distortion to the plane-wave source wavefields,
and it also forces us to use more reference velocities in our one-way propagator, which
increases the computational cost. To address this potential issue, we create a sediments-
flooded velocity model from the original model in which we replace the salt velocity with the
velocity values of its surrounding sediments. We use the salt-excluded subsurface ODCIG
combined with the sediments-flooded velocity model to generate our new synthetic data.
Figure 4 shows the velocity model and zero subsurface offset section of the ODCIG that
we use for the new data synthesis, respectively. We can manipulate the velocity model in
this way because the actual salt area is considered not suitable for tomography updates
and will remain fixed throughout our velocity estimation workflow. Therefore an ideal
way to place the recording locations of the new survey is to put sources and receivers
right at the salt/sediment boundary because preserving the sources/receivers wavefields at
this boundary will preserve all velocity information about the underlying sediments, but
this would cause extra complexity for our one-way propagator implementation. Using the
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sediments-flooded velocity model avoids such extra complexity because now we can place
sources/receivers at the same depth; more importantly, it will preserve the source/receiver
wavefields at the salt/sediment boundary since we will not change the part of the velocity
model that is originally occupied by salt throughout the tomography workflow.

The mapping from the original data set to this target-oriented plane-wave data set
yields huge saving in computation. The size of the data set reduces by 90%, combined
with the shrinkage of the modeling physical domain, the required computation time for
each migration reduces from 5000 node hours to 150 node hours, a more than 30 times
improvement, making overnight calculation per iteration feasible.

To verify that the newly synthesized data set contains the same velocity information
as the original data, We recompute the subsurface ODCIG (both in hx and hy) using the
new data set. In terms of the range of the offset dimensions, we use 21 points in hx

with 50m spacing and 19 points in hy with 60m spacing, in order to capture most of the
unfocused energy. The offset dimension is the same as the initial subsurface ODCIG I used
to generate the new data set. Figure 5 and figure 6 show the comparison between the
gathers migrated using the original data set and the synthesized new data set, respectively.
As we can see, except a few disparities close to the boundary, their kinematic behaviors
agree with each other very well. Particularly the defocuses and the shapes of the ODCIG are
almost identical. Although the long-wavelength amplitude trends are slightly different due
to different acquisition geometries, fortunately, our WEMVA inversion algorithm balances
the amplitude of the reflectors so that the amplitude variance will not adversely affect the
inversion.

Inversion result

We use the Polak-Riberie variant of nonlinear conjugate-gradient (CG) methods to performe
the WEMVA iterations. Li (2014) presents a detailed recipe for this algorithm. Based on
our empirical observation, we use only half of the data frequencies when applying the
wave-equation tomographic operator to further save computation time. In addition, I re-
parameterize the model space using coarsely sampled B-spline nodes (as introduced by
Biondi (1990)) to control the resolution of the inversion among iterations. By gradually
increasing the number of spline nodes as the number of iterations increases, I constrain the
inversion to resolve the low-wavenumber part of the model first, then gradually move up
to a higher wavenumber to retrieve more model details. The initial spline nodes spacing
is set as 1.5 km in X, 1.5 km in Y, and 0.3 km in Z, and the spacing reduces by ∼ 0.1 km
in X,Y and 0.02 km in Z for each iteration. When computing the model gradient, we use
the aforementioned salt area mask to zero out any updates inside the salt. For the ADCIG
sampling, we use 21 points along the reflection angle axis ranging from −25.0◦ to +25.0◦,
and we compute 7 azimuths from −67.5◦ to +67.5◦.

Figure 7 shows the preliminary velocity estimation result we have obtained so far. For
this result, Our RMO-based WEMVA inversion stopped improving after 5 iterations, and
the objective function reduces by ∼ 5% in total. An interesting point about the inverted
velocity model is that the tomography is suggesting a low velocity zone beneath the salt
body, and the lowest value in that zone is ∼ 2650 km/s, which is ∼ 10% lower than the
initial velocity model.
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(a)

(b)

Figure 3: A close-up view of (a) the starting velocity model and (b) the zero subsurface-
offset image at the target region (figure 2). [CR] yang1/. vel-roi,img-roi
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(a)

(b)

Figure 4: A close-up view at the target region. (a): the sediments-flooded starting velocity
model, which is used for new data synthesis as well as the starting velocity model in later
WEMVA inversion; (b): the zero subsurface-offset image of the ODCIG that we use for new
data synthesis. We remove the salt reflection from the original ODCIG and apply inverse
of diagonal Hessian matrix to the masked ODCIG for amplitude balancing. Compare this
figure with figure 3. [CR] yang1/. velfill-roi,img-roi-bal-saltmask
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Figure 5: 3-D subsurface ODCIG in the target region, used as the input ODCIG for mod-
eling the new data set. (a): An inline image section at Y = −4.77 km; (b): the inline
subsurface-offset (hy is fixed at 0 km while hx range spans [−0.50 km,+0.5 km]) CIG for
different lateral locations in (a); (c): the crossline subsurface-offset (hx is fixed at 0 km
while hy range spans [−0.54 km,+0.54 km]) CIG for different lateral locations in (a). [CR]
yang1/. odcigs-initmig1
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Figure 6: 3-D subsurface ODCIG in the target region, migrated using the generalized Born-
modeling data set. Compare the figure with figure 5. (a): An inline image section at
Y = −4.77 km; (b): the inline subsurface-offset (hy is fixed at 0 km while hx range spans
[−0.50 km,+0.5 km]) CIG for different lateral locations in (a); (c): the crossline subsurface-
offset (hx is fixed at 0 km while hy range spans [−0.54 km,+0.54 km]) CIG for different
lateral locations in (a). [CR] yang1/. odcigs-remig1
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Figure 7: The inverted target region velocity model using the propose RMO-based WEMVA.
The original salt area has been restored before plotting. Note the low velocity values
immediately beneath the salt. [CR] yang1/. velinv-roi
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(a)

(b)

Figure 8: Three-panel view showing the comparison between the zero subsurface-offset im-
ages migrated with (a) the starting velocity model (figure 4(a)) and (b) the inverted velocity
model (figure 7). The coordinates of each section are annotated in the figure. Both figures
are plotted using the same clip value. [CR] yang1/. img1-roi-beginv,img1-roi-endinv
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(a)

(b)

(c)

Figure 9: 3-D ADCIG migrated using the starting velocity model (figure 4(a)). The an-
gle gathers are extracted from the same location where the X-Z image section in figure 8
is located. Each subplot shows the angle gathers at a certain azimuth for different lat-
eral locations in X. The reflection angle range spans [−25.0◦,+25.0◦]. The three subplots
((a),(b) and (c)) show the angle gathers at 0◦, −45.0◦ and 45.0◦ azimuth, respectively.
yang1/. adcig-beg1-roi-azim-0,adcig-beg1-roi-azim-45,adcig-beg1-roi-azim–45
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(a)

(b)

(c)

Figure 10: 3-D ADCIG migrated using the inverted velocity model (figure 7). The
subplot description is the same as in figure 9. Compare this figure with figure 9.
yang1/. adcig-end1-roi-azim-0,adcig-end1-roi-azim-45,adcig-end1-roi-azim–45
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(a)

(b)

Figure 11: Another three-panel view showing the comparison between the zero subsurface-
offset images migrated with (a) the starting velocity model (figure 4(a)) and (b)
the inverted velocity model (figure 7). The coordinates of each section are anno-
tated in the figure. Both figures are plotted using the same clip value. [CR]
yang1/. img2-roi-beginv,img2-roi-endinv
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(a)

(b)

(c)

Figure 12: Same description as in figure 9, other than that the locations
of these angle gathers are from the X-Z image section in figure 11. [CR]
yang1/. adcig-beg2-roi-azim-0,adcig-beg2-roi-azim-45,adcig-beg2-roi-azim–45
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(a)

(b)

(c)

Figure 13: Same description as in figure 10, other than that the locations of these angle
gathers are from the X-Z image section in figure 11. Compare this figure with figure 12.
[CR] yang1/. adcig-end2-roi-azim-0,adcig-end2-roi-azim-45,adcig-end2-roi-azim–45
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To further verify that our inverted model is indeed improving the subsalt images, we
plot the comparisons between the initial image and the image migrated using the inverted
model, as shown in figure 8 and figure 11. To compare the image focusness, we use the same
clip value for the initial image and the updated image. As we can see from both figures,
the events of the updated image become more coherent, thus having higher amplitudes.
Especially in figure 11 an anticline structure is formed because of the low velocity zone,
and the continuity of those reflectors are also significantly improved. Figure 9 and 10
show the comparison between the ADCIG before and after update. The locations of these
ADCIG are the slicing locations shown in figure 8. (In this example, it is the Z-X slice at
Y = −3.81 km.) Similarly, figure 12 and 13 show the ADCIG comparison at a different
location corresponding to figure 11. From these ADCIG comparisons, we can see that the
majority of the ADCIG become more flat after velocity update, although there are certainly
still some room for improvement even with the updated velocity.

CONCLUSION

We present a field data application of our target-oriented, RMO-based WEMVA tomography
workflow using the E-Octopus III WAZ data set. The generalized Born-modeling based
target-oriented approach we use enables huge computational savings, while preserving the
velocity information in the original data losslessly. Although our current inversion result
on a subsalt sediments region is preliminary, and the subsalt area is very challenging for
velocity estimation; nonetheless, the inverted velocity model from our RMO-based WEMVA
demonstrates convincing imaging improvement and uncovers an interesting low velocity zone
beneath the salt, which might be worthy to investigate from geological aspects.
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APPENDIX A

AUTOMATIC EVENT DETECTION

In this appendix, we explain how we implement the automatic event detection module for
the gradient calculation in the RMO-based WEMVA method.

Anchor points detection

The basic idea for our anchor point detection workflow is inspired by the methodology
proposed in Cullison (2011). First our method uses several image processing techniques
to extract all potential event anchor point candidates, and then filter out a portion of
candidates based on several geophysical criteria before outputting the final set of anchor
points. Let me denote the stacked image (zero subsurface offset image) I(z, x). To find
candidate anchor points, I perform the following steps:
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1. Apply 1-D (along z axis) automatic gain control (AGC) to the stacked image Ibal(z, x),
in order to broadly balance the amplitude of reflectors in the image.

2. Take the energy envelope (magnitude of the input’s Hilbert signal) along z axis on
Ibal(z, x), denoting the output as IE(z, x).

3. Apply non-maximum suppression (along z axis) to IE(z, x). As its name suggests,
non-maximum suppression will suppress all samples that are not local maxima in the
input image to zero. It will produce a binary image of the input size, and only the
locations of local maxima in the input image are set to 1, while all the rest of the
output are set to 0. From this binary image, I extract the locations of all non-zero
values and place them in the candidates set of the anchor points, Scand.

However, not all candidate points in Scand are well-suited for WEMVA gradient back-
projection. In other words, extra quality check (QC) is helpful to prevent noisy data going
to the gradient calculation. Specifically, our implementation filters out any candidate points
if they do not meet one of the criteria below:

1. Because the assumption of specular reflection is the theoretic foundation of all re-
flection tomography methods, I screen out all candidate points that do not satisfy
specular reflection requirement. I achieve this screening by computing linearity coef-
ficients over all candidate points and threshold the values of linearity coefficients.

First introduced into the field of exploration Geophysics by Hale (2009a,b), the linear-
ity coefficient is a good measure to quantify how specular a reflection point is. Briefly
speaking, if the linear coefficient of the target reflection point is high (close to 1.0),
it indicates that there is a strong local linear reflector structure around that point.
Thus, we know that the specular reflector assumption holds well. Similarly, if the lin-
ear coefficient is low (close to 0.0), it indicates that there is no locally linear reflector
structure around that point (for example, the target point is on fault boundary, or
is just an isolated diffractor). Therefore, the specular reflector assumption does not
hold.

The local linearity coefficients of the stacked image can be conveniently estimated
using structure tensor (Cullison, 2011).

2. I also filter out candidate points that have a large dipping angle, because neither the
theory nor the way that I compute gathers handles steeply dipping reflectors well.
The reason is explained as follows:

• In the theoretic aspect, our derivation assumes that the ADCIG shift only ver-
tically under velocity perturbation. In the case of reflector dips being large, this
vertical shift assumption will be challenged because it is more accurate to assume
each angle-domain gather shifts along the normal direction (perpendicular to the
corresponding dipping interface).

• On the implementation side, note that I compute the ADCIG indirectly by con-
verting from subsurface offset common image gathers (Sava and Fomel, 2003).
The horizontal subsurface offset (hx) common image gathers are known to lose
resolution and accuracy for angle-domain gathers on steeply dipping reflectors
(Biondi, 2006).
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Therefore our workflow also filters out steep reflectors. As for how to determine the
steepness of reflectors, we can conveniently estimate local dipping angles of the stacked
image using structure tensors as well (Cullison, 2011).

Variable event window size

After I identify the set of event anchor points, I can further detect the actual window size
of each event instead of using a pre-set constant window size universally:

1. For each anchor point, extract the amplitude at that anchor location from the energy
envelope image IE(z, x).

2. We can infer that each anchor point positions approximately at the center of the
event it belongs to, because the anchor point samples the peak amplitude of the
energy envelope. Therefore our code starts from the anchor point’s location, then
searches in both directions (±z) for the tails of the energy envelope.

Illustrative example on automatic event detection

As an intuitive explanation for the algorithms used in our automatic event detection module,
I present a simplified event detection example on a 1-D seismic trace input. In the RMO-
based WEMVA case, we can think of the input as an image trace along the depth direction
at a certain horizontal location, I(z, x = x0, y = y0).

Figure 1(a) shows the input 1-D signal. The goal is to detect the individual events
accurately and efficiently. As we can visually identify from the plot, I deliberately create 4
distinct events in the input, each with a different signature (waveform):

1. A typical Ricker2 wavelet (second derivative of Gaussian).

2. A Ricker2 wavelet with opposite polarity.

3. A Ricker1 wavelet (first derivative of Gaussian). This wavelet is asymmetric and has
a 90◦ phase difference compared to the Ricker2 wavelet.

4. A typical Ormsby wavelet (Ryan, 1994). This wavelet usually has bigger side lobes
(more rippling) compared to the Ricker wavelet due to the steeper tapering effect on
the edges of the spectrum.

These events possess different signal characteristics (variant amplitude, polarity, phase and
spectrum shape) that help to demonstrate the merits of the proposed approach.

Figure 1(b) shows the energy envelope overlaying the input. As we can see, the envelope
strips out many of the complexities in the original signal (like asymmetric phase, negative
polarity, vibrating waveform, etc.), and singles out the “wave packet” information for each
event. The simplicity brought by the energy envelope makes it a much better choice for
anchor point detection than the original signal, as demonstrated by the following example.
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Figure A-1: An example to illustrate the event detection workflow. (a): the
input 1-D signal; (b): the input with its energy envelop overlaid. [CR]
yang1/. trace-input,trace-envelop-overlay
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Figure A-2: The results of detected anchor points(shown as × marks) and event windows
(shown as dash lines) using different inputs: (a) the original signal as input; (b) the en-
ergy envelope as input; (c) the absolute value of the original signal as input. [CR]
yang1/. eventwid-ori-maxima,eventwid-env-maxima,eventwid-abs-maxima



SEP–158 RMO-based WEMVA case study 37

Figure A-2 shows the anchor points found by applying non-maximum suppression to
different input signals. More specifically, figure 2(a) uses the original signal as detection
input, and figure 2(b) uses the energy envelope. For comparison, I add the result using the
absolute value of the original signal as input, shown in figure 2(c). Apparently, the result
using the energy envelope (figure 2(b)) is the most accurate. The result in figure 2(a) fails
on the second event that has a negative polarity. Because of this negative polarity, the two
local maxima it finds are indeed the peaks of two side lobes rather than the main lobe.
This result also fails on the last event due to the severely vibrating waveform, that the
computer program picks up both the peak of main lobe and the first two strong side lobes.
The result in figure 2(c) is able to handle negative polarity in the second event because it
uses the absolute value of the original signal as input. However, it fails on the third and
fourth event. The result contains several false positives because the absolute value function
converts local minima into local maxima.

After the event anchor points are located, figure A-2 also shows the detected event
window sizes of every anchor point for each corresponding test case. The detected event
windows are drawn as box functions with dash lines. As the figure indicates, the result
using energy envelope is the most accurate.
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Amplitude normalization in TFWI

Ali Almomin

ABSTRACT

Tomographic Full Waveform Inversion (TFWI) provides a robust and accurate method
to invert the seismic data by simultaneously inverting all scales of the model. However,
maintaining simultaneous inversion of scales is hindered when the modeling operator
cannot accurately match the amplitudes of the data. In this paper, I modify TFWI to
increase robustness against amplitude inaccuracies in the modeling operator by normal-
izing the objective function using a running-window filter. Finally, I test the proposed
algorithm on the Marmousi. The results of the modified TFWI show a major improve-
ment in the accuracy and convergence rate of the inversion.

INTRODUCTION

TFWI, similar to other data-space inversion method, produces highly accurate results due
to matching both the phase and amplitude of the data. This is achieved in two steps:
first, extending the wave equation and adding an additional axis to the velocity model,
and second, adding a regularization term that drives the solution towards a non-extended
model. However, one limitation to TFWI occurs when the amplitude of the data cannot
be accurately matched by the modeling operator. One solution is to only match the phase
using a single frequency per iteration (Pratt, 1999; Shin and Ha, 2008). Using phase only
will prevent simultaneous inversion of scales. Another approach is to normalize each trace
by its norm, as presented in Shen (2014). The issue with trace normalization is that it does
not take into account the large difference in amplitude behavior between the transmission
and reflection data, which makes it only usable when inverting a few events to match.

In this report, I generalize the amplitude normalization inversion to use any nonlinear
weighting function that is based on the data. Then, I propose a running window normal-
ization that uses a Gaussian function to extract the local amplitude of the data. Finally, I
compare different normalizations using a synthic Marmousi model.

THEORY

The conventional L2 objective function for data matching can be written as follows:

JFWI(m) =
1
2
‖f(m)− dobs‖2

2, (1)

where m is the model, f is the forward modeling operator and dobs is the observed surface
data. I modify the conventional L2 objective function by adding a nonlinear weighting
function as follows:

JW−TFWI(m̃) =
1
2
‖W(f̃(m̃))f̃(m̃)−W(dobs)dobs‖2

2, (2)

39
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where W is a diagonal weighting matrix. The elements on the weighting matrix can be
described as follows:

W(it, ir, is; f̃) =
1

‖A(it, ir, is)f̃‖2

, (3)

where it, ir, is are the time, receiver and source coordinates and the matrix A represents a
convolution by an abstract non-stationary filter. Notice that the norm used in the previous
equation is only along the lag axis of the convolution. In other words, the weighting matrix
divides each sample by the norm of a filtered version of the data. The purpose of the filter
is to window and taper around each sample of the data.

The gradient g can be calculated as:

g̃(m̃) =
(

∂r(m̃)
∂m̃

)∗
r(m̃). (4)

Using the definition of the matrix W and the chain-rule, I can calculate the derivative of
the residual with respect to the model as:

∂r(m̃)
∂m̃

=

(
W(f̃(m̃)) +

∂W(f̃(m̃))

∂ f̃
f̃(m̃)

)
∂ f̃(m̃)
∂m̃

. (5)

The derivative of the weighting matrix with respect to the modeled data can be expressed
as:

∂W(f̃(m̃))

∂ f̃
= −W(f̃(m̃))

f̃(m̃)∗A∗A

f̃(m̃)∗A∗Af̃(m̃)
. (6)

I can now substitute the previous terms and the gradient as the backprojection of a virtual
source v(m̃) described as:

v(m̃) = W(f̃(m̃))

(
r(m̃)− f̃(m̃)∗A∗Ar(m̃)

f̃(m̃)∗A∗Af̃(m̃)
f̃(m̃)

)
. (7)

In order to interpret the gradient expression, I redefine the weighting matrix as

W(it, ir, is; f̃1, f̃2) =
1√

f̃1
∗
A∗(it, ir, is)A(it, ir, is)f̃2

, (8)

where the variable f1 and f2 are two data sets. This new definition gives the weighting matrix
the freedom to divide by the product of two datasets instead of restricting the calculating
to one. I can now write the virtual source as:

v(m̃) = W(f̃(m̃), f̃(m̃))

(
r(m̃)− W2(f̃(m̃), f̃(m̃))

W2(f̃(m̃), r̃(m̃))
f̃(m̃)

)
. (9)

We can see that the gradient is computed by the following steps. First, the modeled data
is divided by the norm of the filtered modeled data. This can be seen as a way to “remove”
the amplitudes from the modeled data. Then, the data is scaled by weights which are the
result of the product of the modeled data and the residual, which scales the amplitudes of
the normalized modeled data to those of the residual. At this point, the modeled data has
a similar amplitude scale to the residual, which makes differencing them less prone to scale
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differences. After calculating the difference, the resultant is divided by the amplitude of the
modeled data again. This last division removes the amplitude imprint of the modeled data
that will be imposed by the step to follow, which is the back projection of the data into the
model space. It is worth noting that this normalization will automatically incorporate the
preconditioning described in Almomin and Biondi (2014)

SYNTHETIC EXAMPLES

I now test the new algorithm on the Marmousi model. I create the observed data with
variable density acoustic wave-equation. The first shot gather from the observed data is
shown in figure 1. In order to create amplitude discrepancies between the observed and
modeled data, I ignore the density variations in the modeled data.

Figure 1: First shot gather from the observed data. [ER] ali1/. nl

Using the correct kinematics, the first shot of the modeled data is shown in figure 2.
Notice that the amplitude behavior between the two figures 1 and 2 is variable both in
offset and time. Next, I compare the first TFWI gradient using four objective functions:
conventional L2 difference, gather-normalization, trace-normalization (Shen, 2014) and a
running-window normalization using a Gaussian window as formulated in this report. Figure
3 shows the first gradient using the L2 difference. This gradient is dominated by large
differences in amplitudes in the direct arrivals. Figures 4 and 5 shows the first gradient
using the shot-gather-normalization and trace-normalization difference. This gradient has
largely improved compared to the L2 gradient, but we can still notice the diminishing
amplitudes of the deeper reflectors. Figure 6 shows the first gradient using the running
window-normalization difference. This gradient has significantly improved compared to the
other two gradients, especially when examining the deeper reflectors.

Next, I repeat the same experiment but use horizontal average of the velocity as the
background, i.e., using the wrong kinematics. Figure 7 shows the first gradient using the
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Figure 2: First shot gather from the modeled data using the correct velocity. [ER]
ali1/. nl-0

Figure 3: Model gradient using L2 residual and kinematically correct velocity. [ER]
ali1/. r-0
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Figure 4: Model gradient using gather-normalized residual and kinematically correct veloc-
ity. [ER] ali1/. r2-0

Figure 5: Model gradient using trace-normalized residual and kinematically correct velocity.
[ER] ali1/. r3-0
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Figure 6: Model gradient using running window-normalized residual and kinematically
correct velocity. [ER] ali1/. r4-0

L2 difference. Similar to the gradient calculated with the wrong kinematics, this gradient
is also dominated by large differences in amplitudes in the direct arrivals. Figures 8 and
9 shows the first gradient using the shot-gather-normalization and trace-normalization dif-
ference. While some improvements can be seen compared to the L2 gradient, this gradient
is dominated by the first reflector. Figure 10 shows the first gradient using the running-
window normalization difference. Also, the low amplitude behavior for the deeper reflectors
seems to be compensated for using the running-window normalization.

Figures 11 to 14 show the Angle-domain common-image gathers (ADCIGs) at four
different locations of the gradients shown in figures 7 to 10. We can see that using gather-
normalization or trace-normalization results in a loss of energy at deeper reflectors, espe-
cially near the zero angle. The running window-normalization improved the amplitude-
versus-angle behavior of the gathers and produced more balanced gathers.

CONCLUSIONS

Matching the amplitudes of the data is important in the framework of TFWI in order to
ensure a simultaneous inversion of scales. However, this task can prove challenging when
trying to match the amplitudes of field data. An amplitude mismatch can have a large
impact on the result, and can dominate the phase component of the data.

To mitigate this issue, I proposed a normalized objective function using an abstract non-
linear weighting function. This formulation is very flexible and allows for several methods of
normalization. This flexibility is capable of handing multiple events with varying amplitude-
versus-offset behaviors. The preliminary results show a major improvement in the first
gradient when compared to other methods of normalizing the objective function.
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Figure 7: Model gradient using L2 residual and incorrect velocity. [ER] ali1/. r-1

Figure 8: Model gradient using gather-normalized residual and incorrect velocity. [ER]
ali1/. r2-1



46 Almomin SEP–158

Figure 9: Model gradient using trace-normalized residual and incorrect velocity. [ER]
ali1/. r3-1

Figure 10: Model gradient using window-normalized residual and incorrect velocity. [ER]
ali1/. r4-1
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Figure 11: ADCIGs using L2 residual and incorrect velocity. [ER] ali1/. adcig-1

Figure 12: ADCIGs using gather-normalized residual and incorrect velocity. [ER]
ali1/. adcig2-1
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Figure 13: ADCIGs using trace-normalized residual and incorrect velocity. [ER]
ali1/. adcig3-1
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Figure 14: ADCIGs using window-normalized residual and incorrect velocity. [ER]
ali1/. adcig4-1
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Domain decomposition in shape optimization for segmenting
salt bodies

Taylor Dahlke, Biondo Biondi and Robert Clapp

ABSTRACT

Level set methods can provide a sharp interpretation of the salt body by defining the
boundary as an isocontour of a higher dimensional implicit representation, and then
evolving that surface to minimize the Full Waveform Inversion objective function. I
propose to take advantage of the benefits that the shape optimization approach has to
offer. First, because the implicit surface update gradient is based on the tomographic
update gradient, there is potential to utilize it to update the background velocity
concurrently with the salt boundary. Second, we can decompose the update gradient
into separate partitions with individual scaling parameters in order to better avoid local
minima in our search and more effectively converge on the true model. Using a shape
optimization approach on synthetic examples, we can achieve reasonable convergence
both in terms of the residual L2 norm, as well as the evolution of the salt boundary
and background velocity towards the true model, demonstrating the feasibility of this
approach. Ultimately, this method can be integrated into the processing work flow
as a tool that provides improved building and refining of the velocity models used for
imaging.

INTRODUCTION

Oil producing regions like the Gulf of Mexico and offshore western Africa are known to
have geologically complex salt body formations which can cause difficulties in producing
seismic imagery. The velocity of these salt bodies often contrasts sharply with that of the
background sediment layers. An inaccurate interpretation of the salt boundaries can cause
significant errors in the velocity estimation process, because the formations themselves
can act as lenses which focus or disperse seismic energy, influencing tomography. This
can subsequently impact the imaging results that rely on accurate velocity models. Salt
bodies can act as seals trapping hydrocarbons underneath, which are often the targets of
imaging projects for reservior interpretation. For this reason the interpretation of salt body
boundaries can also impact drilling and production activities.

Tomographic approaches to interpreting salt bodies can be less than effective, because
the results tend to be too smooth to provide significantly accurate placement of the salt
boundaries. Manual and semi-automatic picking of salt boundaries is a common approach
to interpreting the desired sharp delineations, but these methods can be time-consuming
and tedious since expert input is necessary for either the actual picking, or the oversight
and correction. Furthermore, once a model has been produced, it must be used to generate
an image, and then be refined as necessary. A robust method for further automating the
salt interpretation procedure would greatly alleviate this bottleneck.

51
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Some previous approaches to performing salt body segmentation use a shape optimiza-
tion approach for identifying salt body boundaries (Guo and de Hoop, 2013; Lewis et al.,
2012). The boundaries of a salt body can be represented as the zero-isocontour of a higher
dimensional surface (for example, a 2D boundary as a contour of a 3D surface). A gradient
can be derived to evolve this shape / isosurface according to the Full Waveform Inversion
(FWI) objective function. Unlike the smooth boundaries produced by tomographic ap-
proaches, the isocontour resulting from the shape optimization provides a sharp boundary,
which is a more appropriate way to classify most salt-sediment interfaces. Guo and de Hoop
(2013) utilize this approach using a frequency domain forward wave operator to evolve a
salt boundary and velocity model. Their approach creates and applies a global gradient
update, which can create problems updating the base-of-salt (BOS) once the top-of-salt
(TOS) has gotten close to convergence. This issue has been observed in recent work (Guo
and de Hoop, 2013), and is an inherent problem with the global gradient update approach.

To address the problem with global updating, we introduce domain decomposition for
the salt boundary update gradient by splitting it; demonstrated here using “upper” and
“lower” partitions. This introduces an additional degree of freedom to our parameter search-
ing so that local minima can be avoided. Using a shape optimization approach with time
domain forward wave-propagation, we take advantage of using a continuous range of frequen-
cies (rather than discrete frequencies) in each iteration, which allows for sharper delineation
of the boundary. Further, we take advantage of the fact that our boundary update gradient
is based on the tomographic update gradient, and make updates to both concurrently with
the use of scaling parameters. In theory, this algorithm has the potential to be more efficient
than an alternating update approach.

In this paper we will begin by discussing the fundamentals of the level set method and
its key properties, followed by the derivation of the boundary update gradient. Next we will
describe and demonstrate the general algorithm, and discuss the assumptions and funda-
mental limitations of this approach. Following, we will introduce the domain decomposition
method, and demonstrate the improved results that this approach offers.

THEORY

While it may seem counter-intuitive to add an extra dimension to our problem, by doing
so, we gain the advantage of easily merging/separating bodies as the evolution proceeds, as
well as the ability to handle sharp corners and cusps in the lower-dimensional (2D) plane
on which the boundary exists.

Osher and Sethian (1988) and Burger (2003) describe the level set of φ that represents
the salt body boundary as

φ(xΓ, τ) = 0,

where xτ is the spatial domain, and τ is the iteration count. By taking the derivative of
this equation with respect to τ (to find the δφ between iterations), applying the chain rule,
and re-arranging terms we can get:
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∂φ

∂τ
= −V (xΓ, τ) |∇φ| . (1)

The scalar speed term V (xΓ, τ) describes the magnitude of the variation of φ that is
normal to the boundary Γ. It determines the evolution of the implicit surface, and ultimately
the boundary implied by it. We derive this normal velocity such that the FWI objective
function is minimized

min ‖F (m)− d‖2
2 , (2)

where F (·) is the forward wavefield modeling operator, m is the velocity model, and d is
the observed data.

Calculus of variations

The shape derivative we use is based on a formal calculus of variations outlined in Santosa
(1996). The objective is to define the variation of the model m with respect to the boundary
variation (represented implicitly by the surface, φ).

Figure 1: The geometry of the curve {xΓ : φ = 0} for a variation δφ(x) for an evolution
step τ . [NR] taylor1/. domain-fig

We begin by considering an inner product of velocity model perturbation δm with a test
function f(x). Formally, this can be written as,
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〈δm, f(x)〉 =
∫

R2

δm(x)f(x)dx =
∫

∂Ω
δm(x)f(x)dx. (3)

Because the δm(x) term equals zero in R2 \ ∂Ω, it does not contribute to the overall inner
product when integrating over that domain; therefore, we only integrate over ∂Ω where
δm(x) is non-zero. We know that δm(x) will be ±(mint −mext), depending on the relative
values of mint and mext or the direction of the normal vector ~n. We only care about the
component of δxΓ that occurs in the normal direction, because a tangential variation of xΓ

does not affect m or φ. Furthermore, because δxΓ is infinitesimal, we can replace dx with
~δxΓ · ~n and simplify Equation 3 into

〈δm, f(x)〉 =
∫

∂Ω
(mint −mext) ~δxΓ · ~nf(x)ds(x), (4)

where ds(x) is the incremental arc length along the boundary Γ. We can think of ~δxΓ ·~nds(x)
as roughly the incremental area over which m varies at x.

We can identify δm from Equation 4. It can be considered a measure over ∂Ω:

δm = (mint −mext) ~δxΓ · ~n |x∈∂Ω . (5)

We remember that in the previous section we stated the goal of this derivation as
being a solution of the scalar velocity function V (xΓ, τ), such that the objective function is
minimized. We recognize that the normal component of the variation δxΓ satisfies:

~δxΓ · ~n = V (xΓ, τ). (6)

We can use the shape derivative formulation described in Santosa (1996) to find a V (xΓ, τ)
that minimizes the FWI objective function (Equation 2) that we insert into Equation 1 to
get a final implicit surface update gradient of:

∂φ

∂τ
= (mint −mext)

∂F

∂m

∣∣∣~∇φ
∣∣∣ . (7)

The adjoint state method as described in Plessix (2006) is used to derive ∂F
∂m , which

can be shown to be equivalent to F (m)T (A(m) − d). Because our case uses the FWI
objective function (Equation 2), this term can be interpreted as least squares migration,
more specifically as reverse time migration (RTM). This result is formulated as:

∂F (m)
∂m

= −
∑

s

∫ T

0

∫
x∈Γ

hs(x, t)
∂2us(x, t)

∂t2
dσdt, (8)

where hs is the backpropagated residual wavefield, and us is the source wavefield. This
term by itself is the velocity model perturbation, which we can process and use to make
tomographic updates as described in the following section.
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General evolution algorithm

We begin with an initial background velocity, and a binary valued (-1, 1) function as the
initial implicit surface φ. Since we assume a constant salt velocity, we use both of these
inputs to create a full initial-guess velocity model mo. Using this mo, we forward model
to get our dsyn and subsequently find our residual. The residual is used to calculate both
a tomographic and a boundary update gradient, as described in the derivation section
previously. We then do non-linear line searches for α and β in a manner that minimizes
the FWI objective function. Afterwards we apply an explicit forward Euler scheme that
updates the implicit surface (φ) and the background velocity Vback:

φj+1 = φj + (β
∂φ

∂j
+ µGreg) (9)

V j+1
back = V j

back + α
∂Vback

∂j
. (10)

where β and α are the step sizes, j is the current iteration point, and µGreg is the weighted
regularization term (described subsequently). This work flow is graphically represented in
Figure 2.

Figure 2: The general work flow used for shape optimization. [NR] taylor1/. workflowNL

Implicit surface stability: CFL condition

As the implicit surface is evolved, it is important to maintain stability of the evolution. One
relevant aspect of maintaining stability is keeping the implicit surface update step size (β)
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small enough to satisfy the Courant-Friedrich’s-Levy (CFL) condition, which is stated by
Chaudhury and Ramakrishnan (2007) (when applied to level set evolution) as being:

Gmax · β ≤ min(hx, hy) (11)

where hx and hy are the grid spacing in the x and y directions, and Gmax is the maximum
value of the update gradient.

Implicit surface stability: DRLSE regularization

It is well documented in level set literature that maintaining a smooth, differentiable implicit
surface is important to maintaining stability as the surface evolves. Multiple approaches
have been implemented towards this end, including freezing of the level set boundary and
reinitializing the implicit surface to that of a signed distance function. This approach can
be somewhat effective, but has the drawback of adding expense to the algorithm (since the
boundary does not evolve during the iterations that reinitialization is occurring). Further,
there is no clear approach for identifying how frequent the reinitialization should occur to
maintain stability. For this reason, the more effective approach of distance-regularized level
set evolution (DRLSE) introduced by Li et al. (2010), is more commonly implemented in
recent work. Unlike the reinitialization scheme, Li et al. (2010) show how DRLSE applies
regularization updates at every iteration to maintain the implicit surface gradient as equal-
ing one (|∇φ| = 1). We calculate this DRLSE regularization term, which is then scaled and
added to the boundary gradient before each update is applied. By driving the gradient of the
implicit surface to equal one, we minimize irregularities and are able to continue evolution
without having to reinitialize a signed-distance function to the salt boundary contour.

Scaling parameter optimization

As shown previously, the salt boundary gradient is based on the adjoint of the linearized-
Born operator, which is the tomographic update gradient. Since the gradient for both a
tomographic and boundary update are calculated in each step regardless, we attempt to
take advantage of this by finding scaling parameters to apply to these gradient updates such
that we minimize the residual space objective function 12. We use non-linear line searches
to find α, then update the tomography, and immediately after perform a non-linear line
search for β using the updated background velocity.

min ‖F (m(γ)− dobs)‖ . (12)

Where γ is a placeholder for either α or β.

APPLICATION

My demonstration of the shape optimization algorithm in both cases was performed on
a 2D model, with the implicit surface evolved being a 3D surface. For the forward wave
propagation, a wavelet with a 15.0 Hz central frequency was propagated using a time domain
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forward operator, so that continuous frequency information would be forward modeled in a
single iteration.

Example: General algorithm

To implement the general algorithm, I used a model and acquisition that was symmetric
on the horizontal (x) axis, with a salt model that is smaller than the true salt body. The
background velocity had several layers, where the gradient in each layer was perturbed to
be faster than actual, while preserving the reflector position (See Figure 3). The acquisition
was composed of 11 shots and 75 receivers. The algorithm does a reasonably good job at
converging on the top of the salt body, but the updating along the bottom and sides has
still not been able to converge to the true model correctly.

Figure 3: Percent velocity error for initial model (left), and for the model after 100 iterations
(right) using general algorithm. [CR] taylor1/. dualNL4

domain decomposition of boundary update gradient

One notices in Figure 3 that the convergence of the general algorithm appears to stall
before convergence of the base of salt occurs, even after a significant number of iterations.
The reason for this is that the more strongly illuminated top of salt (TOS) is the primary
influence in the line search for β, used to apply the implicit surface update gradient. For
this reason, even when the gradient update would push the base of salt (BOS) towards
convergence, the updating on the TOS (which is unnecessary since the TOS has converged)
has a saturating effect on the step length search, forcing the update towards a very small
value.

The implicit surface update would be successful if the gradient did not show an update
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for the TOS after the TOS has converged. However, even when the TOS boundary and
background velocity model are perfect, we will still realize an update for the TOS (see
Figure 4).

Figure 4: First gradient of FWI (left) for model with perfect TOS and background velocity.
Velocity model perturbation (right). The FWI gradient wants to correct the residual by
both increasing the velocity at the base of salt (red), while also reducing the velocity of the
medium above it (blue). This RTM velocity updating maps to an implicit surface update
that causes the TOS boundary to sink deeper in order to reach the same effect. [CR]
taylor1/. perfectTOS-grad

The fundamental problem demonstrated in Figure 4 is that the reverse time migration
(RTM) gradient contains information from both reflector position error as well as back-
ground velocity error. These can be difficult or impossible to separate. In this case, what
could be correctly updated by changing the position of the bottom reflector can also be
corrected by making a velocity update above it. The RTM calculation always produces a
gradient that applies both these effects. For this reason, while an increase/decrease of ve-
locity from the raw RTM gradient is often correctly mapped to a reflector position change,
the algorithm ultimately stalls at a local minima when illumination for a reflector (like the
BOS) is sourced from ray paths that must first travel through another reflector edge of the
same body being updated (like the TOS). Fundamentally, the update gradient is flawed in
terms of directing convergence to the global solution of our objective function. The ‘false’
TOS updates consistently lead us to a local minima instead. This is because the TOS
updates are always much stronger in the residual space, and thus our non-linear line search
for a global scaling parameter will always prefer to correct the TOS, typically with a very
small update step (when the TOS is near the true model). This causes a lack of update for
the base of salt reflector. Figure 5 shows that even after a significant number of iterations,
this approach cannot converge to the true model, and in fact, even becomes worse for some
sections of the boundary.
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Figure 5: Velocity model error for starting model (left), and final model (right) after 200
iterations using general algorithm. [CR] taylor1/. perfectTOS-long200

Examples: Partitioning approach

Any gradient that updates both the entry and exit reflectors for a given ray path will
eventually meet the limitation described above, because the gradient couples both updates
together. A method to de-couple the entry and exit reflectors is necessary (typically top
and bottom when the acquisition is above the salt, as in most industry seismic) so that
reasonable convergence can still be reached when spurious updating occurs in the upper
reflector due to the mixing of tomography and reflector position.

In order to decompose the φ update gradient into ‘top’ and ‘bottom’ components for
the general case, we use an approach that makes use of straight rays by creating a mapping
of the radial distance from each shot position. We take the gradient of this map in order
to find the x and y gradient components of the radial vector field. We then find the x and
y components of the normal vectors from the salt boundary. By taking the dot product of
these straight ray and boundary normal vector fields, we generate a map that approximates
the straight ray illumination of the body. However, more expensive techniques to produce
ray path maps could be substituted to achieve better ‘illumination’ mapping. We perform
these steps for each shot, and sum the dot-product fields to create a final cumulative map
that is used for weighting on the φ gradient. Once this is done, thresholding is applied so
that negative values in the weighting map are set to zero, while the positive values are set to
1.0. The inverse weighting map can be found by multiplying the original map by −1.0, and
then thresholding as before. Figure 6 gives an example of what this boundary partitioning
looks like.

This ‘splitting’ has the advantage of decomposing the boundary into sections that gen-
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Figure 6: Example of weighting used for the ‘bottom’ φ gradient partition at first iteration
(left), and velocity model that weighting is based on (right). [CR] taylor1/. smooth-split

erally face away from or towards the acquisition line. Further partitioning of the boundary
update can be done by setting thresholding to selectively partition the facing, steep, and
shadowed reflecting edges.

Examples

Isolating from the effects that tomography updating might have, we perform an experiment
where the algorithm does no tomography updating, and begins with a perfect background
velocity model. Figure 7 shows that the difference between the two approaches is clear.
After 25 iterations, the partitioning algorithm has already converged on the true model,
while the global gradient approach has trouble, particularly on the base of salt.

We test again with the same salt model, this time beginning with a perturbed back-
ground velocity model. We also have the algorithm perform tomography updates. Figure
8 shows that when we try this approach we get close convergence with the true model on
both the top and base of salt.

We can compare the results of the algorithms shown in Figures 8 and 3 by plotting
the differential error, as shown in Figure 9. From this we observe that while some of the
tomographic updates are less accurate in the partitioning approach, the convergence on the
salt model is significantly improved, especially for the base of salt and salt flanks. This
further demonstrates that this domain decomposition approach can yield more accurate
convergence, even when tomography is also concurrently being updated.

We next try the same comparison of the two algorithms on models with far more complex
salt body geometry. Figure 10 also shows some slight improvements on the bottom of salt
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Figure 7: % velocity error at 25 iterations using domain decomposition algorithm
(left) and general algorithm (right). Perfect background velocity model. [CR]
taylor1/. compare-split-nosplit25

Figure 8: Initial model perturbation (left), and after 100 iterations (right) using split φ

algorithm. [CR] taylor1/. dualNL3



62 Dahlke SEP–158

Figure 9: The differential error between the gradient partitioning approach and the general
algorithms after 100 iterations, as expressed as a percentage error from the true model.
Blue regions (negative differential) indicate areas where the domain partitioning approach
performs better. Red (positive differential) indicates where it performs more poorly. [CR]
taylor1/. method-compare100
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and even some of the tomography updates along the top of salt.

Figure 10: Velocity model difference between general and split φ methods, shown as a
percentage error from the true model. Blue regions are where the domain partitioning
approach performs better; red, more poorly. [CR] taylor1/. potato-vel-diff175

Figure 12 demonstrates improved convergence on the lower flanks of the salt body, as well
as an improvement on the tomography above the TOS. Figure 11 shows that the gradient
partitioning algorithm performs better in the underside areas of the left hand salt body, as
well as on the flanks and underside of the right hand body. While the very bottom of the
right hand side body has not converged as well as the other regions, further partitioning of
the model (into top, sides, bottom) would allow for better updating on this region. A simple
two part split may be insufficient since there are multiple entry/exit points on the ray paths
that illuminate this lowest region of the body, which exasperates the problem of coupling
this reflector with other reflector updates. This example demonstrates the potential of the
domain decomposition algorithm to determine salt boundaries in more realistic models.

CONCLUSIONS

RTM imaging is fundamentally unable to differentiate between reflector position errors
and tomography errors. By splitting the spatial domain of the implicit surface update,
and performing separate non-linear parameter searches for each, we are able to mitigate
occurence of local minima due to stronger TOS updates overwhelming the line search. The
results from using this approach give us much better convergence on the base and flanks of
the salt body. Further partitioning of the domain could improve convergence even more for
complex salt models.
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Figure 11: Velocity model difference between general and split φ methods, shown as a
percentage error from the true model. Blue regions are where the domain partitioning
approach performs better; red, more poorly. [CR] taylor1/. potato2-vel-diff100

Figure 12: Velocity model difference between general and split φ methods, shown as a
percentage error from the true model. Blue regions are where the domain partitioning
approach performs better; red, more poorly. [CR] taylor1/. potato3-vel-diff175
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Addressing the effects of inaccurate top-salt delineation on
subsalt seismic imaging

Guillaume Barnier and Biondo Biondi

ABSTRACT

Imaging in the presence of salt bodies is important for the oil and gas industry but,
it is also very difficult. Current seismic imaging techniques may still fail to capture
the fine-scale details of a rugose boundary between the top of a salt body and its
overlying sediments. This lack of accuracy can have a destructive effect on images of
potentially hydrocarbon-bearing layers located underneath the salt. In this paper, we
give an overview of the main challenges encountered by the oil and gas industry in
terms of subsalt imaging, and we explain the importance of addressing the problem
of top-salt boundary delineation. We conduct synthetic tests, and show that a slight
misinterpretation of a top-salt boundary significantly damages the image quality of
underlying layers. Image gathers may become incoherent and uninterpretable, which
prevents us from using standard migration velocity analysis techniques to improve
imaging. There is a need to develop a technique that enables us to refocus the subsalt
images. We propose an approach for future research.

INTRODUCTION

Oil and gas companies are expanding their search for hydrocarbons into zones with increas-
ing geological complexity, such as sedimentary basins containing allochthonous salt bodies.
Unfortunately, seismic imaging around salt is difficult. One of the main challenges is the
lack of accuracy in the subsurface velocity model. More specifically, a problem that has
recently drawn a great deal of attention is the limitation of currently existing techniques to
accurately delineate the interface between the top of a salt body and its overlying sediments,
and the impact is has on the image-quality of deeper layers (Halpert, 2014; Etgen et al.,
2014a,b; Albertin et al., 2014). Because this interface is usually very rugose and may take
complex geometrical shapes, it is difficult to resolve its very fine-scale features. The velocity
contrast between the salt body and its surrounding sediments is so high that the quality of
the seismic image beneath this interface is highly sensitive to the accuracy of the boundary
location. Even a slight error in the interpreted location of this interface can have a dispro-
portionate impact on the calculations of wave propagation beneath the interface, and lead
to significant degradation of the resulting image (Halpert, 2014). In the first part of this
paper, we explain why salt basins are relevant and attractive in hydrocarbon exploration,
we describe where the main challenges lie, and we discuss the importance of getting more
accurate and well-focused subsalt images. In the second part, we analyze into more detail
the difficulty in precisely delineating the top-salt boundary, and we explain why present
techniques may fail to do so. In the third and fourth part, we present synthetic examples
that illustrate the effects of inaccurate top-salt delineation on the image-quality of subsalt
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layers, and the need for a new algorithm to address this issue. In the last part, we discuss
the possible approaches we intend to take to solve this problem.

SALT BASINS IN HYDROCARBON EXPLORATION

Salt basins are attractive zones for oil and gas exploration, and remain among the best
places to find hydrocarbon reserves worldwide. The best-known salt basins are located in
the Gulf of Mexico, the Persian Gulf, the North Sea, the West African margin, and the
Brazilian margin. However salt basins, especially tertiary basins with allochthonous salts,
are difficult places to explore because of poor subsurface images obtained around and below
salt (Leveille et al., 2011). In this section, we propose a literature review of the main
geological and geophysical properties of salt basins, and we summarize the challenges the
industry currently faces when imaging in the presence of salt bodies.

Geological properties of salt bodies

Salt is an evaporite, and salt beds are formed by the natural evaporation of the sea water
from an enclosed basin. The precipitated salt layer is then buried by successive layers of
sediments over geologic time until segments of it begin to flow upward toward the surface of
the Earth, thereby creating a salt dome (DNR, 2015). A salt dome is a mound or column
of halite that has been pushed upward from below through the surrounding rocks and
sediments into its present position. Rock salt (i.e., halite) has two properties that enable it
to form salt domes.

• When it is buried to depths greater than a few 100 meters, salt will have a density of
approximately 2.16 g/cm3, which is much lower than most other sedimentary rocks
(e.g., shales, limestones, etc.). These sedimentary rocks tend to have lower densities
when they are deposited because they contain a lot of water. As the depth of burial
increases, the density of salt remains about the same, but the mass density of shales
and limestones increases as the water is squeezed from their pore space. Eventually,
their mass density might reach values ranging from 2.4 g/cm3 to 2.7 g/cm3, which is
much higher than the salt’s mass density (King, 2015).

• Salt also has the ability to deform and flow like a high-viscosity fluid when it is under
pressure.

The overlying sediments tend to exert a compressive, downward force; and if the rock
sequence is also subjected to tectonic forces, salt may begin to flow upward like a plastic
substance. A small fracture in the overlying, higher-density sediments can trigger the
upward movement. While compression forces will produce folding, and salt domes might
erupt through the crest of anticlines (Figure 1); extension forces will produce thinning and
normal faulting, which might create weaknesses that the salt might exploit (Figure 2)(Hudec
and Jackson, 2007).

Once this upward salt movement begins, salt from elsewhere in the salt bed moves into
the region surrounding the salt plug to replace the salt that is flowing upward. The upward
movement of the salt plug (or salt dome) continues as long as there is a sufficient source of
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Figure 1: Example of a salt dome formation (diapir piercement) generated by compressional
forces (regional shortening). This example assumes a pre-existing salt diapir, which is the
most common scenario for piercement during shortening. Diapirs do not always progress
through all these stages; whether or not they do depends on the magnitude of the shortening
and the roof thickness above the diapir. (a) Arching of the diapir roof produces outer-arc
extension, thinning, and weakening the roof. (b) The combination of a weakened roof and
salt pressurized by lateral squeezing initiates the upward salt flow. Salt breaks through
the thinned crest of the anticline, and the roof flaps on either side rotate away from the
emerged diapir. (c) Rapid extrusion; salt displaced from the squeezed feeder flows out over
the surface to form a salt glacier. Figures and captions from Hudec and Jackson (2007).
[NR] guillaume/. saltdomecompressionforces1
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Figure 2: Example of a salt dome formation (diapir piercement) during regional extension.
Diapirs do not necessarily progress through all these stages. The maturity of a given
structure depends on the availability of salt, total amount of extension, and relative rates of
extension and sedimentation. Figures and captions from Hudec and Jackson (2007). [NR]
guillaume/. saltdomeextensionforces1
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salt feeding the dome or until the upward movement is halted by a more rigid formation
(Figure 3). Once equilibrium is reached, upward movement of the salt dome ceases, but
may begin again if sufficient sediments are added to the weight of the overburden which
again increases the load pressure on the parent salt mass (King, 2015).

Figure 3: Schematic of the upward movement of the salt creating a salt dome. A salt dome
is a type of structural dome formed when a thick bed of evaporite minerals (mainly salt or
halite) intrudes vertically into surrounding rock strata, forming a diapir (defined as a mass
of salt that has flowed ductilely and appears to have pierced or intruded the overburden).
Figure and captions from King (2015). [NR] guillaume/. saltdomegeologydotcom

Salt bodies play an important role in the entrapment of oil and gas. First, their cap
rock can serve as an oil or gas natural reservoir. Moreover, when salt flows toward the
surface, the rocks that it penetrates are arched upwards along the sides of the dome, and
faults might be created. This deformation may allow oil and gas to migrate towards the salt
dome where it can accumulate in a structural trap, because salt also acts as a seal to fluid
migration (Figures 3 and 4). Until relatively recently, energy companies did not search for
prospects underneath salt bodies because of poor-quality subsalt seismic data, and because
they believed that reservoir-quality rock or hydrocarbons did not exist below salt layers.
Advances in seismic processing, imaging, and compelling drilling results from exploration
wells encouraged companies to generate and drill prospects below salt layers, salt sheets,
and other previously disregarded potential traps (Schlumberger, 2015). Therefore, a single
salt body/dome can have many associated reservoirs at a variety of depths and locations in
its vicinity.
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Figure 4: Salt dome, illustrating how the rising salt causes the surrounding sedimentary
layers to be arched up, forming areas in which hydrocarbons might accumulate. Figure and
captions from Levin (2009). [NR] guillaume/. saltdome2
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Though potentially very rewarding, drilling through salt can be challenging, costly, and
risky. Drillers have to address factors that cause openhole instability and accompanying
problems, including borehole walls weakened by incompatible muds, restrictions and an
undergauge hole caused by salt creep; or an enlargement caused by dissolution. Moreover,
the actual salt rock is weak and undergoes continuous deformation. During the life of a
well, salt movement can displace wellbore tubulars, possibly causing failure or restricted
access (Farmer et al., 1996). Therefore, obtaining well-focused images of subsalt potential
reservoirs is extremely important for risk assessment, as well as for the decision-making
process.

Geophysical properties of salt bodies

Leveille et al. (2011) provide a description of a typical geophysical setup that one should
expect when exploring a zone containing salt bodies. The salt dome is usually a thick
salt sheet (1 to 5 km), with a very rugose top and a relatively smooth base with potential
sharp discontinuities coming either from the suturing of two or more salt bodies or from
normal faulting. The sediments at the top of the salt sheet are much younger than the salt,
while the deeper (i.e., subsalt sediments) can be of any age. The flank of the salt dome
is usually very steep (Figures 4 and 5). Pure salt P-wave velocity is typically 4,500 m/s,
with a Vp/Vs ratio of 1.9, and a mass density of 2.16 g/cm3. Salt is extremely light and
very fast acoustically. For comparison, a shale with the same P-wave velocity would have
a mass density of approximately 2.65 g/cm3. Near the top of the salt, one should expect
younger sediments; with P-wave velocities of approximately 2,000 m/s near the sea floor,
and possibly up to 3,000 m/s near the top of the salt. Near the base of the salt, the range
is from 3,000 m/s to as high as 4,000 to 4,500 m/s. Moreover, it is common to have highly
overpressured sediments near the base of the salt, which can have velocities even lower than
3,000 m/s.

Challenges of seismic imaging in the vicinity of salt bodies

From available literature, we identified six major reasons why seismic imaging in the pres-
ence of salt bodies is a challenge (Leveille et al. (2011); Ritter et al. (2010); Jones and
Davison (2014)).

1. The main physical problem with the presence of thick allochthonous salt sheets sur-
rounded by acoustic softer sediments is an illumination issue related to the geometry
of the sediment-salt interface. Because of the strong acoustic impedance and velocity
contrast between the sediments and the salt, the critical angles between sediments and
salt are greatly decreased (approximately 20 to 30 degrees when the top-salt is near the
seafloor). Therefore, the energy from a shot is rapidly defocused as it passes through
the salt and travels down the base. Only a fraction of the incident energy arrives at
a subsalt reflector. Moreover, the subsalt energy that is reflected becomes subject to
another critical effect barrier (i.e., the critical angle between subsalt sediments and
salt) on its way upward, which can sometimes make certain reflector geometries im-
possible to image from various directions (such as a reflector dipping at the critical
angle relative to the salt base). Variability in the salt-interface geometry, especially
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Figure 5: Interpreted seismic section of a salt body beneath the Continental Slope off
Louisiana. This figure shows the evolving salt structure. Figure and captions from Dribus
et al. (2008). [NR] guillaume/. saltseismic
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rapid variability, causes defocusing of the raypaths, thereby producing holes in the
illumination pattern subsalt. These holes are dependent on the local geometry of the
salt surface, and therefore can vary rapidly with the azimuths of the raypaths (this
effect has been used to attempt to fill in the illumination holes by finding potential
azimuths where the holes do not exist). It is often stated that the salt acts as a partial
“mirror,” which is commonly misinterpreted to mean that the salt causes the energy
losses simply by reflection/transmission losses, but it is not the case (Leveille et al.,
2011).

2. The interpretation and the adjusting of fine-scale details around the salt boundaries
can be very challenging and tedious. A small error in the positioning of this interface
the can have severe consequences and distort the image-quality of underlying subsur-
face features. This issue is the main focus of our future research and we discuss it into
more detail in the next section.

3. Subsalt reflectors are in general very weak reflectors, with reflection coefficients in the
5% range; at least for a large portion of the subsalt projects in the Gulf of Mexico
(Leveille et al., 2011).

4. On top of having a strong acoustic impedance contrast with its surrounding sediments,
salt bodies and diapirs may also have very complex geometrical shapes (e.g., steeply
dipping and overturned flanks), which makes the travelpaths of seismic waves in the
vicinity of salt bodies very complicated to model and to interpret. Therefore, it
requires the use of costly imaging algorithms (e.g., two-way wave-equation engines
that can model double bounces and turning wave reflections).

5. When a salt body moves, the presence of dirty salts can entrain sediments with it.
These sediments can get trapped between two colliding salt sheets (referred to as
“sutures”). There can be several sutures within what looks like a large continuous salt
body. The result is that allochthonous salt sheets can vary in composition, from more
or less pure salt (referred to as “dirty salt”) containing trapped sediments, usually
shale material. The composition and the seismic velocity of the material trapped in
the sutures can vary widely, which makes it challenging to model accurately.

6. Lack of anisotropy representation and parametrization within a salt body: most of the
time, there is not sufficient information to describe the anisotropic behavior inside salt
bodies. But, all deformed salt bodies contain interbeds of different compositions and
mineral grains, which are elongated in the salt flow direction (Hudec and Jackson,
2007). The direction is roughly vertical in salt diapirs, and parallel to strata in
autochthonous layers (salt bed or layer located in the emplacement where it was
originally deposited). An ultrasonic P-wave velocity anisotropy (wavelength less than
1 mm) has already been measured at up to 7% faster in the flow direction (Jones and
Davison, 2014). However, to date, there has been little attempt to incorporate salt
anisotropy into velocity model building.

CHALLENGES SPECIFIC TO TOP-SALT DELINEATION

Even with today’s best seismic imaging algorithms, such as migration velocity analysis
(MVA), full-waveform inversion (FWI), and tomographic full-waveform inversion (TFWI),
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the very rugose geometry of the sediment-salt interface is difficult to model and delineate
accurately to the scale needed to obtain high-quality images of subsalt reflectors. We analyze
in this section why current algorithms may still fail to provide a high-resolution image of
the boundary. From available literature, we identified four challenges that could explain
the limitations of our current algorithms.

Complex transition zone

The transition between younger overlying sediments and the rock salt is rarely as clean
as we may think. During the formation of salt domes or salt bodies, large blocks of sed-
iments (referred to as “rafts” or “carapaces”) can ride on top of the moving salt. These
carapaces, usually shales or carbonates, can sit on the salt and be interposed between the
younger overlying sediments and the top-salt. They are made of older sediments that have
a very high density, velocity, and velocity range (more than 4,500 m/s). This wide veloc-
ity range is primarily influenced by other post-depositional, diagenetic processes, and not
just by pure compaction at increasing burial (Anselmetti and Eberli, 1993; Leveille et al.,
2011). Carbonate carapace layers are usually not very thick (up to several hundreds of
meters (Leveille et al., 2011)), and are very common in the Gulf of Mexico. They generally
have a velocity relatively close to salt, which means that they can negate the impedance
contrast that usually marks the sediment-salt boundary (Ritter et al., 2010). In fact, the
expected impedance contrast is often seen somewhere within the carapace and may lead
to misinterpretation of the top-salt. An incorrect interpretation may create a distortion
in the subsalt events caused by the misplacement of the top of salt and too slow overlying
sediment velocities (Ritter et al., 2010). In some cases, it is also possible to have a reflection
from the carapace-salt interface generated by a pure density contrast. Because most of the
current seismic imaging algorithms assume a constant density Earth, they would not be
able to accurately model these reflections.

Figure 6 shows a set of three well logs from two different wells drilled into the same
salt body in the Gulf of Mexico (the red and green logs come from the same well). On the
blue log (sonic P-wave velocity), a clear interface is visible at a relative depth of 300 m, but
we can also identify an intermediate zone, which can be interpreted as a carapace, with a
thickness of approximately 150 m interposed between the bottom of the sediments, and the
top of the salt. This log illustrates the issue stemming from the existence of a transition zone
between the young uncompacted sediments and the salt rock. In this case, an interpreter
could identify the interface between the sediments and the carapace as the top-salt, and
assign an inappropriate (too-low) velocity value to the few 100 meters of the carapace layer.
The base salt interface, however, appears a lot cleaner. As expected, the subsalt sediments
have a lower P-wave velocity (red curve) than the actual salt, but are denser (green curve).
It is also important to notice that the salt sonic P-wave velocity appears to be higher in
average on the red curve, which may indicate some compaction effect within the salt body.

Another potential difficulty can arise from the fact that many buried salt diapirs have
a cap rock. It is a carapace of anhydrite, gypsum, and limestone (in ascending order)
immediately above the salt rock of a salt dome (Figures 7(a) and (b)). The average cap
rock is between 100 m to 150 m thick, but can be as thick as 300 m. It is a secondary
product created as the salt dome ascends through the overlying materials. The top of the
dome dissolves as it rises through the sediments and the material constituents of the salt
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carapace layer 

Figure 6: Well logs from one salt body in the Gulf of Mexico. The blue curve shows the sonic
log for the P-wave velocity above and below the top-salt interface as a function of relative
depth (the top-salt interface has been shifted to a relative depth of 300 m for proprietary
reasons). The red curve shows the sonic log for P-wave velocity above and below the base-
salt interface as a function of relative depth (the base-salt interface has also been shifted to
a relative depth of 300 m). The green curve shows the density log around the base salt as a
function of relative depth, and comes from the same well as the one for the red curve. The
blue log comes from a different well. The wells were drilled from the same platform into
the same salt body, but at different penetration points. Courtesy of Chevron Corporation.
[NR] guillaume/. saltwelllogchevron
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become concentrated at the top of the rising plug becoming three layers. The cap rock of
some salt domes, and sometimes the actual rock salt, is found to overhang, or drape down
the sides of the main salt mass, as shown in Figure 7(c). Salt is soluble and dissolves, but
the cap rock is not very soluble and thereby left more intact. Thus the appearance of the
cap rock overhanging the main salt body is the result of dissolution of the salt body within
the subsurface, but not dissolving the cap rock. The presence of a cap rock may makes the
sediment-salt interface difficult to accurately delineate.

Inaccurate velocity model of the overburden

To correctly image the top-salt, a very precise overburden velocity model is needed. Typi-
cally, a FWI inversion scheme could be used to build such a model. However, if the top-salt
is buried too deeply into the subsurface, or if recorded data lack transmitted or refracted
low-frequency energy, the inversion scheme might fail to deliver an accurate overburden
velocity model down to the top of the salt.

Tortuous top-salt geometrical shapes

Current algorithms may fail to get an ideal image of what the top-salt is because of the
complex geometry of certain salt bodies. Figures 8(a) and (b) show two cross-sections of a
velocity model from the Gulf of Mexico wide-azimuth “E-Octopus” dataset, and illustrate
the type of top-salt shapes encountered in salt basins. The circled zones are challenging to
model accurately, even with a long-offset and wide-azimuth acquisition.

Lack of good-quality high-frequency data

Current algorithms can be limited by the low signal to noise ratio for higher frequencies
contained in the data. This limitation may set an upper bound on the resolution of our
inverted velocity model that may be too low to recover some of the fine-scale features of
the top-salt interface.

EFFECTS OF INACCURATE TOP-SALT DELINEATION ON
WAVEFIELDS

As shown in recent work (Etgen et al., 2014a,b; Albertin et al., 2014), misinterpreting
the top-salt boundary can deteriorate the images of underlying layers. In this section, we
illustrate the effect of a top-salt misinterpretation by looking at the actual wavefields. We
propose two scenarios; one when the true top of the salt body is relatively smooth, and
one when the true top-salt is rugose. We simulate a seismic reflection experiment in which
we place a single source at a depth zs = 0 m, a horizontal position xs = 500 m, and 600
geophones equally spaced along the horizontal axis, at a depth zr = 0 m. The reflector we
try to image is located at a depth zref = 4.7 km. We perform a partial migration using a
single shot, and a two-way wave-equation acoustic and isotropic engine. As we purposely
decrease the accuracy of the top-salt picking, we analyze the change in behavior of the
back-propagated receiver wavefield and the partially migrated images.
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(a) (b)

(c)

Figure 7: Schematic illustration of salt cap rocks. (a) The cap is composed of limestone
located at the top of the dome followed by, in descending order, gypsum, anhydrite, and
finally rock salt. (b) Cap rock has all the characteristics of a petroleum reservoir and often
contains hydrocarbons. But cap rock also contains sulfur (i.e., gyspum) that is present
in the cap rocks of almost all salt domes. The sulfur forms after the limestone is cre-
ated and is derived from the destruction of the anhydrite. (c) The cap rock of some salt
domes is found to overhang or drape down the side of the main salt mass. It is commonly
found to overhang on one or two sides. Figures and captions from DNR (2015). [NR]
guillaume/. saltdomecaprock,caprockcomposition,caprockoverhang
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(a)

(b)

Figure 8: Cross-sections from E-Octopus data set (Gulf of Mexico) displaying the tor-
tuosity of the top of salt bodies. Circled areas may suffer from a lack of illumi-
nation and are challenging to model accurately. Courtesy of WesternGeco. [NR]
guillaume/. eoctopusframe1,eoctopusframe2
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Smooth top-salt

Figures 9(a)-(d) show the true model, true background, inaccurate background (i.e., the
background with a misinterpreted top-salt), and difference between the true and the incor-
rect backgrounds, respectively. Figure 10 (left and right columns) show three snapshots of
the receiver wavefields back-propagated in time, and computed with the two different back-
ground models. The left column shows the wavefield computed with the correct background
model. The receiver wavefield is then cross-correlated in time with the source wavefield to
generate a partially migrated image (Figure 11(a)). The right column of Figure 10 shows
the receiver wavefield computed with the inaccurate background model. The contribution
of this shot to the migrated image is displayed in Figure 11(b). Even though the inaccu-
racy of the top-salt affects the behavior and the shape of the receiver wavefield, it does not
damage it considerably. The partial image in Figure 11(b) is distorted, but it will likely be
possible to improve the fully migrated image (i.e., the image generated with more shots) by
applying a tomographic optimzation scheme (e.g., WEMVA).

Rugose top salt

In this test, the true top-salt boundary is rugose. Figures 12(a)-(d) show the true model,
true background, inaccurate background (i.e., the model with the misinterpreted top-salt),
and difference between the true and the incorrect backgrounds, respectively. Figure 13
(left column) shows three snapshots of the receiver wavefield computed with the correct
background model, while Figure 13 (right column) displays the receiver wavefield computed
with the inaccurate background. We see two major differences from the previous case.
Firstly, we notice that the receiver wavefield has a much more complex shape, especially
at later physical times (Figures 13(a) and (b)), which is because the wavefield that illumi-
nates the reflector propagates twice through the rugose top-salt before it is recorded at the
surface.
Moreover, we can see that in Figures 13(c) and (e) the back-propagated receiver wavefield
computed with the accurate top-salt has been well refocused: its wavefront is much smoother
than it is at later physical times (Figure 13(a)). During the back-propagation of the receiver
wavefield through the rugose top-salt, the fine-scale features of the salt boundary behave as
point scatterers. Because we are using the correct top-salt, they collapse and remove most
of the diffraction artifacts present in the wavefield at later physical times (Figure 13(a)).
The partially migrated image from this shot (Figure14(a)) is accurate. However, in the
case of a misinterpreted top-salt, the receiver wavefield does not refocus properly. The
back-propagation through the inaccurate salt boundary creates even more asynchronized
scattering (Figures 13(d) and (f)). Consequently, the partially migrated image is consider-
ably damaged (Figure14(b)), and the image degradation is much more pronounced than in
the previous example (Figure11(b)).

DEGRADATION OF SUBSALT REFLECTORS IMAGE QUALITY

We conduct three noise-free synthetic tests to illustrate the degradation of subsalt layer
images when using an inaccurate top-salt model to migrate data. Computations are per-
formed using a two-way wave-equation engine. We use a 25 Hz Ricker wavelet for the
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(a) (b)

(c) (d)

Figure 9: Synthetic velocity models, modified from the 2004 EAGE velocity benchmark
study. (a) True velocity model. (b) True background velocity model. (c) Inaccurate back-
ground velocity model. (d) Difference between true background and inaccurate background
velocity models. [ER] guillaume/. bp2Lref,bp2L,bp2Lsmooth,bp2Ldiff
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(a) (b)

(c) (d)

(e) (f)

Figure 10: Snapshots of two receiver wavefields. Left column shows three snapshots of
the receiver wavefield computed with the true background velocity model. Right column
shows three snapshots of the receiver wavefield computed with the inaccurate background
velocity model. Snaphots in first row are computed at t3 = 2.784 s. Snapshots in second
row are computed at t2 = 2.208 s. Snapshots in last row are computed at t1 = 1.536 s. [ER]
guillaume/. bpsimpleframec59,bpsimpleframeb59,bpsimpleframec47,bpsimpleframeb47,bpsimpleframec33,bpsimpleframeb33
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(a) (b)

Figure 11: Partially migrated sections (one shot) using a two-way wave-equation en-
gine. (a) Partial image computed using the true background velocity model. (b)
Partial image computed using the inaccurate background velocity model. [ER]
guillaume/. bpsimpleimxc,bpsimpleimxb

source function. Migrated images are generated with 100 sources located at the surface,
and equally spaced along the horizontal axis. We set geophones at the surface at every grid
point. Images are extended along the horizontal subsurface offset axis, and then converted
to subsurface angle domain by a slant-stack operator.

Single flat layer

We perform two migrations with two different background velocity models. Our goal is to
image the reflector at z = 3, 500 m, and see how its image deteriorates with decreasing
accuracy of the background model. Figure 15(a) shows the true model used to generate
the synthetic data, while Figures 15(b) and (c) show the two different background velocity
models used to image the subsalt reflector. Figure 15(d) shows the difference between
the inaccurate background and the true background velocity model. The results of the
migrated layer are shown in Figure 16(a) and (b). In Figure 16(b), we can see that the
misinterpretation of the top-salt has damaged the image of the layer. The reflector shows
a strong lack of lateral continuity, and its shape is highly distorted. Moreover, the angle
gathers do not provide any coherent moveout information (Figures 17 and 18).

Sinusoidal-shape reflector

A similar experiment as described in the previous section is conducted, but the goal is
to image a reflector with a sinusoidal shape. The velocity models are displayed in Fig-
ure 19. Figure 20 and shows the migrated images generated by an accurate top-salt model
(Figure 20(a)), and an inaccurate top-salt (Figure 20(b)). Though the reflector image is
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(a) (b)

(c) (d)

Figure 12: Synthetic velocity models, modified from the 2004 BP synthetic
model. (a) True velocity model with a rugose top-salt. (b) True back-
ground velocity model. (c) Inaccurate background velocity model. (d) Differ-
ence between true background and inaccurate background velocity models. [ER]
guillaume/. bpsimpleref,bpsimple,bpsimplesmooth,bpsimplediff
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(a) (b)

(c) (d)

(e) (f)

Figure 13: Snapshots of two receiver wavefields. Left column shows three snapshots of
the receiver wavefield computed with the true background velocity model. Right column
shows three snapshots of the receiver wavefield computed with the inaccurate background
velocity model. Snapshots in first row are computed at t3 = 2.832 s. Snapshots in second
row are computed at t2 = 2.256 s. Snpashots in last row is computed at t1 = 1.680 s. [ER]
guillaume/. simpleframec60,simpleframeb60,simpleframec48,simpleframeb48,simpleframec36,simpleframeb36
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(a) (b)

Figure 14: Partially migrated sections (one shot) using a two-way wave-equation engine.
The true velocity model contains a salt body with a rugose top-salt. (a) Partial image
computed using the true background velocity model. (b) Partial image computed using the
inaccurate background velocity model. [ER] guillaume/. simpleimxc,simpleimxb

degraded, it is still interpretable and relatively continuous. However, the angle gathers still
show no coherency (Figures 21 and 22).

Multiple layers

The two previous examples showed image degradations even though the models had quite
simple geometries. In this test, we include two strong reflectors below the base salt (Figure23(a))
to simulate a more complex scenario. Images in Figures 24(a) and Figures 24(b) are com-
puted with the background velocity models displayed in Figure 23(b) and Figure 23(c),
respectively. As expected, we see a degradation of the two subsalt layers, as well as the
angle gathers (Figure 25 and 26) are not coherent.

Conlusions on synthetic tests

We performed synthetic tests to assess how images of subsalt layers are damaged with inac-
curate top-salt delineation. By looking at the actual wavefields, we showed that the lack of
accuracy in the top-salt boundary does not enable the receiver wavefield to refocus correctly
below the salt, which will in turn deteriorate the migrated image. Adding the contributions
from all shots will not stack constructively and the resulting image will show very little
coherency. This was confirmed by the second set of tests we performed. The images of
subsalt layers are extremely sensitive to the accuracy of the salt boundary. Moreover, as
mentioned by Etgen et al. (2014b), it is difficult to extract any useful information from
extended images because the gathers show no coherency.
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(a) (b)

(c) (d)

Figure 15: Velocity models modified from the the 2004 EAGE velocity benchmark study.
(a) True velocity model. (b) True background velocity model. (c) Inaccurate background
velocity model. (d) Difference between true and inaccurate background velocity models.
[ER] guillaume/. bpr,bpt,bps,bpsdiff
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(a)

(b)

Figure 16: Migrated images of the subsalt reflector shown in Figure 15(a) using a
two-way wave-equation engine. (a) Migrated layer using the true background veloc-
ity model. (b) Migrated layer using the inaccurate background velocity model. [ER]
guillaume/. rimxcorrect,rimx
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Figure 17: Three pairs of angle domain common image gathers (ADCIG). For each pair,
the first image shows the gather computed from the accurate image (Figure 16(a)), and
the second image shows the gather computed from the distorted image (Figure 16(b)).
The gathers are computed at x1 = 7, 617.5 m, x2 = 9, 177.5 m, and x3 = 10, 377.5 m,
respectively. [ER] guillaume/. rimagather1
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Figure 18: Three pairs of angle domain common image gathers. For each pair, the first
image shows the gather computed from the accurate image (Figure 16(a)), and the second
image shows the gather computed from the distorted image (Figure 16(b)). The gathers
are computed at x4 = 11, 352.5 m, x5 = 12, 267.5 m, and x6 = 13, 137.5 m, respectively.
[ER] guillaume/. rimagather2
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(a) (b)

(c) (d)

Figure 19: Velocity models modified from the 2004 EAGE velocity benchmark study. (a)
True velocity model with a sinusoidal-shape reflector. (b) True background velocity model.
(c) Inaccurate background velocity model. (d) Difference between true and inaccurate back-
ground velocity models. [ER] guillaume/. bprsinh,bptsinh,bptsinsmoothfullh2,bptsindiffh
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(a)

(b)

Figure 20: Migrated images. (a) Image computed with the correct background veloc-
ity model. (b) Image computed with the inaccurate background velocity model. [ER]
guillaume/. bpsinimxc25,bpsinimxbf252
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Figure 21: Three pairs of angle domain common image gathers. For each pair, the first image
shows the gather computed from the image in Figure 20(a), and the second image shows the
gather computed from the image in Figure 20(b). The gathers are computed at x1 = 920
m, x2 = 1, 196 m, and x3 = 2, 760 m, respectively. [ER] guillaume/. bpsinagather1
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Figure 22: Three pairs of angle domain common image gathers. For each pair, the first image
shows the gather computed from the image in Figure 20(a), and the second image shows the
gather computed from the image in Figure 20(b). The gathers are computed at x4 = 3, 730
m, x5 = 4, 020 m, and x6 = 4, 600 m, respectively. [ER] guillaume/. bpsinagather2
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(a) (b)

(c) (d)

Figure 23: Velocity models modified from the 2004 EAGE velocity benchmark study. (a)
True velocity model with two subsalt reflectors. (b) True background velocity model. (c) In-
accurate background velocity model. (d) Difference between true and inaccurate background
velocity models. [ER] guillaume/. bprhflat3,bpthflat3,bpthsmoothflat3,bpthflat3diff
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(a)

(b)

Figure 24: Migrated images of the velocity model in Figure23(a). (a) Image computed with
the correct background velocity model. (b) Image computed with the inaccurate background
velocity model. [ER] guillaume/. fbpsinimxc25,fbpsinimxb25
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Figure 25: Three pairs of angle domain common image gathers. For each pair, the first image
shows the gather computed from the image in Figure 24(a), and the second image shows the
gather computed from the image in Figure 24(b). The gathers are computed at x1 = 1, 730
m, x2 = 2, 580 m, and x3 = 3, 680 m, respectively. [ER] guillaume/. fbpsinagather1
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Figure 26: Three pairs of angle domain common image gathers. For each pair, the first image
shows the gather computed from the image in Figure 24(a), and the second image shows the
gather computed from the image in Figure 24(b). The gathers are computed at x4 = 5, 980
m, x4 = 6, 6670 m, and x5 = 7, 550 m, respectively. [ER] guillaume/. fbpsinagather2
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CONCLUSIONS AND FUTURE WORK

We discussed why obtaining good-quality seismic images of zones that lie in the vicinity of
salt bodies is becoming more and more crucial for the oil and gas industry. We summarized
the main difficulties in doing so, and we chose to focus our research on the specific problem
related to inaccurate top-salt boundary delineation. We argued that current techniques
may still have trouble recovering a rugose sediment-salt interface with enough detail. The
synthetic tests we performed confirmed that a slight misinterpretation of the top-salt de-
teriorates the images of subsalt reflectors to the point where almost no coherent energy is
present, even by looking at angle domain common image gathers. This prevents us from
successfully applying standard migration velocity analysis techniques. Therefore, there is a
need for a new technique that can enable us to directly refocus subsalt images, or at least
improve their coherency along an extended axis (e.g., time-lags, subsurface offsets, angle,
etc.).

Moving forward, we would like to design an inversion scheme that allows us to bring back
coherency along the extended axis of subsalt images, which would then allow us to success-
fully apply standard migration velocity analysis algorithms (e.g., TFWI). Considering our
goal, we believe that an optimization scheme using an image-space objective function (e.g.,
WEMVA) could be appropriate. However, it can not rely on the presence of interpretable
moveout in the extended image domain. A stack power maximization (SPM) scheme looks
to offer the most potential. Though this implementation is prone to cycle-skipping, we
could potentially circumvent this issue by taking a similar approach as the one done in
Biondi and Almomin (2014), and introduce a linearization of the wave-equation based on
the extension of the velocity model along the time-lag or subsurface offset axis.
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Inverse demigration for simultaneous source separation

Chris Leader and Biondo Biondi

ABSTRACT

Separating simultaneously acquired seismic data is the link between more efficient ac-
quisition and conventional imaging techniques. Existing methods for separation rely
on coherency measurements and work only for randomly delayed sources. By using
the extended image space, data blended with a variety of time delay sequences can be
well separated. Demigration will then output the separated, conventionally equivalent,
dataset. A single pass of demigration can adequately recreate kinematic information.
For amplitude balancing, however, an inverse process is required. By introducing a
blending operator into a linearised inverse system posed in the extended image space,
accurate data separation is observed for a variety of blending schemes, without the
need for an accurate velocity model. Furthermore, such a system can be easily adapted
to include velocity model updates, since extended imaging has already been applied.

INTRODUCTION

Contemporary seismic targets are increasingly associated with steeply dipping structures
and strong velocity contrasts. In order to illuminate these difficult features, data are ac-
quired with large offsets and multiple source boats (Verwest and Lin, 2007). Intuitively, this
leads to both more expensive acquisition and an increase in field waiting time. This latter
adverse consequence is due to the fact that it is necessary to allow the energy from the pre-
vious source to sufficiently dissipate before recording the next source point. If waiting time
was not a restriction then denser sampling could be recorded per unit time and acquisition
would be significantly more efficient (Beasley (2008); Hampson et al. (2008); Berkhout and
Blacquiere (2008)). Practically, it is possible to disregard this waiting time and fire the
next shot when in position; this is often called continuous recording. Recording overlapping
data in this manner requires more processing time than conventionally acquired data, since
separation is necessary to mitigate imaging artifacts. However, the economic gains from
reduced acquisition time far outweigh this extra processing cost.

These simultaneously acquired data can be used to directly invert for model properties
(Dai and Schuster (2009); Tang and Biondi (2009)). However, such methods require exact
knowledge of the velocity model. Separation and subsequent imaging is a viable option,
since this could be integrated into production data flows. Successful existing methods rely
on random sampling in the source timings and locations (Abma and Yan (2009); Moore
et al. (2008)). For example, constant receiver gathers can be transformed into the f-k or
tau-p domain and iteratively thresholded (Doulgeris et al., 2011), removed in the parabolic
random domain (Ayeni et al., 2011), removed by using a convex projection approach (Abma
et al., 2010), or through compressive sensing methods (Herrmann et al., 2009).

Image domain processing has been used effectively for coherent energy removal / attenu-
tation by posing the problem in the extended image space (Zhang and Duan (2013); Sava

103



104 Leader and Biondi SEP–158

and Guitton (2005)). It is possible to untangle certain events in this domain and recreate
cleaner shot gathers by virtue of higher signal-to-noise ratio and reduced dimensionality.
Additionally, when using the extended image space (Sava and Vasconcelos, 2011), event
kinematics are preserved. Consequently, if the velocity model is inaccurate then demigra-
tion is still possible (Chauris and Benjemaa, 2010).

In the previous SEP report (Leader and Biondi, 2014), methods of distinguishing events
in the angle domain were analysed, with the goal of using curvature-based penalties during
demigration. Whilst this method worked very well for simple scattering models, for highly
heterogeneous structures the ranges of curvature necessary for demigration were too high.
Additionally, describing the curvature using a single parameter became less possible. In
this study a mass inverse demigration scheme will be postulated. By introducing a blending
operator and posing the problem as a linearised inversion, accurate separation (in terms of
both amplitudes and kinematics) is observed after a small number of iterations.

A range of model complexities and velocity inaccuracies will be analysed to test the
strength of this methodology. Additionally, three blending strategies will also be tested -
constant time delays, pseudo-constant time delays and purely random time delays.

DEMIGRATION

To accurately recreate all wavefield complexities, Reverse Time Migration (RTM) (Baysal
et al., 1983) is the choice of imaging operator. RTM uses solutions to the full two-way wave
equation (within physical assumptions), making it a valuable option for highly heteroge-
neous Earth models. Furthermore, RTM is the adjoint of Born modeling, and it is possible
to move between the data and image spaces by combining these operators. For zero-offset
imaging, these are summarised in equation 1 and equation 2. Examples of a Born modelled
shot gather and an RTM image are shown in Figure 1 and Figure 2 respectively.

m(x) =
∑
xs,ω

f(ω)G0(x,xs, ω)
∑
xr

G0(x,xr, ω)d∗(xr,xs, ω), (1)

d(xr,xs, ω) = ω2
∑
x

f(ω)G0(x,xs, ω)m(x)
∑
x

G0(x,xr, ω). (2)

here x represents the spatial coordinates, m(x) the scattering field, xs the current source
coordinates, xr the current receiver coordinates, ω the temporal frequency, d∗(xr,xs, ω) the
complex conjugate of the data and G0 the relevant Green’s function. The aforementioned
zero-offset image (Claerbout, 1971) is calculated here. For an accurate velocity model this
will contain all necessary amplitude and kinematic information for demigration and hence
data recovery.

However, for the problem of separating continuously acquired data a stringent require-
ment on the velocity model is undesirable. Direct application of equation 1 with an incorrect
velocity model will result in the loss of certain events, and subsequent demigration will not
represent the original dataset well. To preserve all event kinematics, extended imaging must
be used. If zero-offset imaging can be described by equation 3, then extended imaging can
be described by equation 4.
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Figure 1: An example of a 3D shot gather produced from Born modeling. [NR]
chris1/. seamdata3d

Figure 2: An example image produced from RTM over the SEAM velocity model, in 3D.
[NR] chris1/. seamimg
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I(x, y, z) =
nshots∑

i

∑
t

Ps(x, y, z, t; si)Pr(x, y, z, t; si), (3)

I(x, y, z, xh, yh) =
nshots∑

i

∑
t

Ps(x + xh, y + yh, z, t; si) ∗ (4)

Pr(x− xh, y − yh, z, t; si).

Figure 3: An extended image produced using an accurate velocity model. [CR]
chris1/. extsimpimgcv

Here, I(x, y, z) is the image in space, Ps is the source wavefield and Pr is the receiver
wavefield; si represents the current shot of interest. If lag coordinates (known as subsurface
offsets) in x and y are introduced (xh and yh), a 5D image can be created. It is possible to
have lags in both t and z to create a 7D image, or any combination thereof. From hereon
this discussion will be limited to subsurface offsets in the x direction only.

If the correct velocity model were used for imaging then the energy will be focused to
a point in subsurface offset, as seen in Figure 3. If an incorrect model were used then the
energy will be spread out over a range of offsets (Figure 4). Analysing this moveout as
a function of the velocity model is the core concept of Wave Equation Migration Velocity
Analysis (WEMVA) (Sava et al., 2003).

To create Figure 2, equation 3 was used, and for Figure 3, equation 4 was used. By
taking the adjoint of these processes and creating an extended Born modeling operator,
demigration can be performed. The result from demigrating Figure 3 from the extended
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Figure 4: An extended image produced using an inaccurate velocity model. [CR]
chris1/. extsimpimgincv

Figure 5: Adjoint demigration using the correct velocity model, in both directions. [CR]
chris1/. simpdemcv
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Figure 6: Adjoint demigration using an incorrect velocity model, in both directions. [CR]
chris1/. simpdemincv

image domain to the data space is shown in Figure 5. Similarly, the result from demigrating
Figure 4 is shown in Figure 6.

It is apparent that both passes of demigration have successfully recreated many of the
data nuances - event kinematics are correctly positioned and all identifiable events in the
input data are present in the demigrated data. However, frequency content has not been well
preserved and event amplitudes at early times and short offsets are under represented. These
imperfections are more pronounced when using the incorrect velocity model. Additionally,
this result is more artifact laden. This is a consequence of performing extended Born
modeling, where the image convolution is shifted over a range of offsets.

INVERSE DEMIGRATION

To recover the correct amplitudes, adapting demigration to become an inverse process is
necessary. In conventional Least-Squares RTM (LSRTM), RTM is used as the adjoint pro-
cedure, and Born modeling as the forward operator. A solver, such as conjugate directions,
can then be used for model and residual updates. For inverse demigration almost exactly
the same procedure can be used, but with the forward and adjoint operators swapped. The
input will now be the extended image and the procedure will aim to recover the dataset
that best represents the given image.

Figure 7 and Figure 8 show the same recovered data as Figure 5 and Figure 6 respectively,
after ten iterations of inverse demigration. Amplitudes are now consistently balanced and
match the input data Furthermore, the vast majority of the artifacts from the incorrect
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Figure 7: Inverse demigration, after ten iterations, using the correct velocity model. [CR]
chris1/. simpinvdemcv

Figure 8: Inverse demigration, after ten iterations, using an incorrect velocity model. [CR]
chris1/. simpinvdemincv
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velocity result are mitigated. The data-space residual, as a function of iteration number,
can be seen in Figure 9.
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Figure 9: Data-space residual as a function of iteration number, for both correct and incor-
rect velocity model inverse demigration. [NR] chris1/. simpinvconv

SIMULTANEOUS SHOT SEPARATION

Now that inverse demigration has been demonstrated to accurately recover input reflection
data, the system can be adapted to provide shot separation. The input data will be the
overlapping, simultaneously recorded dataset, so an additional operator must be included
to account for the blending. This operator, Γ, will be referred to as the ‘blending’ operator,
for obvious reasons. The forward process of Γ will take a conventional dataset, then delay
and sum the shots together to produce a continuous record. The adjoint process will take
a continuous record and window the shots (according to an input recording length and
sequence of shot delays) and output a discrete dataset. Thus the forward blending operator
requires three inputs - the data, the desired recording length, and a record of shot delays.
If the blended data is db, and the conventional / separated data is ds, then the system can
be described in equation 5.

db = Γds (5)

J(ds) = ‖L′ds −m‖ (6)
J(ds) = ‖L′ds − L′Γ′db‖ (7)

The objective functions for conventional and blended demigration are shown in equa-
tion 6. This operator Γ is necessary to calculate the data-space residual (actually the
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model-space residual, in this case), since a recomputed blended dataset must be used for
comparison. For shot separation, the output data will be the recovered data produced after
demigration, before it is reblended for comparison.

Figure 10: Data acquired over the Marmousi model. [CR] chris1/. marmdata

Three styles of data blending are studied, all with an Ocean Bottom Node (OBN) style
geometry. These are: purely random time delays, constant (or linear) time delays, and
pseudo-linear delays. These delays are linear in both time and space. For the last style,
delays are roughly constant, with a 5% jitter added to the source timings. Example datasets
for these three encoding functions are shown in Figure 11, Figure 12 and Figure 13, with
the conventional data shown in Figure 10. For these upcoming examples 2D data were used
with a fixed receiver geometry. This means the right-hand panel in these figures represents
a constant receiver gather, whereas the left panel represents a constant source gather.

For the randomly delayed sequence, all secondary/overlapping energy is incoherent in
the receiver domain. This is exploited by all of the aforementioned data-space inversion
methods. For the pseudo-linear case, some coherency is induced in these receiver gathers,
but the randomness is sufficient such that this may stack out. For the linear case there is
no difference in coherency between these domains, so these data-space methods will all fail.

Correct velocity model solution

Figure 14, Figure 15 and Figure 16 show the extended images produced from these three
datasets using the correct velocity. The differences in blending are manifested in the image
space, although the coherency differences are not as pronounced as intuition may suggest.
Even the linearly blended data becomes well dispersed in the image space. The artifacts are
more coherent, but the focusing characteristics of the primary events, and the differences
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Figure 11: Data acquired over the Marmousi model using a random delay function. [CR]
chris1/. marmrndblnd

Figure 12: Data acquired over the Marmousi model using a linear delay function. [CR]
chris1/. marmlinblnd
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Figure 13: Data acquired over the Marmousi model using a pseudo-linear delay function.
[CR] chris1/. marmplinblnd

Figure 14: The extended image from migrating Figure 11 (data acquired using a random
blending function) [CR] chris1/. marmrndblndim
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Figure 15: The extended image from migrating Figure 12 (data acquired using constant
time delays). [CR] chris1/. marmlinblndim

Figure 16: The extended image from migrating Figure 13 (data acquired using pseudo-linear
delays). [CR] chris1/. marmplinblndim
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in contrast, suggest that separation could be possible.

Figure 17: The output dataset after applying adjoint demigration to Figure 14, which was
the image created from a randomly delayed dataset. [CR] chris1/. marmrndblndidem

The recovered datasets after adjoint separation can be seen in Figure 17, Figure 18
and Figure 19. Each of the blending schemes have been well separated and the resultant
datasets could be used for conventional velocity estimation and imaging. Again, amplitudes
at early times and shot offsets are weaker than in reality. This can be improved upon by
using the inverse scheme.

It should be noted that there are some fractionally more coherent artifacts in the recov-
ered data from the linear encoding. Nonetheless this methodology separated these linearly
delayed data surprisingly easily.

Incorrect velocity model

Separation with an accurate velocity model is a relatively trivial problem. If simultaneous
surveys are to be used for exploration then a processing scheme that does not assume strong
velocity control is essential. This section will look at these same data, but imaged using a
very inaccurate velocity model. The most informative and realistic scenario is pseudo-linear
blending, so this will be the acquisition focus from hereon.

Figure 21 shows the result from migrating these data, but using a very rough velocity
model. The primary events are now not well focused at zero-subsurface offset, and the
focusing contrasts between primary and secondary events is far less. Energy of interest now
spans many of the acquired subsurface offsets and distinguishing events from primary and
secondary energy is less obvious.
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Figure 18: The output dataset after applying adjoint demigration to Figure 15, which was
the image created from a linearly delayed dataset. [CR] chris1/. marmlinblndidem

Figure 19: The output dataset after applying adjoint demigration to Figure 16,
which was the image created from a pseudo-linearly delayed dataset. [CR]
chris1/. marmplinblndidem
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Figure 20: The velocity models used for inverse demigration, correct and incorrect respec-
tively. [ER] chris1/. marmvels



118 Leader and Biondi SEP–158

Figure 21: The extended image from migrating Figure 13 (data with constant delays) using
a rough velocity model. [CR] chris1/. marmplinblndiminc
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Using data acquired over the Marmousi model gives informative results about the sug-
gested procedure, but to further confidence over this methodology a more difficult example
must be used. A section of the SEAM model was windowed, featuring rugose reflectors,
continuous reflectors and a steep salt body with carbonate top and sedimentary inclusions.
These attributes comprise many of the difficulties of contemporary imaging targets. If this
separation method can perform well over these data then much stronger conclusions can be
made.

SEAM data

Figure 22: The velocity model windowed from the SEAM model, used for a more realistic
separation test. [ER] chris1/. seamvel

Data were simulated over the velocity model shown in Figure 22. For this section only a
pseudo-linear scheme will be studied, as this is the most realistic encoding that is recorded
in the field. One hundred shots were simulated and then combined using a scheme with
a blending power of three (similar to three source boats) with constant delays and a 5%
timing randomness induced. These data are shown in Figure 24, while the output data after
10 iterations are shown in Figure 25.

These results demonstrate that for a complex model with a variety of impedance con-
trasts, the separation procedure performs very well. The convergence curve in Figure 26
demonstrates how accurately these data are simulated as a function of iteration number.

AUGMENTATION WITH WEMVA

Extended LSRTM is a very expensive process, and for many geometries and encoding func-
tions this will be more expensive than many of the existing data-space methods. However,
there are three circumstances where the suggested inverse demigration process can outper-
form these algorithms.
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Figure 23: A conventional dataset acquired using the section of the SEAM model. [CR]
chris1/. seamdata

The most successful of the data-space methods requires hundreds of 5D FFTs to be
performed, so for geometries with sparse, large offsets, this will be a tough undertaking.
Furthermore, this method entirely fails with constant time delays, and can induce large
artifacts if there is any underlying predictability in the encoding sequence. So, under these
two situations it is likely that extended inverse demigration will outperform a Projection
Onto Convez Sets (POCS) type approach.

Thirdly, since extended imaging and modeling are applied, other approaches can take
advantage of these spaces. Wave-Equation Migration Velocity Analysis (WEMVA) (Sava
et al., 2003) relies on measuring these primary moveouts and using this back-projected
information to update the velocity model. With this in mind, image-space shot separation
could be easily augmented with WEMVA, where separation is the outer-loop and WEMVA
the inner-loop process. This will also provide a positive feedback loop - the more accurate
the velocity model has become, the better the separation results are, and fewer subsurface
offsets must be collected.

The fact that this separation can be combined with WEMVA makes a powerful argument
for the use of such an expensive scheme.

CONCLUSIONS

It is possible to accurately recover input seismic data from the image domain by adapting
LSRTM. By using the extended image space, even if imaging was applied using an incorrect
velocity model, these data are still recoverable to a high degree of accuracy.
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Figure 24: A pseudo-linearly blended dataset acquired using the section of the SEAM model.
[CR] chris1/. seamdatain
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Figure 25: The output separated data after 10 iterations of inverse deimgration using a
rough velocity model. [CR] chris1/. seamdataout
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Figure 26: How the separation algorithm performs, for SEAM, as a function of iteration
number. [NR] chris1/. seamconv

By including a blending operator into this suggested inverse demigration the system
can be used to recover an equivalently separated dataset from a continuous, overlapping
recording. These separated data are both kinematically accurate and amplitude real, and
after re-blending match the input data to within a fraction of a percent. This is true of a
synthetic example which features a variety of dips and impedance contrasts.

The fact that extended images have been constructed allows WEMVA to also be applied.
Before separation a moveout estimation can be made, and the velocity model updated. This
allows both separation and model updating to be applied for almost the same cost.

FUTURE WORK

Tests using field data are currently underway. These are in full 3D for an OBN dataset and
the results will be available soon.
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Inadequacy of inverse theory for images

Jon Claerbout and Antoine Guitton

ABSTRACT

Prior information generally enters inverse theory as regularization. In large scale prob-
lems such as image estimation where iteration does not continue to completion, an
additional way to introduce a prior model is as the starting model. This lesson, hard
won at Galilee, is widely applicable.

INTRODUCTION

Reflection seismology is a powerful tool in petroleum prospecting. It works so well it is
often pushed beyond reasonable limits. That’s when we mortals (mere data processors) get
pushed into huge null spaces.

Inverse theory along with least-squares solving technology seduces us into thinking a
good solution is at hand as soon we have a data fitting regression along with suitable model
and data covariances. A drawn-out, humiliating experience taught us more is needed. The
very size of our problems leads to a pitfall that is surely widespread.

Our most valuable datasets bring us into spaces of such high dimensionality we cannot
know whether we have iterated long enough. A simple data-fitting problem where we
know which answers are plausible and which impossible eventually taught us that what we
generally ignore is what we very often need. The years we spent with this simple problem
gives us fear that many colleagues, with their more difficult problems, produce solutions
that are often wrong!

The convexity of least squares methods along with clever precondioning schemes trick
us into feeling our final solution hardly depends on the starting guess. Actually, truth may
often be the opposite.

THE CHALLENGING SETTING

An example of the simplest null space is one data value d to be divided into two models,
m1 and m2. Should 10 be divided into 5 + 5 or into 9 + 1? This arbitrariness becomes
obscure when m1 and m2 are families of complicated models competing to grab what’s left
(if anything) in multivariate data d.

Less comprehensible scenarios in seismology arise when: (1) We gave them a great
map of reflectivity, now they want density. (2) We gave them a fine map of velocity, now
they want anisotropy. And a grand challenge, (3) There is a giant the null space between
anisotropy and inhomogeneity. How should we characterize it?

125
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The clear academic example examined here points to analogous, but much deeper, in-
dustrial examples. We take up a lake survey with a depth sounder. Data is the travel time
from the water surface to the water bottom measured at many locations, possibly along
survey lines that are somewhat organized. Starting from the presumption the lake surface
is perfectly flat, unchanging during the survey, we find apparent survey tracks in our de-
rived image (model) of the water bottom. This astonishes us and forces us to imagine a
supplemental model looking like water surface level fluctuating during the surveying.

For 20 years we did not adequately solve the lake problem. The heart of it is that we
cannot learn a better model without fully stating our prior model. Model covariances (even
if we knew them!) are not enough.

The lake here is known as the “Sea of Galilee.” A survey there gave data with com-
plexities in many forms. Here we limit details to those central to the story. Looking back,
why did it take us so long? When two different things look the same, they tend to have
the same name, even though they differ. That and because theory and practice are worlds
apart.

Prior model

There is a boat with a depth sounder, thirty year old navigation gear, and a recorder.
Over the course of a season or several, the boat crosses the lake hundreds of times, along
somewhat regular tracks, obtaining 131,514 triples (xi, yi, zi), instances of observed depth
d = (zi) at surface (xi, yi) locations. The lake level fluctuates for many reasons (rain and
drain?). We have been told (but cannot be certain) the given values of d = (zi) have been
properly corrected for lake level.

At boat locations (xi, yi) we have measured data depth zi. A model is values of z on
a uniform grid in (x, y) space. Linear interpolation (or nearest neighbor extraction) finds
modeled depth z anywhere, hopefully a good approximation to zi at each (xi, yi). We
express data as dmodeled = Gm where m is water depths on a regular 2-D mesh. The
operator (matrix) G contains mainly information about navigation and interpolation. The
navigation values (xi, yi) are not treated as data having noise (although we later suspect
they should have been).

A number of data fitting issues need not concern us here, issues such as frequent spikes
in the depth, zeros in the depth, gaps in the areal coverage, erratic spikes and a few surges in
the navigation (xi, yi). What you do need to know is that brightness and darkness in Figure
1 do not directly represent depth itself; they represent a roughening of it, like its gradient
(actually, after a 2-D operator like a gradient, the helix derivative). This roughening is
needed because water bottom features are such small features on the overall trend of water
depth.

Correction for apparent water level

Our first idea of water level fluctuation with time (including date) was simply “rain and
drain.” Since surveying is inactive at night and on holidays we first imagined surface
elevation function an assemblage of step functions. We didn’t have a ready way of modeling
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Figure 1: Left, roughened water depth p given a flat water surface. Right, roughened water
depth p after compensating for apparent surface elevation variation. jon/. antoine4

those, so we tried a slowly-variable continuous function of measurement time.

Usually an erroneous low frequency in data is easy to handle by minimizing low-cut
filtered residuals. Attempts to do this failed because of the erratic presence of spikes, zeros,
and surges throughout the data. So, low-frequency measurement drift had to be modeled
instead. Then spikes were easily managed by using an `1 styled data fitting procedure
(hyperbolic penalty).

Modeling the water surface as a function of time led to beautiful track-free images re-
sembling the right side of Figure 1. These images are delightful, but there was an underlying
problem to be taken seriously. The water surface elevation e crossing the lake looked as
sketched in Figure 2. At low frequencies the surface elevation e mimicked the water bot-
tom b. The data (travel time) was distributing itself between the water bottom b and the
surface top e. The water bulge in the middle of the lake came out unreasonably large. To
get the tracks out of the water bottom image, a couple meters of water bulge was required!

Algebraic foundation

To “debug” the analysis we need to examine the regressions. Physical functions are smooth,
both the water bottom map b(x, y) = b and the water surface elevation e(t) = e. For
regularization, b is roughened with the 2-D operator A, typically a helix derivative (square-
root of the FT of a Laplacian) and e is roughened with a low-cut filter, typically L−1, where
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Figure 2: Cartoon of estimated lake
surface elevation e, roughened bot-
tom p, and estimated bottom b.
jon/. mep4
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L is leaky integration. The data fitting and two regularizing regressions are:

0 ≈h Gb + e − d (1)
0 ≈2 Ab (2)
0 ≈2 L−1e (3)

The subscript 2 on ≈2 means least squares, while the subscript h on ≈h means hyperbolic
penalty (to soften noise bursts in the data).

A basic notion of statistics is that the regularizations should lead to residuals that tend
to be roughly 2-D white (flat spectrum) in the (x, y) plane. Thus, A should be chosen so
that Ab is roughly white. In practice a new variable Ab = p called the preconditioner is
introduced. Besides fulfilling theoretical desiderata, the variable p has interpretive use. It is
the variable shown in Figure 1. The second regularization is that the elevation e be smooth
along measurement time. Smoothed white noise Ln should give us a signal that looks like
our preconceived water surface e, so the associated regularization is 0 ≈ n = L−1e.

Changing the formulation from the physical variables (b, e) to the computational/statis-
tical variables (p,n), is called “preconditioning.” Preconditioning speeds iterative solutions,
and it handles matters as statistical theory instructs us. The preconditioned regressions are:

0 ≈h GA−1p + λLn − d (4)
0 ≈2 εb p (5)
0 ≈2 εe n (6)

From a purely mathematical point of view, εb and εe are infinitesimals. Iteration would
then resolve the data fitting before starting on the regularizations. Model space size is
roughly 4002 = 160, 000 while the iteration count is likely under 50. With so few iterations
the regularizations seem hardly to come into play, except that they were earlier embedded
by the preconditioning.

It might seem the ratio of the two unknown epsilons determines how much of the null
space will end out on the water bottom and how much on the top. And, it might seem the
parameter lambda λ is merely a scaling factor in the lowpass filter L. But, λ strongly affects
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the balance of p and n in the gradient. The limited iteration count leads to the epsilon ratio
being far less significant than the size of λ. Although we can easily include regularizations
(5) and (6), at SEP they are generally ignored. What really matters is the data fitting (4).
Here Antoine tried keeping the regularizations and found it made no difference.

Originally, we felt leaky integration L contained the only parameter needed to adjust
the spectrum of the elevation, but we soon realized it always had too much short wavelength
energy because of the sharp onset of the damped exponential in L. So we switched to its
autocorrelation LTL in the low pass relation e = LTLn. Thus, in practice, our code is
iteratively working this lone regression:

0 ≈h GA−1p + λLTLn − d (7)

Finding the worst source of null space

We have a convex regression in data space. We have two regularizations in model space
that we have taken into account. This should not fail, but it does. How does it fail? We
can play with λ, and we did. We could find values of λ that were big enough to suppress
the tracks in the image, but those values of λ still created giant bulges on the water surface.
In other words, the water surface elevation e visually correlates with the data, both the
observed data and the modeled data Gb. In the middle of the lake the estimated elevation
is a couple meters above that at the shoreline. Obviously wrong.

Why should we care that it is wrong, and why is it coming out wrong? We are seeing
correlation between data made from b and data made from e, If we cannot prevent apparent
correlation within an estimated model m = (b, e) where in real life there is none, how can
we hope to know when such correlation is real? Imagine a map of seismic velocity correlating
with a map of anisotropy. Are the two correlated in geology, or is the correlation a data
processing artifact?

Regularization is not the only way to manage a null space. Choosing your starting
solution carefully can make a difference—a huge difference. Textbook theory tells us with
convex optimization (such as least squares) final solutions are independent of the starting
model, but we learn otherwise from nonlinear problems, and we learn otherwise from linear
problems that are too large for us to iterate to completion.

Any null space produces no perturbation in the modeled data so it cannot improve the
fit to the observed data. Consequently, whatever null space may exist in the starting model
will remain there throughout the iterative fitting process. When we included e in the data
fitting, we introduced as many unknown model parameters as we have data values in d, so
we certainly know we now have a giant null space.

The starting model is not the Bayes’ prior model. The starting model is simply one of
many places to start the iterative solver. But, putting our prior model into our starting
model assures us whatever null space it may contain will remain in our final solution. Bingo!
The ultimately found elevation is shown in Figure 3, hardly an assemblage of step functions
suggested by our original rain and drain ideas!
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Figure 3: Apparent water surface elevation during the entire Galilee survey (an unknown
number of months). Elevation ranges over almost a meter, but is no longer correlated with
water depth. The 10cm fuzz corresponds to 10cm measurement zi discretization. I’m left
feeling (xi, yi) require a time-variable model, such as systematic navigation errors. We are
astonished to see the apparent elevation containing big spikes. This might be explained by
surges of navigation error. jon/. tide

Problem solved

So, after 20 years, how did we finally fix the Galilee fitting? We solved two problems, one
after the other. Setting λ = 0 in regression (7)

0 ≈h GA−1p + λLTLn − d

amounts to freezing a flat surface elevation e = Ln = 0. So, starting from (p,n) = (0,0)
with λ = 0, we ran it getting our first solution for p. This bottom image shows the
ship tracks. We use that p to define p0 for the second pass. Iterating (p,n) starting
from (p0, (n0 = 0)) gives the final bottom and top (b, e) estimates. We are free now to
experiment with λ without developing the unholy correlation between b and e.

The various choices of λ represent subjective guesses how to divide the data between
bottom b and top e. There’s an opportunity here. Perhaps upon investigating the various
λ choices, we might some day find a favorite, then find a reason for the favorite, then
understand that reason is suggesting something lacking in the present analytic framework.
Maybe we can sniff out an opportunity for building a model that better describes this data.
That’s real science. Inverse theory is merely a guide to parameterizing known models.

CONCLUSION

Books tell us we should specify prior information in the regularizations. Here we learned
that we should specify it in the starting model too, particularly if we cannot iterate to
completion. Finding a suitable prior model may, in many cases, be an easier and better
way of regularizing. That’s what Galilee teaches me. This experience also suggests that high
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resolution models should generally be derived from lower resolution models (the assumption
of scale invariance).

The process that led us to select regularizations (A and L−1) is highly subjective, sloppy
even. We can do better simply by looking at the spectrum of n and p. If they are not
white, then adjusting the preconditioners to achieve it. This should have been done, but
was not. If it had, would the overall story change? We don’t know.

Our personal opinion is that our fellow image estimators get wrong answers much of the
time, and they don’t know it because they are not working on easy problems like Galilee,
where “wrong answers” are easier to recognize.

What about velocity anisotropy?

Have we learned something from Galilee that we can carry over to estimating anisotropy?
We think so, but have neither audacity nor time to explore details. You would be right to
guess that we would start by solving for isotropic inhomogeneous material getting m0. We
would use that m0 as the starting model in iterative fitting simultaneously for inhomogeneity
and anisotropy. The regularization in the second problem would be minimizing filtered
m−m0.
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Adjoint formulation for the elastic wave equation

Gustavo Alves

ABSTRACT

I present the formulation for the forward non-linear elastic wave equation and the
linearized Born modeling approximation. The methodolgy used is similar to the adjoint
formulation presented for the acoustic case by Almomin (2013). I also demonstrate
how a perfectly matched absorbing layer (PML) can be applied to the formulation
and derive the necessary adjoints for implementing inversion methods. Finally, I show
results for a synthetic model using the linear approximation and compare it to the
non-linear solution for a small localized perturbation. The linear solution converges to
the non-linear one when the perturbation is small in relation to the background model.

INTRODUCTION

Seismic theory tells us that waves propagating in a linear elastic medium can be uniquely
described by prescribing body forces and boundary conditions of a given problem (Aki and
Richards, 1980). The solution is usually a combination of body waves, both pressure and
shear, and surface waves. However, most current imaging techniques use only pressure
waves. This is due both to the lack of available multicomponent data and the greater
computational requirements of processing multicomponent data.

In recent years, however, this scenario has started to change. New technologies, such as
ocean bottom cables (OBCs) and ocean bottom nodes (OBNs), have extended the ability to
record multicomponent data to offshore acquisitions. New prospecting challenges also push
the limits of current imaging methods, which in turn force the need for more detailed data.
Consequently, a new collection of algorithms is required to process this new multicomponent
data.

In this work, I present the velocity-stress formulation for the elastic wave-equation in
the framework of adjoint methods. My goal is to cast the problem as a series of adjoint
operators, so that both linearized forward methods and their adjoints can be clearly con-
structed.

I start by constructing two possible representations to the recursive operator for the 2D
elastic wave equation, together with their respective adjoints. The recursive operator and
its adjoint are the core elements for most wave propagation methods, such as Born model-
ing, Reverse Time Migration (RTM), Tomography and Wave Equation Migration Velocity
Analysis (WEMVA). Therefore, proposing different solutions to the recursive operator helps
in better understanding how to develop such methods.

I follow by extending both solutions to include an absorbing boundary condition. I
propose the use of a Perfectly Matched Layer (PML), according to Collino and Tsogka
(2001).

133
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Finally, I describe the implementation of one of the proposed recursive operators for
the Born operator. The Born operator is a linearized approximation of the non-linear wave
equation and accurately estimates the non-linear solution for small perturbations of the
background wavefield. I show synthetic examples for a point scatterer and compare the
results to the non-linear case.

METHODOLOGY

The elastic wave equation for a two dimensional problem can be written in the velocity-stress
formulation as a set of 5 equations,

ρ(x)
∂

∂t
Vx(x, t)− [

∂

∂x
σxx(x, t) +

∂

∂z
σxz(x, t)] = s1(x, t) (1)

ρ(x)
∂

∂t
Vz(x, t)− [

∂

∂x
σxz(x, t) +

∂

∂z
σzz(x, t)] = s2(x, t) (2)

∂

∂t
σxx(x, t) = [λ(x) + 2µ(x)]

∂

∂x
Vx(x, t) + λ(x)

∂

∂z
Vz(x, t) + s3(x, t) (3)

∂

∂t
σzz(x, t) = [λ(x) + 2µ(x)]

∂

∂z
Vz(x, t) + λ(x)

∂

∂x
Vx(x, t) + s4(x, t) (4)

∂

∂t
σxz(x, t) = µ(x)[

∂

∂z
Vx(x, t) +

∂

∂x
Vz(x, t)] + s5(x, t), (5)

where ρ, λ and µ are the model parameters, Vx and Vz are the particle velocities, σxx,
σzz and σxz are the normal and shear stresses, respectively, s1 and s2 are the velocity
components of the source and s3, s4 and s5 are the stress components of the source.

My first goal is to write the forward non-linear modeling operator and its adjoint. To
achieve that, I need to re-cast the previous set of equations as a recursive system. First, I
apply a finite difference approximation to the time derivates, following the staggered-grid
approach described by Virieux (1986) and Levander (1988). The equations become

V n
x = V n−1

x +
∆t

ρ
(

∂

∂x
σn−1/2

xx +
∂

∂z
σn−1/2

xz + sn−1
1 ) (6)

V n
z = V n−1

z +
∆t

ρ
(

∂

∂x
σn−1/2

xz +
∂

∂z
σn−1/2

zz + sn−1
2 ) (7)

σn+1/2
xx = σn−1/2

xx + ∆t[(λ + 2µ)
∂

∂x
V n

x + λ
∂

∂z
V n

z + s
n−1/2
3 ] (8)

σn+1/2
zz = σn−1/2

zz + ∆t[(λ + 2µ)
∂

∂z
V n

z + λ
∂

∂x
V n

x + s
n−1/2
4 ] (9)

σn+1/2
xz = σn−1/2

xz + ∆t[µ
∂

∂x
V n

z + µ
∂

∂z
V n

x + s
n−1/2
5 ], (10)

where n is the discretized time interval and ∆t is the time step. For simplicity, I supress
the spatial dependencies of the vectors.

The time staggering in this approach uses an alternating solution to the velocity and
stress wave fields, which is concise and easy to implement. However, describing the set of
equations as a single recursive relation becomes more difficult. Here, I choose two possible
solutions to this problem. In the first method, which I call recursive operator by backward
substitution, the stress equations are re-injected into the velocity equations, so that a single
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recursive equation arises. The second method, which I refer as recursive operator by time
step refinement, maintains the staggered-time structure, but redefines the time stepping of
each wave field so that both velocities and stresses can be defined at every time step.

Recursive operator by backward substitution

My first step in this approach is to write the velocities and stresses as two separate data
vectors,

dn
1 =

(
V n

x

V n
z

)
dn

2 =

σ
n− 1

2
xx

σ
n− 1

2
zz

σ
n− 1

2
xz

 . (11)

I also define a few operators to make the representation more compact,

A = ∆t
ρ

∂
∂x B = ∆t

ρ
∂
∂z C = ∆t

ρ

D = ∆t(λ + 2µ) ∂
∂x E = ∆tλ ∂

∂z F = ∆t(λ + 2µ) ∂
∂z

G = ∆tλ ∂
∂x H = ∆tµ ∂

∂x J = ∆tµ ∂
∂z .

I can now write my elastic equations as two matrix operations,

dn
1 = dn−1

1 +
(

A 0 B
0 B A

)
dn

2 + C

(
sn−1
1

sn−1
2

)
(12)

dn
2 = dn−1

2 +

D E
F G
H J

dn−1
1 + ∆t

s
n− 1

2
3

s
n− 1

2
4

s
n− 1

2
5

 . (13)

Substituting equation 10 into 12 yields,

dn
1 = dn−1

1 +
(

A 0 B
0 B A

)
dn−1

2 +
(

A 0 B
0 B A

)D E
F G
H J

dn−1
1 +

C

(
sn−1
1

sn−1
2

)
+ ∆t

(
A 0 B
0 B A

)s
n− 1

2
3

s
n− 1

2
4

s
n− 1

2
5

 . (14)

I can now define a single vector dn

dn =



V n
x

V n
z

σ
n− 1

2
xx

σ
n− 1

2
zz

σ
n− 1

2
xz

 , (15)
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which combines both subsets dn
1 and dn

2 into a single generalized recursive relation,

dn =


I + AD + BH AE + BJ A 0 B

BF + AH I + BG + AJ 0 B A
D E I 0 0
F G 0 I 0
H J 0 0 I

dn−1 +


C 0 A 0 B
0 C 0 B A
0 0 ∆t 0 0
0 0 0 ∆t 0
0 0 0 0 ∆t

Sn−1,

(16)

where I is the identity operator and Sn is the source vector at time n. For compactness, I
define the matrices in 16 as X and Y, so that the forward recursive relation can be written
simply as

dn = Xdn−1 + YSn−1. (17)

While equation 17 correctly describes the forward elastic wave propagation, the adjoint
of this equation cannot be taken directly since operators X and Y don’t commute. The last
step is to re-define the source term. The vector qn is defined as the source term Sn after
applying the operator Y. Equation 18 is the final forward recursive operator

dn = Xdn−1 + qn−1, (18)

whose adjoint is described by

qn = X′qn+1 + dn+1, (19)

where X′ is the adjoint of X.

Recursive operator by time step refinement

In this approach, instead of re-injecting the stress fields into the velocities to get them
at integer time steps, I take the opposite approach. In other words, this method tries to
obtain all wavefields at both integer and half-integer time steps, effectively refining the time
stepping in the recursive relation.

Again, I start by definning a data vector Dn, which represents the velocities and stresses
at time n. Notice that, unlike in the previous case, the stresses are not shifted in time in
respect to the velocities.

dn =


V n

x

V n
z

σn
xx

σn
zz

σn
xz

 . (20)

Next, I define a set of operator matrices that represent the original time staggered
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equations,

dn =


0 0 A 0 B
0 0 0 B A
D E 0 0 0
F G 0 0 0
H J 0 0 0

dn−1
2 + I · dn−1 +


0 0 0 0 0
0 0 0 0 0
0 0 ∆t 0 0
0 0 0 ∆t 0
0 0 0 0 ∆t

Sn−1
2 +


C 0 0 0 0
0 C 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Sn−1, (21)

where I is the identity matrix and operators A through J are the same as those defined in
the previous section. The forward recursive relation can be represented as

dn = Xdn−1
2 + I · dn−1 + Y1Sn−1

2 + Y2Sn−1, (22)

and its adjoint as

qn = X′qn+1
2 + I · qn+1 + Y′

1d
n+1

2 + Y′
2d

n+1. (23)

While the recursive relations described here and in the previous section are at the core
of most forward and inverse methodologies, it is important to take into account other
important effects that appear when trying to numerically solve the elastic wave equation.
In the next section, I re-derive the two previous solutions, taking into account border and
interpolation effects.

PERFECTLY MATCHED LAYER IMPLEMENTATION

A perfectly matched layer (PML) is a type of absorbing boundary condition used in numer-
ical modeling to avoid reflections of propagating waves off the corners of a finite numerical
problem. It is more efficient than decaying exponential methods (Cerjan et al., 1985), be-
cause it splits the wavefront into its directional components, applying an absorbing factor
in each direction instead of a single absorption normal to the model boundary.

In order to apply PML to my problem, I start by splitting the previous set of equations
into its spatial derivatives. Since this is a 2D problem, the original equations are split into
their x and z derivatives, namely: V x

x , V z
x , V x

z and V z
z for the particle velocities and σx

xx,
σz

xx, σx
zz, σz

zz, σx
xz and σz

xz for the stresses. Also, I use the subscripts i, j to represent the
grid position to which the variables belong. I need to include this because I implement the
equations using the staggered-grid approach, similarly to what was done in the time domain
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in the previous section. The decomposed set of 10 equations is

∂

∂t
(V x

x )i,j =
1
ρ
[

∂

∂x
(σxx)i+1/2,j ] + sx

x (24)

∂

∂t
(V z

x )i,j =
1
ρ
[
∂

∂z
(σxz)i,j+1/2] + sz

x (25)

∂

∂t
(V x

z )i+1/2,j+1/2 =
1
ρ
[

∂

∂x
(σxz)i,j+1/2] + sx

z (26)

∂

∂t
(V z

z )i+1/2,j+1/2 =
1
ρ
[
∂

∂z
(σzz)i+1/2,j ] + sz

z (27)

∂

∂t
(σx

xx)i+1/2,j = (λ + 2µ)
∂

∂x
(Vx)i,j + sx

xx (28)

∂

∂t
(σz

xx)i+1/2,j = λ
∂

∂z
(Vz)i+1/2,j+1/2 + sz

xx (29)

∂

∂t
(σx

zz)i+1/2,j = λ
∂

∂x
(Vx)i,j + sx

zz (30)

∂

∂t
(σz

zz)i+1/2,j = (λ + 2µ)
∂

∂z
(Vz)i+1/2,j+1/2 + sz

zz (31)

∂

∂t
(σx

xz)i,j+1/2 = µ
∂

∂x
(Vz)i+1/2,j+1/2 + sx

xz (32)

∂

∂t
(σz

xz)i,j+1/2 = µ
∂

∂z
(Vx)i,j + sz

xz, (33)

where Vx = V x
x +V z

x , and so on. It is important to note that, following the method by Virieux
(1986), the elastic properties of the model are defined at separate grid points. Therefore,
they must be averaged to correspond to the equivalent values at the points being calculated.
Here, I follow the method of harmonic averages described by Moczo et al. (2002).

The next step is to include the PML parameters. To do so, I follow the work of Collino
and Tsogka (2001). Taking equation 24 as an example and representing the time derivative
as a second order finite difference approximation, the elastic equation with PML becomes

(V x
x )n+1

i,j − (V x
x )n

i,j

∆t
+ dx

i

(V x
x )n+1

i,j + (V x
x )n

i,j

2
=

1
ρ
[

∂

∂x
(σxx)i+1/2,j ] + sx

x, (34)

where the superscript n refers to the discrete time in the finite differences method and dx
i

is given by

dx
i = log(

1
R

)(
3VP

2δ
)(

x

δ
)2, (35)

where the index i refers to the grid position and the x represents the direction of absorption.
R is an arbitrary parameter that is associated with the desired reflectivity at the outer
boundary and δ is the boundary thickness. Typical values for these parameters are 0.001
and 10 grid points, respectively.

Rearranging the terms in equation 34, I get

(V x
x )n+1

i,j = (1 +
∆t

2
dx

i )−1[(1− ∆t

2
dx

i )(V x
x )n

i,j +
∆t

ρ

∂

∂x
(σxx)n+1/2

i+1/2,j ], (36)

and similarly for the z component of the Vx velocity I get

(V z
x )n+1

i,j = (1 +
∆t

2
dz

j )
−1[(1− ∆t

2
dz

j )(V
z
x )n

i,j +
∆t

ρ

∂

∂z
(σxz)

n+1/2
i,j+1/2]. (37)
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Re-writing the set of equations as a chain of operators, I get

(V x
x )n

i,j = KL(V x
x )n−1

i,j + KA(σxx)n−1/2
i+1/2,j + KC(sx

x)n−1 (38)

(V z
x )n

i,j = MN(V z
x )n−1

i,j + MB(σxz)
n−1/2
i,j+1/2 + MC(sz

x)n−1 (39)

(V x
z )n

i+1/2,j+1/2 = OP (V x
x )n−1

i,j + OA(σxz)
n−1/2
i,j+1/2 + OC(sx

z )n−1 (40)

(V z
z )n

i+1/2,j+1/2 = QR(V z
x )n−1

i,j + QB(σxx)n−1/2
i+1/2,j + QC(sz

z)
n−1 (41)

(σx
xx)n+1/2

i+1/2,j = OP (σx
xx)n−1/2

i+1/2,j + OD(Vx)n
i,j + O∆t(sx

xx)n−1/2 (42)

(σz
xx)n+1/2

i+1/2,j = QR(σz
xx)n−1/2

i+1/2,j + QE(Vz)n
i+1/2,j+1/2 + Q∆t(sz

xx)n−1/2 (43)

(σx
zz)

n+1/2
i+1/2,j = OP (σx

xx)n−1/2
i+1/2,j + OF (Vx)n

i,j + O∆t(sx
zz)

n−1/2 (44)

(σz
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i+1/2,j + QG(Vz)n

i+1/2,j+1/2 + Q∆t(sz
zz)

n−1/2 (45)

(σx
xz)

n+1/2
i,j+1/2 = KL(σx

xz)
n−1/2
i,j+1/2 + KH(Vx)n

i,j + K∆t(sx
xz)

n−1/2 (46)

(σz
xz)

n+1/2
i,j+1/2 = MN(σz

xz)
n−1/2
i,j+1/2 + MJ(Vz)n

i+1/2,j+1/2 + M∆t(sz
xz)

n−1/2, (47)

where the operators A through J have been defined previously and the PML operators are
given by

K = (1 + ∆t
2 dx

i )−1 L = (1− ∆t
2 dx

i ) M = (1 + ∆t
2 dz

j )
−1

N = (1− ∆t
2 dz

j ) O = (1 + ∆t
2 dx

i+1/2)
−1 P = (1− ∆t

2 dx
i+1/2)

Q = (1 + ∆t
2 dz

j+1/2)
−1 R = (1− ∆t

2 dz
j+1/2) .

Now that I have represented each equation as an idependent recursive relation, I need
to describe the full data set as one recursive relation. Again, I will derive the necessary
equations for both methods described earlier.

PML for the recursive operator by backward substitution

Similarly to the case without PML, I start by writing my wave fields as two data vectors,

dn
1 =


(V x

x )n

(V z
x )n

(V x
z )n

(V z
z )n

 dn
2 =



(σx
xx)n−1/2

(σz
xx)n−1/2

(σx
zz)

n−1/2

(σz
zz)

n−1/2

(σx
xz)

n−1/2

(σz
xz)

n−1/2.


(48)
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The recursive relations then become

dn
1 =


KL 0 0 0
0 MN 0 0
0 0 OP 0
0 0 0 QR

dn−1
1 +


KA KA 0 0 0 0
0 0 0 0 MB MB
0 0 0 0 OA OA
0 0 QB QB 0 0

dn
2+


KC 0 0 0
0 MC 0 0
0 0 OC 0
0 0 0 QC

Sn−1
1 (49)

dn
2 =



OD OD 0 0
0 0 QE QE

OF OF 0 0
0 0 QG QG

KH KH 0 0
0 0 MJ MJ

dn−1
1 +



OP 0 0 0 0 0
0 QR 0 0 0 0
0 0 OP 0 0 0
0 0 0 QR 0 0
0 0 0 0 KL 0
0 0 0 0 0 MN

dn−1
2 +



O∆t 0 0 0 0 0
0 Q∆t 0 0 0 0
0 0 O∆t 0 0 0
0 0 0 Q∆t 0 0
0 0 0 0 K∆t 0
0 0 0 0 0 M∆t

Sn−1
2 .

(50)



SEP–158 Adjoint elastic equation 141

Substituting 10 into 12, I get

dn
1 =


KL + KAOD KAOD KAQE KAQE

MBKH MN + MBKH MBMJ MBMJ
OAKH OAKH OP + OAMJ OAMJ
QBOF QBOF QBQG QR + QBQG

dn−1
1 +


KAOP KAQR 0 0 0 0

0 0 0 0 MBKL MBMN
0 0 0 0 OAKL OAMN
0 0 QBOP QBQR 0 0

dn−1
2 +


KC 0 0 0
0 MC 0 0
0 0 OC 0
0 0 0 QC

Sn−1
1 +


KAO∆t KAQ∆t 0 0 0 0

0 0 0 0 MBK∆t MBM∆t
0 0 0 0 OAK∆t OAM∆t
0 0 QBO∆t QBQ∆t 0 0

Sn−1
2 . (51)

Finally, I can construct the recursive operator W
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dn =
(

dn
1

dn
2

)
=



KL + KAOD KAOD KAQE KAQE KAOP KAQR 0 0 0 0
MBKH MN + MBKH MBMJ MBMJ 0 0 0 0 MBKL MBMN
OAKH OAKH OP + OAMJ OAMJ 0 0 0 0 OAKL OAMN
QBOF QBOF QBQG QR + QBQG 0 0 QBOP QBQR 0 0

OD OD 0 0 OP 0 0 0 0 0
0 0 QE QE 0 QR 0 0 0 0

OF OF 0 0 0 0 OP 0 0 0
0 0 QG QG 0 0 0 QR 0 0

KH KH 0 0 0 0 0 0 KL 0
0 0 MJ MJ 0 0 0 0 0 MN


dn−1+



KC 0 0 0 KAO∆t KAQ∆t 0 0 0 0
0 MC 0 0 0 0 0 0 MBK∆t MBM∆t
0 0 OC 0 0 0 0 0 OAK∆t OAM∆t
0 0 0 QC 0 0 QBO∆t QBQ∆t 0 0
0 0 0 0 O∆t 0 0 0 0 0
0 0 0 0 0 Q∆t 0 0 0 0
0 0 0 0 0 0 O∆t 0 0 0
0 0 0 0 0 0 0 Q∆t 0 0
0 0 0 0 0 0 0 0 K∆t 0
0 0 0 0 0 0 0 0 0 M∆t



(
Sn

1

Sn
2

)

(52)
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PML for the recursive operator by time step refinement

Lastly, the PML implementation in the case of the refined time stepping method is

(V x
x )n

(V z
x )n

(V x
z )n

(V z
z )n

(σx
xx)n

(σz
xx)n

(σx
zz)

n

(σz
zz)

n

(σx
xz)

n

(σz
xz)

n


=



0 0 0 0 KA KA 0 0 0 0
0 0 0 0 0 0 0 0 MB MB
0 0 0 0 0 0 0 0 OA OA
0 0 0 0 0 0 QB QB 0 0

OD OD 0 0 0 0 0 0 0 0
0 0 QE QE 0 0 0 0 0 0

OF OF 0 0 0 0 0 0 0 0
0 0 QG QG 0 0 0 0 0 0

KH KH 0 0 0 0 0 0 0 0
0 0 MJ MJ 0 0 0 0 0 0


dn−1

2 +



KL 0 0 0 0 0 0 0 0 0
0 MN 0 0 0 0 0 0 0 0
0 0 OP 0 0 0 0 0 0 0
0 0 0 QR 0 0 0 0 0 0
0 0 0 0 OP 0 0 0 0 0
0 0 0 0 0 QR 0 0 0 0
0 0 0 0 0 0 OP 0 0 0
0 0 0 0 0 0 0 QR 0 0
0 0 0 0 0 0 0 0 KL 0
0 0 0 0 0 0 0 0 0 MN


dn−1+



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 O∆t 0 0 0 0 0
0 0 0 0 0 Q∆t 0 0 0 0
0 0 0 0 0 0 O∆t 0 0 0
0 0 0 0 0 0 0 Q∆t 0 0
0 0 0 0 0 0 0 0 K∆t 0
0 0 0 0 0 0 0 0 0 M∆t


Sn−1

2 +



KC 0 0 0 0 0 0 0 0 0
0 MC 0 0 0 0 0 0 0 0
0 0 OC 0 0 0 0 0 0 0
0 0 0 QC 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


Sn−1, (53)

which can be compactly described by the recursive relation

dn = Xdn−1
2 + Zdn−1 + Y1Sn−1

2 + Y2Sn−1. (54)



144 Alves SEP–158

NONLINEAR MODELING

Theoretically, both recursive operators defined in the previous sections could be used to
construct a linear operator with respect to the source function. However, the first method
yields a more cumbersome system, which would only grow in complexity as more elements
are added. Therefore, in the next sections I focus only on the recursive operator by time
stepping refinement. I start with a general linear operator summarized by

d = Fs, (55)

where d is the output data, F is the forward modeling operator and s is the source.

Next, I include the necessary interpolation and padding operators, similarl to the work
in Almomin (2013),

d = K′
rL

′
rWYLsKss, (56)

where Kr and Ls are the spatial padding and time interpolation operator, respectively. W
is the recursive operator described by equation 54. Similarly, the adjoint modeling operator
is given by

s = K′
sL

′
sY

′W′LrKrd, (57)

where W′ is the recursive relation described by

qn = X′qn+1
2 + Z′qn+1 + dn+1, (58)

where qn is the scaled source

qn = Y1sn+1
2 + Y2sn. (59)

The adjoint of matrix X in the adjoint recursive relation W′ is

X′ =



0 0 0 0 D′O′ 0 F ′O′ 0 H ′K ′ 0
0 0 0 0 D′O′ 0 F ′O′ 0 H ′K ′ 0
0 0 0 0 0 E′Q′ 0 G′Q′ 0 J ′M ′

0 0 0 0 0 E′Q′ 0 G′Q′ 0 J ′M ′

A′K ′ 0 0 0 0 0 0 0 0 0
A′K ′ 0 0 0 0 0 0 0 0 0

0 0 0 B′Q′ 0 0 0 0 0 0
0 0 0 B′Q′ 0 0 0 0 0 0
0 B′M ′ A′O′ 0 0 0 0 0 0 0
0 B′M ′ A′O′ 0 0 0 0 0 0 0


, (60)

and the adjoints of matrices Z, Y1 and Y2 are

Z′ =



L′K ′ 0 0 0 0 0 0 0 0 0
0 N ′M ′ 0 0 0 0 0 0 0 0
0 0 P ′O′ 0 0 0 0 0 0 0
0 0 0 R′Q′ 0 0 0 0 0 0
0 0 0 0 P ′O′ 0 0 0 0 0
0 0 0 0 0 R′Q′ 0 0 0 0
0 0 0 0 0 0 P ′O′ 0 0 0
0 0 0 0 0 0 0 R′Q′ 0 0
0 0 0 0 0 0 0 0 L′K ′ 0
0 0 0 0 0 0 0 0 0 N ′M ′


, (61)



SEP–158 Adjoint elastic equation 145

Y′
1 =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 ∆tO′ 0 0 0 0 0
0 0 0 0 0 ∆tQ′ 0 0 0 0
0 0 0 0 0 0 ∆tO′ 0 0 0
0 0 0 0 0 0 0 ∆tQ′ 0 0
0 0 0 0 0 0 0 0 ∆tK ′ 0
0 0 0 0 0 0 0 0 0 ∆tM ′


, (62)

Y′
2 =



C ′K ′ 0 0 0 0 0 0 0 0 0
0 C ′M ′ 0 0 0 0 0 0 0 0
0 0 C ′O′ 0 0 0 0 0 0 0
0 0 0 C ′Q′ 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


. (63)

The individual adjoint operators are

A′ = ∂
∂x

∆t
ρ B′ = ∂

∂z
∆t
ρ C ′ = ∆t

ρ

D′ = ∂
∂x∆t(λ + 2µ) E′ = ∂

∂z∆tλ F ′ = ∂
∂z∆t(λ + 2µ)

G′ = ∂
∂x∆tλ H ′ = ∂

∂x∆tµ J ′ = ∂
∂z∆tµ

K ′ = (1 + ∆t
2 dx

i )−1 L′ = (1− ∆t
2 dx

i ) M ′ = (1 + ∆t
2 dz

j )
−1

N ′ = (1− ∆t
2 dz

j ) O′ = (1 + ∆t
2 dx

i+1/2)
−1 P ′ = (1− ∆t

2 dx
i+1/2)

Q′ = (1 + ∆t
2 dz

j+1/2)
−1 R′ = (1− ∆t

2 dz
j+1/2) .

I apply the dot product test to validate that the adjoint of the recursive relation is
correct. I test the case where the PML coefficient is equal to one (rigid boundary condition)
and calculate the forward and adjoints for 5,000 time steps. For a 2D grid with 200 by 200
samples, the relative error in the dot product test is on the order of 10−12. I run the tests in
double precision, with random inputs for the forward and adjoint solutions. This method
follows the one described in Claerbout (2010).

BORN OPERATOR

The Born method is a linear approximation to the non-linear wave propagation problem.
Essentially, it aims to describe the non-linear problem in terms of a perturbation prob-
lem, where the solution is a combination of a non-scattering background wavefield and a
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scattering term. Such an approximation is valid for small perturbations, where secondary
scattering events are small compared to the background and first order scattering terms.
To derive the Born approximation of the elastic wave equation, I start by writing the initial
set of equations for a perturbed properties model,

(ρ + ∆ρ)
∂

∂t
(Vx + ∆Vx)− [

∂

∂x
(σxx + ∆σxx) +

∂

∂z
(σxz + ∆σxz)] = s1 (64)

(ρ + ∆ρ)
∂

∂t
(Vz + ∆Vz)− [

∂

∂x
(σxz + ∆σxz) +

∂

∂z
(σzz + ∆σzz)] = s2 (65)

∂

∂t
(σxx + ∆σxx) = [(λ + ∆λ) + 2(µ + ∆µ)]

∂

∂x
(Vx + ∆Vx) +

(λ + ∆λ)
∂

∂z
(Vz + ∆Vz) + s3 (66)

∂

∂t
(σzz + ∆σzz) = [(λ + ∆λ) + 2(µ + ∆µ)]

∂

∂z
(Vz + ∆Vz) +

(λ + ∆λ)
∂

∂x
(Vx + ∆Vx) + s4 (67)

∂

∂t
(σxz + ∆σxz) = (µ + ∆µ)(

∂

∂x
(Vz + ∆Vz) +

∂

∂z
(Vx + ∆Vx)) + s5. (68)

Rearranging equation 64, I get

ρ
∂

∂t
Vx − [

∂

∂x
σxx +

∂

∂z
σxz] + ρ

∂

∂t
∆Vx + ∆ρ

∂

∂t
Vx + ∆ρ

∂

∂t
∆Vx −

[
∂

∂x
∆σxx +

∂

∂z
∆σxz] = s1, (69)

which is essentially equation 1 plus perturbation terms. If I ignore higher order perturbation
terms and substract the original wave equation, equation 69 gives me the Born scattering
term

ρ
∂

∂t
∆Vx − (

∂

∂x
∆σxx +

∂

∂z
∆σxz] = −∆ρ

∂

∂t
Vx. (70)

Similarly, for the other equations I get

ρ
∂

∂t
∆Vz − (

∂

∂x
∆σxz +

∂

∂z
∆σzz] = −∆ρ

∂

∂t
Vz (71)

∂

∂t
∆σxx − [(λ + 2µ)

∂

∂x
∆Vx + λ

∂

∂z
∆Vz] = (∆λ + 2∆µ)

∂

∂x
Vx + ∆λ

∂

∂z
Vz (72)

∂

∂t
∆σzz − [(λ + 2µ)

∂

∂z
∆Vz + λ

∂

∂x
∆Vx] = (∆λ + 2∆µ)

∂

∂z
Vz + ∆λ

∂

∂x
Vx (73)

∂

∂t
∆σxz − [µ(

∂

∂x
∆Vz +

∂

∂z
∆Vx)] = ∆µ(

∂

∂x
Vz +

∂

∂z
Vx). (74)

The numerical implementation of the forward Born modeling can be broken into two
steps. First, a virtual source is constructed by the forward propagation of the elastic wave
fields in a background (unperturbed) properties model. I describe this background model
by ρ0, λ0 and µ0. This background wave field is constructed similarly to equation 56, but
without the need to truncate the output to the data spatial sampling and with its time
sampling equal to that of the source,

d0 = L′sWYLsKsf . (75)
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After generating the background wave field, I use it as a virtual source to generate a
new data set. This new data set, which I call the scattered data (∆d), is given by

∆d = K′
rL

′
rWYLsYΘd0r, (76)

where Θ is a derivative operator that needs to be applied to the background wave field d0

and r is the perturbed properties model. The matrices that represent these operators are

Θ =



∂
∂t 0 0 0 0 0 0 0 0 0
0 ∂

∂t 0 0 0 0 0 0 0 0
0 0 ∂

∂t 0 0 0 0 0 0 0
0 0 0 ∂

∂t 0 0 0 0 0 0
∂
∂x

∂
∂x 0 0 0 0 0 0 0 0

0 0 ∂
∂z

∂
∂z 0 0 0 0 0 0

∂
∂x

∂
∂x 0 0 0 0 0 0 0 0

0 0 ∂
∂z

∂
∂z 0 0 0 0 0 0

∂
∂z

∂
∂z 0 0 0 0 0 0 0 0

0 0 ∂
∂x

∂
∂x 0 0 0 0 0 0


, (77)

r =



−∆ρ 0 0 0 0 0 0 0 0 0
0 −∆ρ 0 0 0 0 0 0 0 0
0 0 −∆ρ 0 0 0 0 0 0 0
0 0 0 −∆ρ 0 0 0 0 0 0
0 0 0 0 ∆λ + 2∆µ 0 0 0 0 0
0 0 0 0 0 ∆λ 0 0 0 0
0 0 0 0 0 0 ∆λ 0 0 0
0 0 0 0 0 0 0 ∆λ + 2∆µ 0 0
0 0 0 0 0 0 0 0 ∆µ 0
0 0 0 0 0 0 0 0 0 ∆µ


. (78)

A few observations should be made about equations 77 and 78. First, the operator Θ
has non-zero terms only for the particle velocity components. This means that the virtual
sources for velocities and stresses, at least for this particular formulation, require only the
velocity components from the background wavefield, which are then scaled correctly by the
appropriate derivative. Second, r is a diagonal operator that has terms that depend not only
on the perturbed density and each Lamé parameter individually, but also on a combination
of the two Lamé parameters. If used in an iterative inversion method, this mixed term
could lead to strong crosstalk between the gradient updates, in addition to the expected
crosstalk from the equations coupling. However, this topic still needs further study.

RESULTS

I implement the Born forward modeling using a time domain, finite difference algorithm.
The algorithm uses a second order approximation to the time derivatives and a 10th order
operator for the spatial derivatives, as described in Alves and Biondi (2014).

The model is a constant background with a gaussian perturbation in all model properties
(λ, µ and ρ), as can be seen in figure 1(a).
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Figure 2(a) shows a snapshot of the pressure wave field for the nonlinear modeling. In
other words, this figure is generated by propagating the wave field in the correct gaussian
model. For the Born modeling, I smooth the inital model (1(b)) and subtract it from the
correct model (1(c)). This generates two wave fields: a background propagated one, shown
in figure 2(b) and a scattered wavefield, shown in figure 2(c). All wave fields are scaled
equally in order to compare the Born linear approximation and the non-linear modeling.

(a) (b)

(c)

Figure 1: (a) True density model with a gaussian perturbation, (b) smoothed density model
and (c) model difference between true and smoothed model. The other parameters display
similar perturbations. [ER] gcalves/. rhomodel,rhomodelS,drhomodel

As can be seen from the examples, the Born modeling approximates the non-linear prop-
agation not only qualitatively, but also quantitatively. It is important to point out that,
while it is more customary to work with the pressure and shear velocities as model param-
eters for imaging, the formulation presented here is solved in terms of Lamè parameters.

CONCLUSIONS

The recursive operator by backward substitution might be computationally more efficient,
due to the smaller number of time steps required, when compared to the recursive operator
by time step refinement. However, the long chains of operators required in the former make
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(a) (b)

(c)

Figure 2: Snapshots of the pressure wavefield for (a) the non-linear modeling, (b) back-
ground modeling with the Born approximation and (c) scattering modeling with the Born
approximation. [ER] gcalves/. gauss-nonlinear,gauss-born-bg,gauss-born-sct
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its implementation more difficult.

The recursive operator by time refinement is simpler to implement and is shown to be
stable both in its forward and adjoint formulations.

The PML implementation is efficient, but requires twice as many wavefield computa-
tions due to the required component splitting. When applying the proposed scheme to
problems where computational efficiency is required, the PML method should be limited to
the absorbing boundaries and not to the whole model domain.

The formulation presented here is the first step in describing elastic inversion schemes
in the framework of the adjoint state method. While this is not the only possible approach
to such schemes, this formulation is closer to those developed in the Stanford Exploration
Project for acoustic methods. Such similarity allows for an easier comparison between
acoustic and elastic methods.
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Reverse-time migration using the rapid expansion method
(REM)

Alejandro Cabrales-Vargas

ABSTRACT

Reverse-time migration using the rapid expansion method allows the use of coarse time
steps, and can be used as an alternative to high-order finite difference schemes. Its
implementation using the pseudospectral method avoids the occurrence of frequency
dispersion artifacts, and can be easily adapted to handling anisotropy. I use random
boundary conditions to reduce memory usage.
Tests in two-dimensional synthetic models show the ability of this method to handle
strong velocity and anisotropy contrasts in the presence of complex geology, regardless
of the time resolution of the data.

INTRODUCTION

In recent years, reverse-time migration (RTM) has become a widely used imaging tool to
produce high-quality images of the subsurface, primarily as a consequence of the petroleum
exploration targeting ever more complex geological settings. Strong velocity contrasts, high-
dip events, subsalt targets, and prismatic waves, among many other issues, constitute some
of the challenges that seismic imagers have to deal with in their efforts to deliver the best
possible subsurface images to seismic interpreters.

Although the first references about RTM can be traced back to the mid-70s, people
usually refer to Baysal et al. (1983), Kosloff and Baysal (1983), Gazdag and Carrizo (1986),
and McMechan (1983), among others, who set the basis for the post-stack RTM scenario.
Meanwhile, Claerbout (1971) proposed the cross-correlation imaging condition to construct
the subsurface image from downward- and upward-continued wavefields. This idea was later
applied to forward and backward in time wavefield modeling, thereby constituting the basis
for prestack RTM (Chang and McMechan, 1990; Loewenthal and Hu, 1991).

Solving the wave equation using implicit methods is prohibitive in practice for three-
dimensional datasets (Claerbout, 1985). Therefore, geophysicists have opted for imple-
menting explicit methods, accounting for keeping stability criteria, and avoiding frequency
dispersion. One technique proposed to relax stability criteria and frequency dispersion re-
strictions is the rapid expansion method (REM) (Tal-Ezer et al., 1987; Etgen, 1989; Kosloff
et al., 1989; Jastram and Behle, 1991; Stoffa and Pestana, 2009; Tessmer, 2011). This ap-
proximation is more accurate than the truncated Taylor series based methods. It has been
generally proposed in conjunction with a pseudospectral scheme, thus avoiding the problem
of frequency dispersion. Nevertheless, it is worth mentioning that Jastram and Behle (1991)
implemented the REM using staggered grids to solve elastic wave propagation.

Forward wavefield propagation generally consists of solving the two-way wave equation
forward in time, and injecting a source signature at appropriate locations. Conversely,
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backward propagation consists of solving the same two-way wave equation, now backward
in time, and injecting the receiver dataset of a single shot gather. The imaging condition is
the zero-lag cross-correlation of such wavefields in the time domain for every shot profile.
The final image is obtained by the superposition of the migrated shots. However, the cross-
correlation imaging condition not only constructs reflection events related to the geology
contrasts, but also low-frequency artifacts unique in RTM, caused by the cross-correlation
of wavefronts propagating in the same direction in both wavefields. One solution proposed
to tackle this problem is computing the Poynting vector (Yoon and Marfurt, 2006) to
attenuate such artifacts by controling the angles of propagation of the wavefronts that are
cross-correlated. Alternatively, Liu et al. (2011) proposed wavefield separation, recasting
the imaging condition to perform the cross-correlation of wavefronts propagating in opposite
directions exclusively. I implemented the latter solution to produce the RTM images for
this report.

One problem associated with the cross-correlation of the source and the receiver wave-
fields is that every spatial frame (x,z plane in 2-D; x,y,z volume in 3-D) for all time steps
has to be available, either loaded into memory (what easily overloads it), or stored on disk
(which can make the I/O process rather slow). The reason is because the source and re-
ceiver wavefields are computed sequencially, forward and backward in time, respectively.
Proposed solutions commonly involve checkpoint strategies (Symes, 2007). In this report
l use random boundary conditions (RBC) (Clapp, 2009) to overcome this limitation, and
compare the results to more conventional tapering boundary conditions (TBC) (Cerjan
et al., 1985).

In the first part of this report, I present the formal derivation of the REM and the
anisotropic solver (Zhan et al., 2012). Later, I present the application of the algorithm
to 2D synthetic datasets: the Marmousi model with anisotropy (Alkhalifah, 1997), the
Amoco 1997 2.5D model (Etgen and Regone, 1998; Dellinger et al., 2000), and the Hess
VTI salt model. Then, I discuss the results and propose future steps. Finally, I present the
conclusions of this report.

REVIEW OF THE RAPID EXPANSION METHOD THEORY

In this section I provide a review of the fundamentals of the REM.

Beginning with the 2D acoustic wave equation:

∂2U
∂t2

= −L2U + f , (1)

where U is the displacement field, f is the source term, the operator −L2 = v(x, z)2∇2

(the kernel), involving v(x, z), which is the interval velocity, and the Laplacian operator

∇2 =
∂2

∂x2
+

∂2

∂z2
. (2)

L2 constitutes a matrix in the physical domain, and a scalar in the Fourier domain.
I refer to Equation 1 as the inhomogeneous wave equation because, in general, the source
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term is not zero. When we explicitely set the source term equal to zero, Equation 1 becomes
the homogeneous wave equation.

To perform RTM, we solve Equation 1 forward in time for the source wavefield, and
backward in time for the receiver wavefield. Normally, source and receiver injection is em-
ployed to feed on the wavefields. However, using the REM we employ a different procedure
to compute the source wavefield.

I find useful to set this problem from the point of view of linear algebra, because the
set of solutions of the inhomogeneous wave equation constitutes a linear variety. It is
represented as the superposition of the set of solutions for the homogeneous equation (the
associated vector subspace), and one particular solution of the inhomogeneous equation (a
known vector from the linear variety). The latter constitutes the period when the source
is active, whereas the former constitutes the period after the source has shut down. This
scheme is different to the source injection. On the other hand, the receiver wavefield back-
ward propagation is conventionally solved with the homogeneous wave equation. There is
no source in the sense of an independent term of the wave equation. Therefore, the receiver
data are injected at every time step.

I elaborate more about these solutions in the following.

a) Solution for the homogeneous equation. This is the solution of Equation 1
without the source. We can propose a solution of the form (Stoffa and Pestana, 2009)

U(t + ∆t) = U(t) cosL∆t +
∂U(t)

∂t

sinL∆t

L
. (3)

I dropped the spatial variables to simplify the notation. Now, we state the same solution
backward in time:

U(t−∆t) = U(t) cosL∆t− ∂U(t)
∂t

sinL∆t

L
. (4)

and add it to Equation 3 to obtain:

U(t + ∆t) + U(t−∆t) = 2U(t) cosL∆t. (5)

Equation 5 is structured as a three-point stencil to be solved either forward or back-
ward in time. We need an appropriate approximation for the cosine term to prevent the
occurrence of frequency dispersion. Kosloff et al. (1989) modified the original algorithm
proposed by Tal-Ezer et al. (1987), thereby expanding the cosine term to obtain:

U(t + ∆t) + U(t−∆t) =
M/2∑
k=0

C2kJ2k(∆tR)Q2k

(
iL
R

)
U(t), (6)

where C0 = 1 and Ck = 2 for k > 0, Jk are the Bessel functions of first kind of order k, Qk

are modified Chebyshev polynomials of order k given by the following recursive expressions:
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Q0

(
iL
R

)
= 1, (7)

Q2

(
iL
R

)
= 1−

(
L
R

)2

, (8)

Qk+2

(
iL
R

)
=
[
4
(

L
R

)2

+ 2
]
Qk

(
iL
R

)
−Qk−2

(
iL
R

)
. (9)

Finally, R is a constant that must be set larger than the largest eigenvalue of the operator
L to ensure stability and convergence, and is given by:

R = vmaxπ

√
1

∆x2
+

1
∆z2

. (10)

Convergence is achieved by setting the number of terms of the series to M > R∆t.

As mentioned previously, Equation 6 can be solved both forward in time for the source
wavefield and backward in time for the receiver wavefield, by isolating either U(t + ∆t)
or U(t − ∆t), respectively. During the source wavefield modeling stage, we employ this
solution for the period when the source is no longer active.

b) Particular solution of the inhomogeneous equation: This is the solution for
the source wavefield propagation when the source term is active.

We first assume the source can be represented as:

f(x, t) = g(x)h(t), (11)

where g(x) is the spatial position of the source, usually represented as an impulse
function in x, and h(t) is the source signature. Under this assumption, the formal solution
of Equation 1 is (Jastram and Behle, 1991)

U(x, t) =
[ ∫ t

0

sin(τL)
L

h(t− τ)dτ

]
g(x). (12)

According to Stoffa and Pestana (2009), and Pestana and Stoffa (2010), we can approx-
imate the solution as

U(t,x) = 2
M/2∑
k=1

b2k+1(t)
R

iL
Q2k+1

(
iL
R

)
g(x), (13)

where

bk(t) =
1
R

∫ t

0
Jk(τR)h(t− τ)dτ. (14)
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The odd terms of the Chebyshev polynomials can be recursively obtained as (Chu and
Stoffa, 2012):

R

iL
Q1

(
iL
R

)
= 1, (15)

R

iL
Q2

(
iL
R

)
= 3− 4

(
L
R

)2

, (16)

R

iL
Q2k+1

(
iL
R

)
= 2
[
1− 2

(
L
R

)2] R

iL
Q2k−1

(
iL
R

)
− R

iL
Q2k−3

(
iL
R

)
. (17)

The factor R
iL is included to produce only real terms (even powers of iiL

R ).

When the source shuts down, the source wavefield propagation continues with Equa-
tion 6.

Remember that the number of terms in the summations (Equations 6 and 13) depends on
the product R∆t. R is a function of grid spacing. The finer the grid, the larger R becomes,
and so does the number of terms in the series. Therefore, a finer grid demands more terms for
the summations, more computational time to perform the Fourier transformations, and more
memory usage. On the other hand, reducing the time sampling makes the number of terms
in the series smaller, but increases the time steps, thereby demanding more computational
resources too. There appears to be no point about coarsening or refining the time axis, at
least with regards to run time, although the proof of this statement is beyond the scope of
this report. For practical purposes I keep the original time sampling of the data in all the
examples.

ANISOTROPY AND RAPID EXPANSION METHOD: DECOUPLED
EQUATIONS FOT TILTED TRANSVERSE ISOTROPY

I implement the anisotropy with the pseudodifferential tilted transverse isotropy (TTI)
decoupled equations proposed by Zhan et al. (2012), which are fully compatible with the
REM, and prevents the appearance of residual SV-wave artifacts in the image. I do not
derive here the TTI decoupled equations (the reader is referred to Zhan et al. (2012) for an
excellent and concise derivation), but I merely replicate the terms for two dimensions, to
illustrate their application in this report:

A0 = k2
x + k2

z (18)

A1 = (2ε cos4 θ + 2δ sin2 θ cos2 θ))
k4

x

k2
x + k2

z

(19)

A2 = (2ε sin4 θ + 2δ sin2 θ cos2 θ))
k4

z

k2
x + k2

z

(20)

A3 = (−4ε sin 2θ cos2 θ + δ sin 4θ)
k3

xkz

k2
x + k2

z

(21)

A4 = (−4ε sin 2θ sin2 θ − δ sin 4θ)
kxk3

z

k2
x + k2

z

(22)

A5 = (3ε sin2 2θ − 2δ sin2 2θ + 2δ cos2 2θ)
k2

xk2
z

k2
x + k2

z

. (23)
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In the last expressions, ε and δ correspond to the Thomsen’s parameters (Thomsen,
1986), and θ constitutes the dip field. With these functions we can define a new kernel as

−L2 = −v(x, z)2
[
A0 + A1 + A2 + A3 + A4 + A5

]
. (24)

I note that, other than A0 (which constitutes the isotropic term) we do not always need
apply all terms. In case of vertical transverse isotropy (VTI) media, we can drop all the
sine terms as θ = 0, retaining only shorter versions of A1 and A5. Likewise, in the presence
of eliptical anisotropy (ε 6= 0, δ = 0, θ = 0) only A1 is required.

METHODOLOGY AND IMPLEMENTATION

I implement RTM using the REM using the pseudospectral method, with the TTI decoupled
equations when anisotropy is present. I compare images obtained applying TBC (Cerjan
et al., 1985) to images obtained applying RBC (Clapp, 2009). I implement them by ex-
tending the image space 30 points each side, where such boundary conditions are applied.
I attenuate the low-frequency artifacts by separating the wavefields according to Liu et al.
(2011), thereby correlating wavefronts that propagate in opposite directions, corresponding
to seismic reflections.

The most time-consuming process in REM-based RTM is the series summation. Com-
puting and applying every term of the series is impractical and inefficient, because Cheby-
shev polynomials of different order share the same powers of the kernel, −L2. Every second
power of the kernel signifies one sequence of 1) 2D/3D Fourier transform in space; 2) multi-
plication by the kernel; 3) 2D/3D inverse Fourier transform in space; and 4) multiplication
by the velocity model. A much better approach is to group the precomputed coefficients
of both the Chebyshev polynomials and the Bessel functions, so the computation of every
second power of the kernel is performed only once.

RESULTS

In this section I present the results of applying REM-based RTM to synthetic models.

The first model is the Amoco 1997 2.5D dataset (Etgen and Regone, 1998; Dellinger
et al., 2000), which is particularly challenging because of its high geological complexity and
strong velocity variability (top of Figure 1), and at the same time suitable to test robust
imaging techniques. The RTM results using TBC and RBC are shown at the center and
the bottom of Figure 1, respectively.

The second model is the anisotropic Marmousi dataset (Alkhalifah, 1997) (left side of
Figure 2). The right side of Figure 2 shows the η field that I used instead of the ε field,
while both δ and θ fields are set to zero (Alkhalifah, email communication). The results are
shown in Figure 3.

The third model is the Hess VTI salt model (second version of the dataset obtained
using the SEPlib) (Figure 4). I decimated the dataset to a grid of 160 ft by 160 ft to speed
up the calculations. The results are shown in Figure 5. I compensated the amplitudes by
applying a linear depth gain.



SEP–158 RTM using REM 157

Figure 1: Amoco 1997 2.5D model. Top: Acoustic velocity field. Center: Reverse-time mi-
gration using tapering boundary conditions. Bottom: Reverse-time migration using random
boundary conditions. alejandro/. 1997-stacks

Figure 2: Anisotropic Marmousi model. Left: Acoustic velocity field. Right: η field.
alejandro/. marmousi-ti-vels
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Figure 3: Reverse-time migration of the anisotropic Marmousi model. Left: Us-
ing tapering boundary conditions. Right: Using random boundary conditions.
alejandro/. marmousi-ti-stacks

DISCUSSION

In general, the results in the synthetic models demonstrate that the implementation of
REM-based RTM be useful as an alternative to high-order finite differences approximation,
without requiring any refinement of the recording time sampling.

In the Amoco 1997 2.5D dataset, the REM was capable of handling the strong lateral
velocity contrasts by adequately defining the complexity of the salt layer, and preserving the
steep faults above it, and properly imaging the flat detachment at the bottom of the section.
It is worth noting that the time sampling is coarser than usual: 9.9 ms. Nevertheless, the
results obtained showed that this issue was automatically accounted for by incorporating
enough terms to the expansion series. On the other hand, the anisotropic version of the
algorithm correctly images the Marmousi model with good quality in the definition of the
faults, the shallow reflectors, and the geologic features at the reservoir level. Likewise, the
same algorithm adequately positions the salt body, the faults, and the reservoir reflections
in the Hess VTI model. In all the migrated images there are still weak remnants of low-
wavenumber artifacts.

Regarding the comparison between the boundary conditions, in the three datasets there
is a tendency of the RBC to introduce both coherent and random noise, compared to the
TBC. For instance, the Amoco 1997 2.5D RTM sections exhibit low-wavenumber noise and
reverberating flat noise upon the the high-velocity hanging wall (on top of the thrust fault).
The former appears to consist of remant low-wavenumber reflections that could not be
”randomized” by the RBC. These different types of noise obscure this faint, low-amplitude
part of the section (which has lower amplitude than the footwall in the original dataset). In
contrast, the footwall exhibits some improvement details when using RBC: Layering around
a 1 km depth is better defined, and there are sharper salt-sediment contrasts. Even part of
the large-scale low-wavenumber shadow was attenuated in the footwall.

In the Marmousi RTM sections, we observe the inclusion of random noise when using
RBC. There is neither apparent increase nor reduction of low-wavenumber artifacts.
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Figure 4: Hess VTI model. Top: Acoustic velocity field; center: ε field. Bottom: δ field.
alejandro/. Hess-vels
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Figure 5: Reverse-time migration of the Hess VTI model. Left: Using tapering boundary
conditions. Right: Using random boundary conditions. alejandro/. Hess-stacks

Finally, in the Hess VTI RTM sections we observe aliasing artifacts related to spatial
sampling decimation. Additionally, using RBC introduces random noise, particularly severe
below the salt body, and above and below the reservoir levels. Interestingly, low-wavenumber
noise observed when using TBC is absent using RBC.

CONCLUSIONS AND FUTURE WORK

• RTM implemented via REM produces images of good quality without the necessity of
refining the recording time sampling. The best illustration of this fact is the migration
of the Amoco 1997 2.5D dataset, that is sampled every 9.9 ms.

• TTI anisotropy can be properly handled by REM using the pseudospectral approach,
by means of the TTI decoupled equations.

• Using RBC highly reduces the memory usage, because only two spatial frames of every
wavefield (corresponding to two time steps) are stored in memory.

• The comparisons between random boundaries reveals that in the current implemen-
tation there are still some artifacts related to the RBC, although some improvements
in the sharpness of high-velocity contrasts (e.g., salt flanks) and better definition of
reflections are observed in the Amoco 1997 2.5D RTM image, when using boundary
conditions.

• Although RBC are very promising as an alternative to other optimization strategies
to compute the imaging condition (e.g., checkpointing), in the current implementation
care should be taken to minimize the artifacts.

Future actions include the following:

• Compare the REM performance to high-order finite differences

• Better suppression of the remaining low-frequency shadows in the final image
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• Data-driven estimation of the source wavelet

• Computation of offset-domain and angle-domain common image gathers

• Exploration of more efficient anisotropy solvers

• Computation of the adjoint operator, for subsequent use in least-squares optimization
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Image-based Q tomography using reverse time Q migration

Yi Shen and Tieyuan Zhu

ABSTRACT

We have developed a technique to tomographically estimate a Q model from migrated
images using two-way wavefield continuation. When compared with our previously
proposed technique that uses a one-way downward-continuation method, this technique
better handles steep structures, e.g. salt flanks. Numerical results on a complex model
with a salt body demonstrate the effectiveness of our two-way method for resolving
attenuation in the presence of steep and overturned structures.

INTRODUCTION

Attenuation, parameterized by the seismic quality factor, Q, has considerable impact on
surface seismic reflection data. It degrades the image quality by lowering the amplitude
of events, distorting the phase of wavelet, removing the higher frequencies, and dispersing
the velocity. These effects complicate reservoir interpretation. Therefore it is important to
estimate the properties of this attenuation parameter and to use them for compensating
the attenuated image.

Shen et al. (2013) and Shen et al. (2014) presented a new method, wave-equation mi-
gration Q analysis (WEMQA), to produce a reliable Q model. This method used one-way
wavefield continuation to first migrate the viscoacoustic data with Q compensation for
measuring the Q effects and then back-project these effects to update the current Q model.
This method works well with gentle horizontal variations. However, the one-way method
has limited abilities to represent the actual wave propagation around steep structures, be-
cause propagating the wavefield along only one direction of the depth axis cannot properly
deal with overturned events. In some situations, overturned events provide extremely use-
ful information, e.g. reservoir properties along a salt flank. In principle, two-way wavefield
continuation is capable of modeling these overturned waves. Therefore, we apply two-way
wavefield continuation migration with Q compensation (i.e. reverse time migration with
Q compensation) to produce an image for Q-effect measurements (Zhu et al., 2014) and
update the Q model using a two-way wave-equation tomographic operator to better handle
the steep structures.

In this report, we first describe the theory of two-way migration with Q compensation
and our two-way wave-equation tomographic operator. Then, we apply WEMQA with this
method to a complex model with a salt body to demonstrate the effectiveness of the two-way
method to resolve steep structures.
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THEORY

We incorporate reverse time migration with Q compensation (Zhu et al., 2014) and two-way
wave-equation tomographic operator into WEMQA (Shen et al., 2013, 2014) to estimate Q
model and compensate Q effects.

Reverse time migration with Q compensation

Zhu and Harris (2014) first introduced the time-domain viscoacoustic wave equation based
on the constant Q model (Kjartansson, 1979), which takes the form(

ηL + τH
d

dt
− v−2 ∂2

∂t2

)
P (t) = f(t), (1)

where t is time, P is the propagated wavefield, and f is the source wavefield, v is the acoustic
velocity at the reference frequency ω0. Operators L =

(
−∇2

)γ+1 and H =
(
−∇2

)γ+1/2 are
fractional Laplacians, where the variable γ is defined as γ = 1/π tan−1 (1/Q). The first term
on the left side of Equation 1 is related to dispersion effects, and the middle term on the
left side of Equation 1 is related to the absorption effects (Zhu et al., 2014). The absorption
and dispersion coefficients are given by η = −v2γω−2γ

0 cos πγ and τ = −v2γ−1ω−2γ
0 sinπγ.

We use a pseudo-spectral method in our numerical implementation.

Attenuation damps the higher frequencies more than the lower frequencies of the prop-
agating wave. Compensation through Q migration (Zhu et al., 2014), i.e. the inverse of
forward wave propagation, therefore preferentially boosts higher frequencies. Such ampli-
fication may gain high frequency noise and make these frequencies dominate the image.
Therefore, we add a low-pass filter to help mitigate high-frequency noise artifacts in migra-
tion:

(
∇2 + N(ηL−∇2) + NτH

d

dt
− v−2 ∂2

∂t2

)
P (t) = f(t), (2)

where N is the low-pass filter in the spatial frequency domain.

Two-way wave-equation tomographic operator

Image-based wave-equation Q tomography is a nonlinear inversion process that aims to find
the Q model that minimizes the residual field in the image space, ∆I (x,h). This residual
image can be approximated by a linearized operator applied to the model perturbation ∆Q:

∆I (x,h) =
∑
y

∂I (x,h)
∂Q (y)

|Q0 ∆Q (y) , (3)

where x and y are the coordinates of the image and model, respectively. h is the subsurface
offset and Q0 is the background quality factor. The adjoint of this tomographic operator
projects the image perturbation back into the Q model space. The back-projected changes
in the model space are used as gradient directions to conduct a line search in an optimization
scheme. This back-projection can be expressed as follows:
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∆Q (y) =
∑
y

(
∂I (x,h)
∂Q (y)

|Q0

)∗
∆I (x,h) (4)

The derivative of I (x,h) with respect to Q is the sum of the attenuation-induced perturbed
source wavefield multiplied by the background receiver wavefield and the attenuation-
induced perturbed receiver wavefield multiplied by the background source wavefield:

∂I (x,h)
∂Q (y)

|Q0

=
∑
xs,xr

(
∂G (x− h,xs;Q0)

∆Q (y)

)∗
G∗ (x + h,xr;Q0)d (xr,xs)

+
∑
xs,xr

G∗ (x− h,xs;Q0)
(

∂G (x + h,xr;Q0)
∆Q (y)

)∗
d (xr,xs) ,

(5)

where xs and xr are the source and receiver coordinates respectively, G is the Green’s
function, and d are the surface data. The attenuation-induced perturbed wavefield can be
linearized using a Taylor expansion as follows:

∂G (x,xs;Q0)
∂Q (y)

= −∂η (y;Q)L (y;Q)
∂Q (y)

|Q0 G (y,xs;Q0) G (x,y;Q0)

−∂τ (y;Q)H (y;Q)
∂γ

|Q0

d

dt
G (y,xs;Q0) G (x,y;Q0)

∂G (x,xr;Q0)
∂Q (y)

= −∂η (y;Q)L (y;Q)
∂Q (y)

|Q0 G (y,xr;Q0) G (x,y;Q0)

−∂τ (y;Q)H (y;Q)
∂γ

|Q0

d

dt
G (y,xr;Q0) G (x,y;Q0)

(6)

where:
∂η (y;Q)L (y;Q)

∂Q (y)
|Q0

= −
(2η ln v − 2η lnω0 − πvτ)L + ηL ln

(
−∇2

)
π
(
Q2

0 + 1
)

∂τ (y;Q)H (y;Q)
∂γ

|Q0

= −
(
2τ ln v − 2τ lnω0 + πv−1η

)
H + τH ln

(
−∇2

)
π
(
Q2

0 + 1
) .

(7)

NUMERICAL RESULTS

Our numerical example employs a dataset generated by Schlumberger (Cavalca et al., 2013)
using a 2D viscoacoustic version of the 2004 BP benchmark model (Billette and Brandsberg-
Dahl, 2005). An attenuation model was added by Schlumberger to the original 2004 BP
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models. This Q model is not released, but its location and value has been shown by
Schlumberger (Cavalca et al., 2013). The attenuation model is a space- and depth-variant
absorption model made of several Q heterogeneities and a nonattenuative background (1/Q
= 0.0002). To test the effectiveness of our method on the steep structure, we only focus our
work on the salt region, which has a large attenuative zone (1/Q = 0.02) near the left of the
salt flank. A velocity model for this region is shown in Figure 1. The viscoacoustic surface
seismic data generated by Schlumberger used a finite-difference modeling code based on
standard linear solid theory. In my example, 248 shots are used with 100 m spacing, and
the offsets range from -15,000 m to 15,000 m. Receivers are distributed on both sides of each
shot at an increment of 25 m. The cut-off frequency that we used to filter out the noise in
the reverse-time migration was 30 Hz, which is 60% of the maximum useful frequency. The
workflow used in this numerical example has been presented by Shen et al. (2013, 2014).

Figures 2 and 3 are the attenuated images from the viscoacoustic data using one-way and
two-way Q migration with a nonattenuating model, respectively. The results show that the
events beside the salt flank are attenuated in terms of the amplitude dimming, incoherency
of the events, and stretching of the wavelets. Both migrations image the structure with
gentle horizontal variation well. However, Figure 2 shows a poorer image around the salt
flank when compared with Figure 3. The salt flank in Figure 2 is not focused. The regions
beside the salt have discontinuous events and are contaminated with high-frequency noises.
Figure 3 shows a sharper and clearer salt flank. The image around the salt is cleaner with
less high-frequency noise and the events are more coherent.

The next step is to invert for the Q model besides the salt flank from these attenuated
images using the wave-equation migration Q analysis developed by Shen et al. (2013, 2014).
The initial model for the inversion has no attenuation. We analyze the attenuation effects
by calculating the slope of the logarithm of the spectral ratio between the windowed events
of each trace and the events in the reference window at the same depth. The window size
is 1500 m, and 100 sliding windows are used for each trace. The reference trace is the one
at 24,000 m. Figure 5 and Figure 6 are the inverted Q model using one-way and two-way
WEMQA, respectively. Figure 5 fails to resolve the Q model in area besides the salt flank,
because one-way propagation is not able to accurately reflect the steep structure. Figure
6 shows that a two-way method retrieves the Q model in the reservoir region beside the
salt well; especially at the upper part of the salt flank, which matches well with the true
Q model. However, it still fails to update the Q model at the lower part of the salt flank
because of the high-frequency image artifacts at that area. Figure 4 is the image using
two-way migration with the inverted Q model shown in Figure 6 for compensation. The
results show that the image at the lower region is not well compensated because of the weak
updating of the Q model there. Therefore, a filter, e.g. a curvelet-transform-based filter, is
needed to mitigate the image noise. But, the events in the rest of the part beside the salt
flank are compensated. Their amplitudes are partially recovered, events are more coherent,
and phases are corrected.

CONCLUSION

This report has presented a new wave-equation migration Q analysis based on a two-way
wavefield continuation method. When compared with previous work that uses a one-way
downward-continuation method, the two-way based method is better in handling the steep
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Figure 1: BP velocity model. The circles approximately show the location of the attenuation
zone besides the salt flank, with the lowest Q value of Q = 50. [ER] yishen2/. bpVelAnn
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Figure 2: Attenuated images from the viscoacoustic data using one-way Q migration with
a nonattenuating model. As shown in the circles, the salt flank is not focused, and the
regions beside the salt have discontinued events and are contaminated with high-frequency
noises. [CR] yishen2/. bpImgOneAnn
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Figure 3: Attenuated images from the viscoacoustic data using two-way reverse-time Q mi-
gration with nonattenuating model. As shown in the circles, the salt flank is sharp and well-
focused. The image around the salt is cleaner with less high-frequency noises, and the events
becomes more coherent, when compared with Figure 2. [CR] yishen2/. bpImgRtmAnn
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Figure 4: Compensated image using two-way reverse-time Q migration. The result shows
the image at the lower region is not well compensated because of the weak updating of
the Q model there. But the other events alongside the salt flank are compensated. [CR]
yishen2/. bpImgQrtm
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Figure 5: The inverted Q model using one-way wave-equation migration Q analysis. The
result fails to resolve the Q model in the area besides the salt flank, because one-way
propagation is not able to accurately reflect the steep structure. [CR] yishen2/. bpQOne
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Figure 6: The inverted Q model using two-way wave-equation migration Q analysis. The
result retrieves the Q model in the reservoir region beside the salt well; especially near the
upper part of the salt flank. However, it still fails to update the Q model near the lower
part of the salt flank because of the high-frequency image artifacts at that area. [CR]
yishen2/. bpQRtm
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structures, e.g. salt flanks. Numerical tests on a complex model with a salt body demon-
strate the effectiveness of this two-way method on handling the overturned wave propagation
caused by steep structures.
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Approximating Q propagation to speed up finite differences

Robert G. Clapp

ABSTRACT

Propagating wave-fields using explicit finite difference is the kernel for Reverse Time
Migration (RTM) and high end velocity analysis algorithms. To avoid grid dispersion
artifacts, the cost of propagation is proportional to the frequency of the energy being
propagated raised to the fourth power. Attenuation in the earth tends to decrease
usable frequencies as a function of time. By using an approximation to the wave
equation for attenuated media, to save computation, we can approximate the earth’s
behavior. As a result we can use coarser sampling at large time. Combined with
limiting grid propagation to around the source at early times we can achieve large
speedups in modeling, migration, and potentially velocity analysis.

INTRODUCTION

Imaging and velocity analysis are the most computationally intensive parts of seismic pro-
cessing. As a results researchers are always trying to find ways to speedup these processes
(Bednar and Neale, 2002; Stork, 2013). One approach used to speed up downward continu-
ation based algorithms is to recognize that the earth attenuates seismic signals. As a result,
as we push the wave-field down in depth, we can ignore higher and higher frequencies and
still obtain an accurate image(Clapp, 2002). This approach lowers the cost as you increase in
depth. This technique is well suited for downward continuation based approaches which are
done frequency by frequency. Reducing the frequencies downward continued as a function
of depth is particularly effective in combination with recognizing that there was no reason
to propagate waves a large distance from the source at early times. While following the
wavefield is used routinely in RTM, taking advantage of attenuation is not commonly used.
Reasons include: the cost of propagation with an attenuated wave equation, attenuation is
a function of medium parameter, and propagation is generally done in the the time, rather
frequency domain.

In this paper I use a constant-Q approximation based on the work of Zhu and Harris
(2014). As I propagate my source I resample my medium based on the maximum frequency
that has not been significantly attenuated. Combining this approach with following the
wave-field, I show that I can achieve significant computational speedups.

MODELING

Explicit finite difference modeling is constrained by figuring out a sampling in time and
space that results in stable propagation and does not create dispersive events. For stability
the Courant-Friedrichs-Lewy condition (Courant et al., 1967) must be met. Stability is a
function of limiting what percentage of a grid cell energy can move in one time step. Stability
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is therefore a function of the maximum velocity vmax, the minimum spatial sampling dmin,
and the time step dt. For stability,

vmax
dt

dmin
< .5. (1)

The stability condition pushes one to use larger spatial sampling (faster, but less resolution)
and/or finer time sampling (more expensive). Dispersion, on the other hand, is a function
of the minimum velocity vmin, the maximum frequency fmax, and the maximum spaital
sampling dmax. To avoid grid dispersion we need to sample a given frequency with a
minimum number of points. There isn’t a consensus on the minimum number of points.
For the purpose of this paper I will require 3.2 points therefore,

vmin

fmaxdmax
> 3.2. (2)

The dispersion constraint pushes us towards smaller (more expensive) spatial sampling,
because of the stability constraint, and results in smaller the steps. Minimizing dispersion
is the real reason for the expense of finite differences. To avoid grid dispersion and achieve
the same level of stability the number of operations increase by the fourth power (three due
to space sampling and one for time).

From observation we know that the earth attenuates acoustic signals. Attenuation varies
as a function of frequency and earth materials. The first approximation I am going to use
is the concept of the constant Q model introduced by Kjartansson (1979). Q is defined as

Q = 2π

(
E

∂E

)
, (3)

where E
∂E is the fraction of energy lost per cycle. The larger the Q value, the less energy loss

per cycles. The constant Q assumption assumes that energy dies out is a function of the
number of wavelengths traveled through a medium. The higher the frequency, the faster
the energy is attenuated.

Constant-Q Formulation

Building on this foundation Zhu and Harris (2014) used a fractional Laplacian approach to
perform attenuated propagation in the time domain. Given a forcing function f(t) and the
wave-field P (t) they proposed the equation,[

ηL + τH
d
dt

− v−2 ∂2

∂t2

]
P (t) = f(t), (4)

where

L =
(
−∇2

)γ+1 (5)

H =
(
−∇2

)γ+1
2 . (6)

The constants in equation 4 are defined as

η = −v2γw−2γ
0 cos πγ, (7)



SEP–158 Approximate Q 177

τ = −v2γ−1w−2γ
0 sinπγ, (8)

and
γ =

1
tan−1 1

Q

. (9)

The first term in equation 4 deals the dispersive effect of attenuation. The middle term deals
damping. For a constant Q approximation I can further simplify equation 4, approximating
∇2 for H. My resulting equation is then[

∇2 − τ∇2 d

dt
− v−2 ∂2

∂t2

]
P (t) = f(t). (10)

Figure 1 shows the wave-field using the standard acoustic wave equation (left) and an
attenuation wave-field (right). Note the difference in the frequency content. This is can be
more clearly seen in Figure 2 which shows the spectrum of wave-field at .3, 1.3, 2.3, and 3.3
seconds with Q = 200. Notice the energy decay of frequency over time. The key observation
is that there is no reason to worry about dispersion at frequencies that have attenuated.
Specifically, I redo my dispersion calculation (equation 1) several times while propagating
a wave-field. At each time block I use a fmax based on frequencies whose energy has not
been reduced more than some percentage (in this paper 96%). As a result, as I forward
propagate in time my grid cells, and if I desire, time sampling, get larger. Figure 3 shows
the speedup factor (defined as the number of grid cells times time steps) as a function of
propagation time for different Q values. The longer the time record, the more using Q pays
off in terms speed up. Using this approach the early time steps dominate the computation.
For example assuming an initial maximum frequency of 90Hz and a constant velocity of
2000m/s, a Q value of 200, the total speedup is 4 even though most of the propagation
time shows significantly more speedup. Figure 4 shows the speedups for Q values ranging
from 150 to 350.

Figure 1: The wave-field with the standard acoustic wave equation (left) and the attenuated
wave-field (right) at the same time. [ER] bob1/. qnoq

Another speedup trick used by many when doing modeling/migration is to recognize that
there is no need to propagate the wave-fields significantly away from the source at early
times. The number of cells we need to propagate increases as a power of three (expanding
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Figure 2: The frequency of the wave-
field at various times. Note the re-
duction of the high frequencies over
time. Note at .3 seconds, total am-
plitude is less because the source
has not been fully injected into the
medium. [ER] bob1/. spectra

Figure 3: Speedup values as a func-
tion of propagation time for Q values
ranging from 150 to 350. Note how
the longer the time record the more
the computation is sped up. [ER]
bob1/. timeQ

Figure 4: Total speedup for differ-
ent values of Q. Note the relatively
small speedups compared to what
one might expect looking at Fig-
ure 3. Total time is the inverse of
the sum of the inverses of speedups.
[ER] bob1/. qtot
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wave-field) in modeling, and somewhat less in migration due to the spatial extent of our
receivers. This speedup trick is most effective at early times and useless at late times when
energy has propagated throughout the model, the opposite behavior as the constant-Q trick.
Figure 5 shows a typical wide azimuth geometry and the speedup as a function of time again
assuming 2km/s medium. Total speedup for following the source is only 2-2.5. Combining
the two tricks is where we begin to see big payoffs. The left plot of Figure 6 shows the
result of combining the two approaches for different values of Q. The right plot shows the
total speedup as a function of Q. Note how the maximum cost is in the 1 to 3 second
range depending on the value of Q. Without following the wave-field the total speedup
ranged from 1.8 to 4, we now get speedups between 15 and 250. Calculating speedup

Figure 5: Speedup by following the
wave-field in the case of modeling
a single shot and in the case of an
array of receivers. Note how these
curves move in the opposite direc-
tion to those in Figure 3. [ER]
bob1/. follow

Figure 6: The left plot shows speed up as a function of propagation time for a series of Q
values. The right plot shows the total speedup as a function of Q. Note on the left how
total speedup is a combination of the trends shown in Figures 3 and 5. Note on the right
the significant speedup compared to those shown in Figure 4. [ER] bob1/. timeTot

numbers is far from an exact science. My choice of a low constant velocity helps me by
improving the speedups due to following the wave-field and hurts me by allowing larger time
steps. Computational time and the number of grid cells do not completely linear relation.
Smaller grids, means better cache behavior, and can lead to significant improvements in
performance. In addition my propagator is more expensive than the standard acoustic
propagator which isn’t taken into account.

The basic algorithm for modeling is shown in Algorithm 1. Figure 7 shows the wave-field
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Algorithm 1 Forward propagation
1: for timeblock 0...n do
2: Calculate max frequency of interest relevant at the beginning of time window
3: Calculate max extent of wave-field at end of time window
4: Calculate sampling of medium and time based on stability/dispersion constraints
5: Resample wave-field and velocity
6: for t=0...n in timeblock do
7: Propagate wave-field with Q approximation
8: Inject source
9: if Imaging step then

10: Store wave-field
11: end if
12: end for
13: end for

propagating through a relatively complex synthetic after 2 seconds using resampling tricks
(left) and a static grid (right).

Figure 7: The left panel shows the wave-field using a static grid, the right panel using the
approach outline in algorithm 1 both using equation 10. Note the low frequency artifact in
the right panel, but otherwise the plots are nearly identical. [ER] bob1/. sampleCompare

MIGRATION

Applying the method described above to RTM is relatively straightforward. Modeling
is done using the approach outlined in algorithm 1. Back propagation starts with low
frequencies and then increases in frequency at smaller times. For real data there is no need
to use the approximate Q propagator because the whole assumption of this approach is that
there is no useful information at high frequencies at large times. The back projection step
is described in algorithm 2.

Figure 8 shows the result of migrating a single shot using a standard static grid, left,
and a changing grid, right. There is significantly more noise, particularly away from the
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Algorithm 2 Backward propagation for real data
1: for timeblock n...0 do
2: Calculate max frequency of interest relevant at the beginning of time window
3: Calculate max extent of wave-field at end of time window
4: Calculate sampling of medium and time based on stability/dispersion constraints
5: Resample wave-field, velocity
6: Resample temp image to full image and sum
7: Create temp image
8: for t=n..0 in timeblock do
9: Propagate wave-field

10: Inject source
11: if Imaging step then
12: Apply imaging condition store in temp image
13: end if
14: end for
15: end for

main energy train, using the variable grid, but the main energy train is nearly identical.
Figure 9 shows the result of migrating an entire dataset using the changing grid method.
After summing all the shots the artifacts seen in Figure 8 have disappeared.

Figure 8: The left plot shows the result of migrating a single shot using a static grid,
the right plot shows the result using the changing grid described by algorithms 1 and 2.
Note the spurious energy away from the main energy train using the changing grid. [ER]
bob1/. single

DISCUSSION

The tests shown in this paper are limited to modeling and migration. Another obvious
area to apply these techniques is velocity analysis. For waveform inversion techniques that
rely on low frequencies this approach will lead to minimal speedup advantages but the
cheap approximation of attenuation might prove useful. The big advantage is for Wave
Equation Migration Velocity Analysis(Zhang and Biondi, 2014) and Total Full Waveform
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Figure 9: The result of migrating an entire dataset using the changing grid approach. Note
how the artifacts seen in Figure 8 are not apparent in the final migration. [CR] bob1/. full
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Inversion(Almomin, 2014) techniques. In addition to potentially a better approximation of
matching the physics of the real data, these technique are interested in large time records
and higher frequencies, which is where this approach leads to significant performance im-
provments. The reduction in data size, resulting from coarser sampling of the wave-field
could also prove useful.

CONCLUSIONS

I use an approximation to Zhu and Harris (2014) to simulate propagation in an attenuated
earth. I take advantage of the fact that frequencies decay with time by resampling my
propagation grid at later times. Combining this approach with following the wave-field
leads to significant speedups in modeling and RTM. The approach is also potentially useful
for Wave Equation Migration Velocity Analysis and Total Full Waveform Inversion.
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Using a nonlinear wave equation for anisotropic inversion

Huy Le, Biondo Biondi, Robert G. Clapp and Stewart A. Levin

ABSTRACT

We present some preliminary results on a specific nonlinear pseudo-acoustic wave
equation in anisotropic media, including forward modeling, linearization, and adjoint
method. Our objective is to find a robust and efficient method for anisotropic full-
waveform inversion (FWI). The wave equation is solved discretely by the rotated stag-
gered finite-difference scheme (RSFD) in time and space domains. The solution is more
accurate than the one obtained using the centered finite-difference (CFD) scheme. The
linearized equation is derived by taking only the first-order dependence of the wave-
field with respect to medium parameters. The nonlinearity of the pseudo-acoustic wave
equation introduces an additional term in the linearized equation. The adjoint method
provides a mean to compute the gradients of the least-squares misfit objective func-
tion with respect to medium parameters through the adjoint wavefield. As a result
of solving the forward equation by RSFD, the medium parameters are located on two
different grids. We show that the gradients computed by the derived adjoint equation
are in fact collocated consistently with the medium parameters. Applications on simple
models, in both vertically transverse isotropic (VTI) and orthorhombic media, show
that they also lead to the correct update directions. These results show the potential
of our method for anisotropic parameter estimation.

INTRODUCTION

Though anisotropy has been recognized by the industry to play an important role in seismic
imaging and inversion, its multiparameter nature remains a great challenge. In an attempt
to reduce the number of parameters, Alkhalifah (1998) introduced a pseudo-acoustic approx-
imation, under which shear-wave velocities along the symmetry axes are set to zero. This
approximation reduces the number of anisotropic parameters to three for VTI (vpz, ε, and
δ) and to six for orthorhombic media (vpz, εi, and δi). The pseudo-acoustic approximation
results in an equation for P-wave in frequency-wavenumber domain as follows:(

ω2 − v2
pzk

2S
)
u = 0, (1)

where u is the pressure wavefield, ω is the angular frequency, k is the wave vector, and
S = S (n, εi, δi); with n being the normalized wave vector. Mathematically, S is a pseudo-
differential operator, whose expressions for VTI and orthorhombic media can be found in
the Appendix A (equations B-4 and B-5, respectively). Physically, it controls the degree of
anisotropy along different propagation directions. For isotropic media, S = 1.

Equation 1 is a pseudo-differential equation, which can be computationally expensive
to solve (Song and Alkhalifah, 2013; Le and Levin, 2014) because S incorporates all the
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anisotropic parameters. To overcome the computational intensity of solving equation 1, Xu
and Zhou (2014) introduced the following approximation:

n ≈ ∇u

|∇u|
. (2)

By regarding the wavefront normal, n, as the direction of greatest change in the pressure
wavefield, ∇u, this approximation ignores any amplitude variation with angle, but is exactly
correct for plane waves. For this reason, the approximation 3 might be called plane-wave
approximation. Assuming local homogeneity, the linear pseudo-differential equation 1 now
becomes a nonlinear differential equation:

∂2
t u− v2

pz∇ · (S∇u) = 0. (3)

The nonlinearity comes from the dependence of the scalar term, S, on the wavefield, u, as
a result of the approximation 3.

Forward modeling

Efficient solution to the forward modeling problem is crucial to any imaging and inversion
process. Xu and Zhou (2014) solved equation 3 by a spectral method. However, using a
spectral method to solve equation 3 is as expensive as solving equation 1. Taking advantage
of the fact that equation 3 is no longer a pseudo-differential equation, we propose to use
finite differences to solve this equation instead of spectral methods.

Equation 3 involves first derivatives, which can be inaccurately approximated by CFD.
Figure 1 compares two snapshots of the wavefield solutions for pseudo-differential equation
1 by spectral method (panel a) and equation 3 by CFD (panel b). Similar artifacts as
shown in Figure 1b were recognized by Ozdenvar and McMechan (1996) as a consequence
of the nonlocality of the first-derivative CFD operator. To obtain an efficient and accurate
solution, we use the RSFD scheme to solve equation 3 (Saenger et al., 2000).

Figure 2 shows a representative cell of the RSFD scheme in 2D, in which the pressure
wavefield and its derivatives are located on two different grids that are staggered from each
other: the main grid, denoted by circular nodes, and the staggered grid, denoted by square
nodes. Consequently, the vertical P-wave velocity, which is associated with the wavefield,
and the Thomsen parameters, which are associated with its first derivatives, are also on
different grids. Figure 3a shows a snapshot of the wavefield using RSFD that is more
accurate than the one using CFD (Figure 1b). However, when viewed at a harder clip,
Figure 3b reveals high-frequency noise generated around the source injection area. This
noise can be mitigated by a smaller time step or a larger source area.

Beside the high-frequency artifacts around the source area, the RSFD solution to equa-
tion 3 (Figure 3a) shows some amplitude differences in comparison to the solution to
equation 1 by a spectral method (Figure 1a). These differences are expected because the
plane-wave approximation 3 neglects amplitude variation along wavefronts. Despite these
differences, the RSFD solution matches the traveltimes of the spectral solution.
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(a) (b)

Figure 1: Wavefield snapshots of solutions to: (a) equation 1 by spectral
method and (b) equation 3 by CFD in a homogeneous VTI medium. [ER]
huyle/. acoustic.vti.k1,acoustic.vti.s11

Figure 2: A representative cell of the
RSFD scheme in 2D, in which the
wavefield and velocity are located on
the main grid while the anisotropic
parameters and wavefield derivatives
are located on the staggered grid.
[NR] huyle/. rsgrid

u, vpz

∂xu, ∂yu

ε, δ
x~

z~

z
x

(a) (b)

Figure 3: Modeling pseudo-acoustic wave equation in a homogeneous VTI medium using
RSFD: (a) default clip and (b) hard clip revealing high-frequency noise around the source
area. [ER] huyle/. acoustic.vti.s1,acoustic.vti.s1.clip
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Linearization

Define m1 = 1
v2

pz
and mi with i > 1 being the anisotropic parameters, εi and δi, or some

combinations of them. In VTI for example, one possibility is m2 = 1 + 2ε and m3 = ε− δ,
whereas in orthorhombic media, mi with i = 2, ..., 6 can just be the anisotropic parameters.
With the source term, f , the wave equation 3 is re-written on the domain Ω, together with
initial and boundary conditions, as:

m1∂
2
t u−∇ · (S∇u) = f, (4a)

u(x, 0) = 0, ∂tu(x, 0) = 0, (4b)
u|∂Ω = 0. (4c)

These equations give a nonlinear relationship between the pressure wavefield and the model
parameters. For the purpose of least squares reverse time migration and inversion, the
first-order Born modeling operator is needed. The Born operator is the derivative of the
modeling function with respect to model parameters. It is obtained by linearizing the
forward modeling equations 4.

Perturb equations 4 to obtain (see Appendix A for a detailed derivation):

m1∂
2
t δu−∇ · (A∇δu) = δf, (5a)

δu(x, 0) = 0, ∂tδu(x, 0) = 0, (5b)
δu|∂Ω = 0, (5c)

where

A = SI +∇u

(
∂S

∂∇u

)T

, (6)

and

δf = −∂2
t uδm1 +∇ ·

[(∑
i>1

∂S

∂mi
δmi

)
∇u

]
. (7)

Equation 5 is a linear partial differential equation for the perturbed wavefield, δu, because
the differential operator now does not depend on the perturbed wavefield but on the back-
ground wavefield, u. As a result, they give a linear relationship between the perturbed
wavefield and the perturbed model pamareters. Compared to the nonlinear forward model-
ing equation 4a, the linearized equation 5a has an additional term, ∇u

(
∂S

∂∇u

)T
, incorporated

in A (equation 6). This is a result of the nonlinearity of equation 4a.

Based on the fact that when the pertubation is small enough, the perturbed wavefield
is a good approximation to the difference between the full and background wavefields to
the first order, we design a test for the linearized equations 5 with a point perturbation.
The amount of perturbation is 5% in velocity and 50% in Thomsen parameters. Figure
4 and Figure 5 are the test results for a VTI and an orthorhombic media respectively.
Although these figures display high-frequency artifacts and amplitude differences as seen
earlier (Figure 3), they show a similarity between the perturbed wavefield and the wavefield
difference. This similarity validates the linearized equations 5.
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(a) (b)

Figure 4: Linearization test in a VTI medium: (a) difference between the full and the
background wavefields (b) the perturbed wavefield obtained by solving equation 5. [ER]
huyle/. vti.d.snap.filtered,vti.l.snap.filtered

(a) (b)

Figure 5: Linearization test in an orthorhombic medium: (a) difference between the full
and the background wavefields (b) the perturbed wavefield obtained by solving equation 5.
[CR] huyle/. filtered.ortho.diff.wfield1,filtered.ortho.lin.wfield1
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Adjoint method

Gradients of the FWI objective function were originally derived by using Green’s functions
(Tarantola, 1984). Because the acoustic isotropic wave equation is a linear partial differential
equation, it was possible to express its solution in terms of Green’s functions. The equation
at hand (equation 3) is, however, not linear; and therefore Green’s theorem is not applicable
in this case. As a result, we have to employ the adjoint method to derive the objective
function’s gradients.

The adjoint method provides an efficient way to obtain gradients of the FWI objective
function through solution of an adjoint equation. Following Liu and Tromp (2006), the
least-squares misfit function is defined as:

χ =
1
2

∑
r

∫ T

0
‖u(xr, t)− d(xr, t)‖2dt, (8)

where xr are the receivers’ locations, T is the final time, and d(xr, t) is the observed data.

The augmented Lagrangian is:

χ =
1
2

∑
r

∫ T

0
‖u(xr, t)− d(xr, t)‖2dt +

∫ T

0

∫
Ω

λ
[
m1∂

2
t u−∇ · (S∇u)− f

]
dV dt, (9)

where
∫
Ω dV is the volumetric integration.

The perturbed augmented Lagrangian is:

δχ =
∫ T

0

∫
Ω

∑
r

[u(xr, t)− d(xr, t)] δ(x− xr)δudV dt

+
∫ T

0

∫
Ω

λ
[
δm1∂

2
t u−∇ · (δS∇u)− δf

]
dV dt

+
∫ T

0

∫
Ω

λ
[
m1∂

2
t δu−∇ · (S∇δu)

]
dV dt,

(10)

which, after some integration by parts and algebra manipulations (Appendix B), becomes:

δχ =
∫ T

0

∫
Ω

∑
r

[u(xr, t)− d(xr, t)] δ(x− xr)δudV dt

+
∫ T

0

∫
Ω

[
δm1λ∂2

t u +∇λ ·

(∑
i>1

∂S

∂mi
δmi

)
∇u− λδf

]
dV dt

+
∫ T

0

∫
Ω

[
m1∂

2
t λ−∇ ·

(
AT∇λ

)]
δudV dt

+
∫
Ω

m1 (λ∂tδu− ∂tλδu) |T dV

−
∫ T

0

∮
∂Ω

n̂ · λ

[(∑
i>1

∂S

∂mi
δmi

)
∇u + A∇δu

]
dsdt,

(11)

where δ(x− xr) is the delta function centered at the receivers’ locations and
∮
∂Ω ds is the

surface integration.
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Define the adjoint equations, with final and boundary conditions, as:

m1∂
2
t λ−∇ ·

(
AT∇λ

)
= −

∑
r

[u(xr, t)− d(xr, t)] δ(x− xr), (12a)

λ(x, T ) = 0, ∂tλ(x, T ) = 0, (12b)
λ|∂Ω = 0. (12c)

Notice that, as with the linearized equation (equation 5), the above equation is also linear
with respect to the adjoint wavefield because the differential operator of equation 12 does
not depend on λ but on the background wavefield, u. Now equation 11 becomes:

δχ =
∫ T

0

∫
Ω

[
δm1λ∂2

t u +∇λ ·

(∑
i>1

∂S

∂mi
δmi

)
∇u− λδf

]
dV dt. (13)

Partial derivatives of the misfit function with respect to the model parameters can now be
read from equation 13 as:

∂χ

∂m1
=
∫ T

0
λ∂2

t udt, (14)

and for i > 1:
∂χ

∂mi
=
∫ T

0
∇λ · ∂S

∂mi
∇udt. (15)

These derivatives can be easily casted in terms of Thomsen paramaters, for example in VTI,
as:

∂χ

∂ε
= 2

∂χ

∂m2
+

∂χ

∂m3
, (16)

and
∂χ

∂δ
= − ∂χ

∂m3
. (17)

Equation 14 shows that the gradient of the objective function with respect to the squared
vertical P-wave slowness is calculated from the adjoint wavefield and the second-order time
derivative of the forward wavefield, both of which are located on the main grid. Equation
15 shows that the gradients with respect to mi with i > 1 or the Thomsen parameters are
computed from first derivatives of the forward and adjoint wavefields, which are located
on the staggered grid. These computations are consistent with the locations where these
parameters are defined (Figure 2).

We have solved the forward modeling and adjoint equations for simple cases. The first
one is a model with a small perturbation point at the center of a homogeneous VTI medium.
There are 800 receivers at 5 meters apart placed everywhere on the surface. Figures 6a
through 6d show, respectively, the model, full data, and background data; as well as the
residual for one shot. The full and background data are displayed at clip of 95% to reveal
the reflection from the perturbation. These data and the residual are contaminated by
the high-frequency artifacts mentioned earlier. Figures 7a through 7f show snapshots of
the source wavefield and adjoint wavefield. Although the adjoint wavefield is degraded by
noise, it is still able to focus at the perturbation point at 0.4 second. Cross-corelation and
stacking over multiple shots help to reduce the effect of this noise. Figures 8a through 8c
show, respectively, gradients of slowness squares, ε, and δ, using 40 shots at 100 meters
spacing everywhere on the surface. These gradients focus clearly at the perturbation point.
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In another model, the background consists of two homogeneous VTI layers and the
perturbation is a rectangular box embedded in the top layer (Figure 9). We use positive
perturbations in velocity and Thomsen parameters. There are 800 receivers and 40 shots
placed everywhere on the surface with similar spacing as in the previous example. Figures
10a through 10c show to the full data, background data, and the residual for one shot.
Figure 11 shows the gradients of the objective function with respect to: squared vertical
P-wave slowness (panel a), ε (panel b), and δ (panel c). These figures show that the gradi-
ents accurately identify the perturbation, and indeed, lead to the correct update directions.
Similarities between the slowness squares and ε gradients can be observed. These similar-
ities might indicate cross-talks between these two parameters. The δ gradient is the most
accurate in identifying the perturbation’s shape but is the weakeast in terms of magnitude
relative to the other two gradients. The small magnitude of the δ gradient is an indica-
tion of limited ability to invert for δ from surface reflection data. Additionally, notice the
V-shaped sensitivity regions of the shots that are located on the edges of the model.

We carried out 100 inversion iterations in the time domain using a Ricker wavelet of 40-
Hertz (Hz) fundamental frequency. We employ the steepest decent algorithm and calculate
the step length from a parabolic interpolation in the search direction (Vigh and Starr,
2008). Figure 12 shows the model updates after the first iteration (left column) and after
100 iterations (right column) in velocity (top row), ε (middle row), and δ (bottom row).
Improvements in resolving the magnitudes and shape of the perturbations are noticeable
after 100 inversion iterations compared to the first-iteration results. Figure 13 shows the
objective function decreasing with iterations.

For orthorhombic media, we only computed the sensitivity kernels for one shot and one
receiver in different directions in a homogeneous subsurface. These kernels are shown in
Figures 14, 15, and 16 for sources and receivers separated in the x-, y-, and z-directions,
respectively. It can be noted from these figures that the sensitivity kernels of slowness
squares are always nonzero, regardless of the source-receiver’s direction. On the other
hands, εi and δi are insensitive in certain planes when the source and receiver are apart
in certain directions. This difference between the sensitivity kernels of slowness squares
and Thomsen paramaters might be because slowness or velocity has first-order influence
on seismic signature in anisotropic media in comparison to Thomsen parameters. The
insensitivity of Thomsen parameters in certain planes, however, will not affect the ability
to invert for these parameters when there are more sources and receivers covering wider
apertures and azimuths. It can also be observed that the planes of insensitivity interchange
between εi and between δi when the source and receiver are separated in different directions.
For example, ε1 is insensitive in the xz-plane when the source and receiver are apart in the x-
direction; whereas, ε2 is insensitive in the yz-plane when the source and receiver are apart in
the y-direction. This interchangeability is consistent with how these parameters are defined:
ε1 is the Thomsen parameter in the yz-plane; whereas, ε2 is the equivalent parameter in the
xz-plane. By these definitions, the two parameters’ roles are interchangeable.

CONCLUSIONS

With numerical examples for VTI and orthorhombic media, I have shown that the non-
linear pseudo-acoustic wave equation in anisotropic media can be modeled, linearized, and
adjointed. The forward modeling equation can be solved accurately using RSFD. Its nonlin-
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(a) (b)

(c) (d)

Figure 6: (a) Model with a small perturbation point in a homogeneous VTI medium,
(b) full data, (c) background data, and (d) residual. The data, displayed at
clip of 95%, and the residual are contaminated by high-frequency noise. [ER]
huyle/. v.perturb1,data,bg.data,residual
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Snapshots of the source wavefield (left column) and adjoint wavefield (right
column) at different times: (a) and (b) 0.2 second, (c) and (d) 0.4 second, and (e) and
(f) 0.6 second. Although the adjoint wavefield is severely degraded by high-frequency
noise, it is still able to focus at the perturbation point at 0.4 second (panel d). [CR]
huyle/. sou1,rec1,sou2,rec2,sou3,rec3
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(a) (b)

(c)

Figure 8: Gradients of the objective function with respect to: (a) squared vertical P-
wave slowness, (b) ε, and (c) δ, for a simple model with a point perturbation in a
homogeneous VTI medium. These gradients focus at the perturbation points. [CR]
huyle/. v.grad1.all,eps.grad1.all,del.grad1.all

(a) (b)

Figure 9: Model for testing gradient calculation: (a) background and (b) perturbed vertical
P-wave velocity. Models for Thomsen parameters are similar. [ER] huyle/. v.bg,v.perturb
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(a) (b)

(c)

Figure 10: (a) Full data, (b) background data, and (c) residual for a model with two VTI
layers and a rectangular perturbation. [ER] huyle/. data2,bg.data2,residual2
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(a) (b)

(c)

Figure 11: Gradients of the objective function with respect to: (a) squared vertical P-wave
slowness, (b) ε, and (c) δ, for a model with two VTI layers and a rectangular perturbation.
These gradients accurately locate the perturbation and have correct update directions. [CR]
huyle/. s2.grad,eps.grad,del.grad
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(a) (b)

(c) (d)

(e) (f)

Figure 12: Model updates after the first iteration (left column) and after 100 iterations
(right column) in: velocity (m/s) (top row), ε (middle row), and δ (bottom row). The
updates show improvements after 100 iterations compared to the first-iteration updates.
[CR] huyle/. v.1iter,v.100iter,eps.1iter,eps.100iter,del.1iter,del.100iter
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Figure 13: Plot of the objective function with iteration. [CR] huyle/. objfn1

earity introduces an additional term in the linearized and adjoint equations. Together, these
three equations can be used in an inversion framework to estimate medium parameters.

APPENDIX A

In this appendix, I derive the linearized equation 5. The perturbed wave equation is:

(m1 + δm1)∂2
t (u + δu)−∇ · [(S + δS)∇(u + δu)] = f. (B-1)

Neglect the second-order terms:

m1∂
2
t δu−∇ · (S∇δu) = −∂2

t uδm1 +∇ · (δS∇u). (B-2)

After the plane-wave approximation (equation 3), S = S(∇u, mi) with i > 1. Conse-
quently, to the first order:

δS =
(

∂S

∂∇u

)T

∇δu +
∑
i>1

∂S

∂mi
δmi, (B-3)

which is subtituted into equation B-2 to obtain:

m1∂
2
t δu−∇ · (S∇δu) = −∂2

t uδm1 +∇ ·

{[(
∂S

∂∇u

)T

∇δu +
∑
i>1

∂S

∂mi
δmi

]
∇u

}
.

Collecting the terms that involve δu to obtain the linearized equation 5:

m1∂
2
t δu−∇ ·

{[
SI +∇u

(
∂S

∂∇u

)T
]
∇δu

}
= −∂2

t uδm1 +∇ ·

[(∑
i>1

∂S

∂mi
δmi

)
∇u

]
.

In VTI (Xu and Zhou, 2014):

S =
1
2

[
n2

a +
√

n4
a − 8 (ε− δ) n2

xn2
z

]
, (B-4)
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(a) (b)

(c) (d)

(e) (f)

Figure 14: Sensitivity kernels for one shot and one receiver, separated in the x-direction, in
a homogeneous orthorhombic subsurface of: (a) squared vertical P-wave slowness, (b) ε1, (c)
ε2, (d) δ1, (e) δ2, and (f) δ3. [CR] huyle/. g.s2.x,g.eps1.x,g.eps2.x,g.del1.x,g.del2.x,g.del3.x
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(a) (b)

(c) (d)

(e) (f)

Figure 15: Sensitivity kernels for one shot and one receiver, separated in the y-direction, in
a homogeneous orthorhombic subsurface of: (a) squared vertical P-wave slowness, (b) ε1, (c)
ε2, (d) δ1, (e) δ2, and (f) δ3. [CR] huyle/. g.s2.y,g.eps1.y,g.eps2.y,g.del1.y,g.del2.y,g.del3.y
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(a) (b)

(c) (d)

(e) (f)

Figure 16: Sensitivity kernels for one shot and one receiver, separated in the z-direction, in a
homogeneous orthorhombic subsurface of: (a) squared vertical P-wave slowness, (b) ε1, (c)
ε2, (d) δ1, (e) δ2, and (f) δ3. [CR] huyle/. g.s2.z,g.eps1.z,g.eps2.z,g.del1.z,g.del2.z,g.del3.z
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where nx and nz are components of the normalized wave vector, n, and n2
a = (1 + 2ε) n2

x+n2
z.

In orthorhombic media (Song and Alkhalifah, 2013):

S =
1
3

[
a− d

3
√

2
−

3
√

2
(
a2 + 3b

)
d

]
, (B-5)

where:

a = (2ε2 + 1) n2
x + (2ε1 + 1) n2

y + n2
z,

b =
[
(2ε2 + 1)2 (2δ3 + 1)− (2ε2 + 1) (2ε1 + 1)

]
n2

xn2
y − 2 (ε1 − δ1) n2

yn
2
z − 2 (ε2 − δ2) n2

xn2
z,

d = 3
√
−2a3 + 3(e− 9c)− 9ab,

c =
[
2(2ε2 + 1)

√
(2δ1 + 1)(2δ2 + 1)(2δ3 + 1)− (2ε2 + 1)2 (2δ3 + 1) + ε1ε2 − ε1δ2 − ε2δ1

]
n2

xn2
yn

2
z,

e =
√

3b2(a2 + 4b)− 6ac(2a2 + 9b)− 81c2.

APPENDIX B

In this appendix, I present a step-by-step derivation of equation 11. Substitute perturbation
in S (equation B-3) into equation 10 to obtain:

δχ =
∫ T

0

∫
Ω

∑
r

[u(xr, t)− d(xr, t)] δ(x− xr)δudV dt

+
∫ T

0

∫
Ω

λ

{
δm1∂

2
t u−∇ ·

[(∑
i>1

∂S

∂mi
δmi

)
∇u

]
− δf

}
dV dt

+
∫ T

0

∫
Ω

λ
[
m1∂

2
t δu−∇ · (A∇δu)

]
dV dt.

(C-1)

Integration by parts gives, for i > 1:

∫ T

0

∫
Ω

λ∇ ·
(

∂S

∂mi
δmi∇u

)
dV dt =

∫ T

0

∮
∂Ω

n̂ ·
(

λ
∂S

∂mi
δmi∇u

)
dsdt

−
∫ T

0

∫
Ω
∇λ ·

(
∂S

∂mi
δmi∇u

)
dV dt,

∫ T

0

∫
Ω

λm1∂
2
t δudV dt =

∫
Ω

λm1∂tδu|T0 dV −
∫ T

0

∫
Ω

m1∂tλ∂tδudV dt

=
∫
Ω

m1 (λ∂tδu− ∂tλδu) |T0 dV +
∫ T

0

∫
Ω

m1∂
2
t λδudV dt

=
∫
Ω

m1 (λ∂tδu− ∂tλδu) |T dV +
∫ T

0

∫
Ω

m1∂
2
t λδudV dt,
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and:∫ T

0

∫
Ω

λ∇ · (A∇δu)dV dt =
∫ T

0

∮
∂Ω

n̂ · λA∇δudsdt−
∫ T

0

∫
Ω
∇λ · (A∇δu)dV dt

=
∫ T

0

∮
∂Ω

n̂ · λA∇δudsdt−
∫ T

0

∫
Ω

(AT∇λ) · ∇δudV dt

=
∫ T

0

∮
∂Ω

n̂ ·
(
λA∇δu−AT∇λδu

)
dsdt

+
∫ T

0

∫
Ω
∇ ·
(
AT∇λ

)
δudV dt

=
∫ T

0

∮
∂Ω

n̂ · λA∇δudsdt +
∫ T

0

∫
Ω
∇ ·
(
AT∇λ

)
δudV dt.

where I have exploited the perturbed initial and boundary conditions (equations 5b and
5c). Substituting the above three integrations into equation C-1 results in equation 11.
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Pseudo-acoustic modeling for tilted anisotropy with
pseudo-source injection

Musa Maharramov and Stewart A. Levin

ABSTRACT

We provide a general framework for deriving fast finite-difference algorithms for the
numerical modeling of acoustic wave propagation in anisotropic media. We special-
ize this framework to the case of tilted transversely isotropic media to implement a
kinematically accurate fast finite-difference modeling method. This results in a sig-
nificant reduction of the shear artifacts compared to similar kinematically accurate
finite-difference methods.

INTRODUCTION

Transverse isotropy and orthorhombic media are of significant interest for industrial appli-
cations such as seismic imaging and inversion in complex, fractured rocks (Grechka, 2009).
While full elastic data and models are needed to fully understand and invert for parame-
ters in such media, the lesser task of imaging in the presence of such anisotropy can often
be accomplished under a pseudo-acoustic assumption. In particular, the pseudo-acoustic
method of Alkhalifah (1998) is the anisotropic counterpart of isotropic acoustic modeling.
However, this and similar anisotropic finite-difference methods suffer from shear artifacts
or rely on approximations that break down for strong anisotropy (Fowler et al., 2010; Zhan
et al., 2012). We note that both references discuss transverse isotropy but similar challenges
exist for finite-difference modeling in orthorhombic media.

In this work we develop a computationally efficient finite-difference wave propagation
modeling method for tilted transversely isotropic (TTI) media that is largely free of shear
artifacts. The concept extends the approach that Maharramov (2014, 2015) formulated for
vertically transversal isotropic (VTI) media, but is not limited to polar anisotropy.

Our derivation of pseudo-acoustic (systems of) equations for a specific medium symme-
try can be described as a three-step process:

1) Derive a phase velocity surface (Musgrave, 1970) as a function of the angle of propa-
gation.

2) Derive a dispersion relation from 1) (Alkhalifah, 1998).

3) Interpret the dispersion relation as an evolutionary pseudo-differential equation, and
transform it into a form suitable for numerical solution.

The cause of numerical artifacts is that the pressure and shear wave velocity surfaces remain
coupled after deriving computationally feasible equations in step 3 (more specifically, the
pressure mode and one of the shear modes remain coupled).

205
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Our method can be summarized as follows:

2′) After step 1) above, extract the branch of the phase velocity surface corresponding to
the pressure wave velocity.

3′) Approximate the resulting V 2 = F (m, θ), where V is the pressure wave velocity, m
stands for medium parameters, and θ is the propagation direction, with a computa-
tionally efficient numerical Fourier operator. This can be a trigonometric polynomial
in θ (Iserles, 2008) with coefficients depending on m, as practiced in some of the exist-
ing spectral pseudo-acoustic modeling methods (Etgen and Brandsberg-Dahl, 2009).
We opt to use a pseudo-differential operator spatially constrained to a narrow depth
range of sources and receivers.

4) Derive a coupled pseudo-pressure, pseudo-shear differential equation system analogous
to Alkhalifah (2000).

5) At each time step apply the spatial component of the pseudo-differential operator
derived in step 3′) to the injected source1 using a spectral method with spatial inter-
polation. This results in a “pseudo-source”.

6) Inject appropriate linear combinations of the pseudo-source and the source into the
primary and secondary component of the system derived in 4).

When we assume a VTI anisotropy, and that the system described in step 4) is that of
(Alkhalifah, 2000), step 6) reduces to injecting the pseudo-source into the secondary com-
ponent and the true source into the primary component of the system derived in step 4).

THE PSEUDO-DIFFERENTIAL MODELING OPERATOR

In step 1) we start with the equation for V (θ) in a VTI medium (Tsvankin, 1996)

V 2(θ)
V 2

P

= 1 + ε sin2 θ − f

2
± f

2

√(
1 +

2ε sin2 θ

f

)2

− 2(ε− δ) sin2 2θ

f
,

with f = 1−
V 2

S

V 2
P

, and

sin θ =
V (θ) [kx][

∂
∂t

] , cos θ =
V (θ) [kz][

∂
∂t

]
(1)

where VP and VS are vertical pressure and shear wave velocities, θ is the propagation an-
gle measured from the transverse isotropy symmetry axis, and ε and δ are the Thomsen
parameters (Thomsen, 1986). We assume that VS = 0, as we are not interested in propa-
gating shear modes, thus f = 1. Note that here and in the subsequent analysis we consider
two-dimensional TTI, however, the results naturally extend to three dimensions by iden-
tifying kx with the radial wavenumber—see, e.g., Maharramov and Nolte (2011). We use
the equivalence ku = −i ∂

∂u in (1), where u is an arbitrary variable, to stress that the phase
velocity equation can be interpreted as both a dispersion relation and a pseudo-differential

1This includes back-propagating receiver data in applications such as reverse time migration.
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Figure 1: Test model with smooth and sharp VP gradients and constant ε = 0.3, δ = 0.1,
and tilt φ = 45◦. [CR] musa2/. model1
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Figure 2: Test model with two anisotropic inclusions. The tilt angle is equal to 35◦ and 25◦

within the upper and lower inclusions, and is 30◦ in the background [CR] musa2/. model2
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operator. In step 2′), we extract the branch of the square root with the positive sign in
(1), corresponding to the (higher) compressional wave velocity. The resulting dispersion
relation can be interpreted as an evolutionary pseudo-differential operator

∂2

∂t2
− V 2

P

(
2
z,

2
x
) ∆

2
− ε
(

2
z,

2
x
)

V 2
P

(
2
z,

2
x
) ∂2

∂x′2
=

V 2
P

(
2
z,

2
x
) ∆

2

√[
1 + 2ε

(
2
z,

2
z
) ∂2

∂x′2
1
∆

]2

− 8
(
ε
(

2
z,

2
x
)
− δ

(
2
z,

2
x
)) ∂2

∂x′2
∂2

∂z′2
1

∆2
,

(2)

governing kinematically accurate propagation of the pressure wave, where x′, z′ are locally
rotated coordinates with z′ pointing along the tilted symmetry axis and x′ pointing in the
radial direction,

∆ =
∂2

∂x′2
+

∂2

∂z′2
=

∂2

∂x2
+

∂2

∂z2

is the Laplace operator (which is unaffected under rotation), and the “2” over x and z means
that the multiplication by functions of spatial variables follows the application of differential
operators in the pseudo-differential operator sense (Maslov, 1979). This is equivalent to
“freezing” the operator coefficients, or assuming local homogeneity. Note that TTI in two
dimensions requires one more parameter defined for each point of the subsurface: tilt angle
φ from the vertical. This parameter implicitly enters (2) in the rotated coordinates x′ and
z′. Solving (2) for arbitrary heterogeneous media may be numerically challenging, because
the Thomsen parameters ε(z, x) and δ(z, x) appear inside the square root of a pseudo-
differential operator. However, operator (2) may simplify numerically if it is applied to
a function with spatially bounded support – e.g., a source wavelet or receiver data. As
noted earlier, an alternative to solving the full pseudo-differential operator equation (2) is
to approximate, in step 3′), the extracted pressure velocity branch with a trigonometric
polynomial:

V 2(θ) ≈ V 2
P

N∑
n=0

an sin2n(θ), (3)

where the coefficients an, n = 0, . . . , N depend on medium parameters. From the last line
of (1) we can see that velocity surface (3) translates into the following pseudo-differential
operator equation

∂2

∂t2
= V 2

P

N∑
n=0

an
∂2n

∂x′2n
∆1−n. (4)

Equation (4) can be solved by applying the operators

∂2n

∂x′2n
∆1−n

to the wave field in the spatial Fourier domain, then summing up the results with spatially-
dependent coefficients an in the spatial domain. Important particular cases of approximation
(3) are the weak anisotropy approximation (Grechka, 2009)

V 2(θ) ≈ V 2
P

(
1 + δ sin2 θ +

ε− δ

1 + 2δ
sin4 θ

)
, (5)

and the VTI approximation due to Harlan and Lazear (Harlan, 1998) used by Etgen and
Brandsberg-Dahl (2009)

V 2(θ) = V 2
P cos2 θ +

(
V 2

PNMO − V 2
PHor

)
cos2 θ sin2 θ + V 2

PHor sin2 θ, (6)
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where the subscripts PHor and PNMO denote the horizontal and NMO compressional
wave velocities, respectively. Note that both (5) and (6) correspond to N = 2 in (3) and are
suitable for weakly anisotropic VTI but break down in strong anisotropy. The case of N = 3
requires one additional inverse FFT for VTI but is accurate for a wide range of Thomsen
parameters within (and beyond) practical requirements. Adapting (3) for TTI media would
require the application at each time step of 5 additional inverse FFTs for N = 2 and extra
16 inverse FFTs for N = 3.

Solving (4) for N = 2, 3 using the described spectral method is an efficient modeling
method in its own right, especially for VTI media where the number of FFTs at each time
step is very low. However, in the next section we describe a finite-difference method that
can outperform the spectral method for complex media and conceptually generalizes for
other kinds of anisotropy.

Figure 3: Shear artifact (marked with the “S”) in the solution of (7) for the model of
Figure 1 with sources injected in component r. Note that the shear artifact is causing
numerical instability. [CR] musa2/. q1fdpdonored
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Figure 4: Shear artifact (marked with the “S”) in the solution of (7) with sources injected
in component q. Although significantly reduced, the shear artifact is still sufficiently strong
to cause imaging cross-talk. [CR] musa2/. q1fdpdoqsource
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THE FINITE-DIFFERENCE METHOD

In step 4) we square the pseudo-differential operator equation (2) so as to get rid of the
square root, and obtain the following system of coupled second-order partial differential
equations (Alkhalifah, 2000):

∂2q

∂t2
= V 2

PHor

∂2q

∂x′2
+ V 2

P

∂2q

∂z′2
− V 2

P

(
V 2

PHor − V 2
PNMO

) ∂4r

∂x′2∂z′2
,

∂2r

∂t2
= q,

(7)

where r(z, x, t) and q(z, x, t) are the pressure field and its second temporal derivative, and

VPHor(z, x) = VP (z, x)
√

1 + 2ε(z, x), VPNMO(z, x) = VP (z, x)
√

1 + 2δ(z, x).

Since the resulting system now includes the branch with the negative square root in (1),
solution of this system may suffer from shear artifacts as shown in Figure 3. The artifacts can
be reduced by injecting sources into the second component q (Fowler et al., 2010); however,
they are still present—see Figure 4. However, the pseudo-differential operator equation (2)
can be used to reduce the unwanted artifacts (appearing as the “diamond”-shaped inverted
wavefront in the figure). Equation (1) and the corresponding pseudo-differential equation do
not describe any pressure to shear conversion but rather govern the independent propagation
of the pressure and shear waves. The same is true of the “coupled” system of differential
equations. Consequently, any shear artifacts that appear in a solution to the coupled system
of differential equations we attribute to the pseudo-shear modes present in the wave field.
We can use the fact that the system of two coupled equations requires injecting two sources,
to manufacture a pseudo-source to be injected into one of the components so as to suppress
the shear modes. More specifically, if φ(z, x, t) is a time-dependent source function, then at
each time step component r is injected with φ, and component q is injected with the result
of applying the spatial part of the pseudo-differential operator (2) to φ(z, x, t):

r(z, x, tn) = r(z, x, tn) + φ(z, x, tn),

q(z, x, tn) = q(z, x, tn) + V 2
P

{(
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2
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) ∆
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(
2
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2
x
)) ∂2

∂x′2
∂2

∂z′2
1

∆2

φ,

(8)

followed by a finite-difference time propagation step of system (7). This procedure ensures
that the two-component source in the right-hand side of (8) satisfies equation (2). Since
solutions of (2) are shear-free, the injected sources will not give rise to shear modes because
the solution of (7) is effectively projected on to the space of solutions of (2).

NUMERICAL EXAMPLES

Figure 6 shows the result of applying the pseudo-source finite-difference method to the prop-
agation in a heterogeneous VTI medium described by the model of Figure 1, with a Ricker
source. The corresponding result obtained by solving the full pseudo-differential operator
equation (2) is shown in Figure 5. Note the significant reduction of the shear artifacts and
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that although we use the full pseudo-differential operator for generating the pseudo-source
in (8), the fact that the source is localized makes this computationally efficient, obviating
the need for approximations like (4).

Figure 5: Solution of the full pseudo-differential operator equation (2) for the model of
Figure 1. Note the good agreement with the result of finite-difference modelling using
shear-reducing pseudo-sources shown in Figure 6. [CR] musa2/. p1pdo

The model of Figure 1, while featuring both sharp and smooth vertical velocity variation,
assumes constant ε = 0.3, δ = 0.1, and tilt of 45◦. While adding the pseudo-source (8)
ensures that the solution of the coupled system (7) stays within the space of solutions of
(2) in the continuous limit ∆t → 0, sharp contrasts in medium parameters may introduce
numerical approximation errors that may contain a non-negligible shear component. Indeed,
applying the method to the model of Figure 2, featuring two inclusions with significantly
different Thomsen parameters, we can see weak artifacts (single lines) within the inclusion
detail in Figure 10 for the finite-difference method that are absent from the result in Figure 9
obtained by solving the full pseudo-differential operator (2). Figure 11 shows the result of
using the finite-difference method with pseudo-sources after smoothing the vertical velocity
but keeping ε, δ and tilt contrasts unchanged. The result shows that the artifacts within
the inclusions were almost completely removed.
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Figure 6: Solution of (7) for the model of Figure 1 with shear-reducing pseudo-sources is in
kinematic agreement with Figure 5. A high-wavenumber computational artifact (marked
with the “A”) is caused by sharp model contrasts. [CR] musa2/. p1fdpdo
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CONCLUSIONS AND PERSPECTIVES

The proposed pseudo-source finite-difference method allows us to take advantage of compu-
tationally efficient finite-difference solvers for the traditional pseudo-acoustic (fourth-order)
systems while achieving a significant reduction in shear artifacts. The method is kinemati-
cally accurate for VTI media, and can be extended in principle to other kinds of anisotropy.
While this implementation is based on using the coupled system (7) of Alkhalifah (2000),
the method can be adapted to use equivalent systems such as that of Fowler et al. (2010).
In that case the two-component source becomes a linear combination of the true source and
the pseudo-source terms, with the coefficients of the linear combination determined by the
relationship between the solution of the equivalent system and that of system (7).
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Figure 8: Solution of (7) for the model of Figure 2 with shear-reducing pseudo-sources.
Note the good agreement with Figure 7. [CR] musa2/. p2fdpdo
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Figure 9: Artifact-free solution of the full pseudo-differential operator equation (2) show-
ing multiple reflections within the lower inclusion of the model in Figure 2. [CR]
musa2/. p2pdodetail
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Figure 10: Solution of (7) for the model of Figure 2 with shear-reducing pseudo-sources. A
sharp velocity contrast causes weak artifacts (“A”). [CR] musa2/. p2fdpdodetail
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Figure 11: Moderate smoothing of the velocity contrasts remove the high-wavenumber
artifacts. [CR] musa2/. p2fdpdosmdetail
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Using rock physics to improve Qp quantification in seismic
data

Yi Shen and Jack Dvorkin

ABSTRACT

We derived an approximate closed-form solution relating Vp to Qp using rock physics
modeling. This solution is validated using well data in which the elastic properties
were measured and Q was derived numerically using rock physics. We applied our new
Qp − Vp equation to synthetic seismic data, which produced an improved Q model.

INTRODUCTION

Gas pockets or clouds are notoriously challenging problems for reservoir identification and
interpretation (Billette and Brandsberg-Dahl, 2005), because strong attenuation and low-
velocity anomalies are present in them. Attenuation degrades the seismic image quality by
decaying the image amplitude, lowering the image resolution, distorting the phase of events,
and dispersing the velocity. Low-velocity mispositions and distorts the events. These prob-
lems impede accurate image interpretation for hydrocarbon production and well positioning.

To mitigate the effects of gas accumulations on the image, we need a better understand-
ing of the properties of the gas used for imaging the subsurface. Compressional velocity
(Vp) and compressional Q (Qp) play an important role in compensating for the gas-induced
distortion in the image. However, an accurate estimation of these two properties is limited
to the insufficient information from the acquired seismic data and to the ambiguity in the
distorted effects of the images from these two parameters. A quantification of the rela-
tion between Vp and Qp brings additional information to the seismic inversion for a better
estimation of these two properties.

It has been observed from field data (He and Cai, 2012; Zhou et al., 2014) that high-
compressional attenuation comes with low-compressional velocity in most situations. How-
ever, very few studies have analytically linked these two properties. Rock physics has built
several models (Dvorkin et al., 2014; Muller et al., 2010) of Vp and Qp based on rock prop-
erties (such as porosity, saturation and others), which may implicitly quantify the relation
between these two parameters. But, these existing models for Vp and Qp, based on rock
physics properties, confine the measurements of these two parameters to a constrained area
limited by the well locations. A model that provides an analytical relation between Vp

and Qp would allow us to approximately relate Qp to Vp without going through direct rock
physics modeling, which in turn would improve the accuracy of the seismic inversion of Vp

and Qp.

In this study, we first derived an approximate closed-form solution directly relating Vp

to Qp using rock physics modeling. Next, we validated this relation using field well data.
Last, we applied our new Qp − Vp equation to synthetic seismic data, which produced an
improved Q model.

221



222 Shen and Dvorkin SEP–158

THEORY

Modeling seismic attenuation

Seismic attenuation primarily occurs either at a gas reservoir or in the presence of shallow
gas pockets. Wave-induced variations of pore pressure in the partially saturated rock results
in oscillatory liquid flow. The viscous losses during this oscillatory liquid flow cause wave
attenuation. The frequencies of the wave span broad frequencies and scales, which can be
categorized as macroscopic, mesoscopic, and microscopic based on the spatial scale of the
heterogenities. Mesoscopic flow, rather than macroscopic and microscopic flow, is engaged
at the seismic exploration frequency range, and is considered to be the main mechanism for
the fluid-related seismic attenuation.

Seismic attenuation, parameterized by quality factor Q, is a function of frequency. Ac-
cording to the standard linear solid model, we are able to obtain the relation between 1/Q
and frequency, and therefore derive the maximum 1/Q:

Q−1
max =

M∞ −M0

2
√

M∞M0
, (1)

where Q−1
max is the maximum inverse quality factor, M0 is the compressional modulus at

very high frequency, and M∞ is the compressional modulus at very low frequency. The
compressional modulus is the product of the bulk density and P-wave velocity squared.
This equation provides the upper bound for attenuation without addressing its frequency
dependence. Therefore, we use Q−1

max to describe the effects of seismic attenuation.

According to Dvorkin et al. (2014), in partially saturated rock, viscoelastic effects and
attenuation may arise from the oscillatory liquid cross-flow between fully liquid-saturated
patches and the surrounding rock with partial gas saturation. The reaction of rock with
patchy saturation to loading by the elastic wave depends on the frequency. If it is low and
the loading is slow, the oscillations of the pore pressure in a fully liquid-saturated patch
and partially saturated domains next to it are equilibrating. The patch is ”relaxed.” Mavko
et al. (1991) derived an approximation to Gassmann fluid substitution equation (Gassmann,
1951) for the compressional modulus of the partially saturated rock as follows:

M0 = MS
φMDry − (1 + φ)KF MDry/MS + KF

(1− φ)KF + φMS −KF MDry/MS
, (2)

where MS is the compressional modulus of the mineral phase, MDry is the compressional
modulus of the dry frame of the rock, φ is the total porosity, and KF is the effective bulk
modulus of the fluid in the rock.

Conversely, if the frequency is high and the loading is fast, the resulting oscillatory
variations of pore pressure cannot equilibrate between the fully saturated patch and the
domain outside. The patch is ”unrelaxed.” For a high frequency, we can use the patchy
saturation equation (Mavko et al., 1991), which expresses the unrelaxed compressional
modulus as the harmonic average of the compressional moduli of the wet rock MW and
rock with only gas MG:

1
M∞

=
SW

MW
+

1− SW

MG
, (3)
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where

MW = MS
φMDry − (1 + φ)KW MDry/MS + KW

(1− φ)KW + φMS −KW MDry/MS
, (4)

MG = MS
φMDry − (1 + φ)KGMDry/MS + KG

(1− φ)KG + φMS −KGMDry/MS
, (5)

KW and KG are the bulk modulus of water and gas, respectively, and SW is water saturation.

Modeling velocity

The compressional velocity of rock is related to the compressional modulus M0 and its bulk
density ρ as

Vp =

√
M0

ρ
. (6)

Linking seismic attenuation and velocity: closed-form solution

Vp and Qp are functions of a number of rock properties: MDry, MS , SW , φ, KW , KG and
ρ. Model building of Vp and Qp based on these rock parameters is the intermediate step to
link Vp with Qp in our study. Because a change in these rock properties results in changes
in Vp and Qp to different degrees, we only linked Vp with Qp using the rock properties
which, when modified, generate a significant change in these two properties and therefore
in their relation. We assigned a spatially constant value to the rest of the rock parameters.
A prior knowledge of the lithology of the areas of our study and measurements from well
data enabled us to obtain an average value to approximately quantify properties of little
influence on Vp and Qp. Figure 1 is the sensitivity curve showing the influence of a change
in these rock properties on a change in Vp and Qp. The variation of the rock properties
are shown in Table 1. The results show that a perturbation in MDry leads to the most
significant change in both Vp and Qp among these rock parameters. Therefore, we linked
Vp with Qp using MDry in our study.

Table 1: The variation of the rock properties for Figure 1

Rock properties Minimum value Maximum value background value
KW 0.9521 3.9305 2.4413
KG 0.0088 0.0364 0.0226
MS 37.6740 155.5260 96.6000
ρ 0.8853 3.6547 2.2700

MDry 3.9000 16.1000 10.0000
φ 0.1170 0.4830 0.3000

SW 0.1170 0.4830 0.3000

The rock property MDry is not a direct measurable parameter from the well log. The
previous studies (Raymer et al., 1980; Dvorkin and Nur, 1996) built the rock physics model
to compute MDry using other parameters. However, these models have not provided an



224 Shen and Dvorkin SEP–158

(a)

(b)

Figure 1: The sensitivity of (a) Qp and (b) Vp to a change in the rock properties
of MDry, MS , SW , φ, KW , KG, ρ. The background rock parameters are KW =
2.4413;KG = 0.0226;MS = 96.6; ρ = 2.27;MDry = 10;φ = 0.3;SW = 0.3. [NR]
yishen1/. NR/P.sen.Qp,NR/P.sen.Vp
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analytical equation conveniently used to derive the relation between Vp and Qp. Based on
the idea that as the rock becomes softer, its moduli decreases as pore space increases, and
the porosity-induced change in rock moduli should be proportional to φ, we propose a new
model in this study for MDry with a simple equation:

MDry

MS −MDry
=

αDry

φ
, (7)

where αDry is a positive number. The large αDry slowly increases the porosity-induced
change of the rock moduli as the porosity increases. As a result, the dry rock moduli with
a larger αDry is larger than the one with a smaller αDry for a fixed φ, as shown in Figure
2(a).

Equation 7 shows that MDry depends on MS and φ. By substituting Equation 7 into
Equations 1 and 6 to eliminate MDry, we obtained new sensitivity curves in Figure 3 showing
the amount of changes of Vp and Qp caused by a perturbation in the rock properties MS ,
SW , φ, KW , KG and ρ. The results show that a perturbation in MS and φ results in the
most significant change in both Vp and Qp among these rock parameters. Because MS can
be estimated if the mineral content of the reservoir rock is known, we mainly studied the
effects of the variation of φ on Vp and Qp.

The porosity φ is a measure of the fraction of open space in the rock. Pore space softens
the rock and makes its moduli decrease, which makes the compressional velocity decrease
as shown in the lower panel of Figure 2(b). Also, the oscillatory liquid cross-flow between
the gas and fluid in the pore space causes attenuation, as shown in the top panel of Figure
2(b). We linked Vp and Qp by way of φ. Substituting φ with Vp, and assuming M∞ ≈ M0 in
the denominator of the right side of Equation 1, we were able to have the relation between
Vp and Qp

Q−1
p =

1
2

c1V
−2
p

c2V
−2
p + c3

− 1
2
, (8)

where

c1 = (αDry + αW ) (αDry + αG) ,

c2 = SW (αDry + αF ) (αDry + αG) + (1− SW ) (αDry + αF ) (αDry + αW ) ,

c3 =
ρ

MS
(SW (αDry + αF ) (αW − αG) + (αDry + αW ) (αG − αF )) ,

(9)

and
αF =

KF

(MS −KF )
,

αG =
KG

(MS −KG)
,

αW =
KW

(MS −KW )
.

(10)

Figure 4 shows the relations between 1/Vp and 1/Qp. The solid circles are the exact
relation using Equations 1 and 6, and the nonfilled circles are calculated by the approxi-
mated Equation 8. These two curves have no large bias overall, and match very well for



226 Shen and Dvorkin SEP–158

(a)

(b)

Figure 2: (a) Our new model for rock properties MDry as a function of φ and
αDry, with MS = 96.6 (b) The relations of φ with Qp (top) and Vp (bottom), with
KW = 2.4413;KG = 0.0226;MS = 96.6; ρ = 2.27;αDry = 0.05;SW = 0.3. [NR]
yishen1/. NR/P.Mdry,NR/P.Phi
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(a)

(b)

Figure 3: The amount of changes of (a)Qp and (b)Vp caused by a perturbation in the
rock properties MS , SW , φ, KW , KG, ρ. The unchanged rock parameters are KW =
2.4413;KG = 0.0226;MS = 96.6; ρ = 2.27;αDry = 0.05;φ = 0.3;SW = 0.3. [NR]
yishen1/. NR/P.sen.Qp.noMdry,NR/P.sen.Vp.noMdry
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small porosity. From these results, we observe that the decrease of the compressional veloc-
ity corresponds to strong attenuation, in accordance with the observation from field data
distorted by gas anomalies.

Figure 4: The relations between 1/Vp and 1/Qp, with KW = 2.4413;KG = 0.0226,Ms =
96.6; ρ = 2.27. [NR] yishen1/. NR/PQV

VALIDATING THE CLOSED-FORM SOLUTION USING WELL DATA

We use a field gas log to validate our theory. The black curve shown in Figures 5(a)
through 5(g) are the rock properties measured from the log. We calculated the Q value
using Equation 1 in Figure 5(h). The log has a low-water saturation at depths from 1.25
to 1.27 kilometers (km) and 1.31 to 1.32 km, indicating gas sand. We observe that both Vp

and Qp are small in the gas sand.

Figure 5: Well data used to verify our approximate relations. [NR] yishen1/. NR/Plog

We first computed the dry-rock compressional moduli M1Dry from the provided rock
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properties using the Gassmann-Mavko equation (Mavko et al., 1991). We then superim-
posed MDry using our new model on M1Dry in Figure 6(a), finding a good match of our
model with the gas sand shown in blue at αDry = 0.05. Then, we computed the approxi-
mated Qp for the gas sand using Equation 1, shown as the red curve in Figure 5(h), with the
assumption that αDry is 0.05 for our MDry and that M∞ equals to M0 in the denominator
of the right side of Equation 1.

Figure 6(b) shows the relation between Vp and Qp. The blue dots are the log data in
which the trend is approximated by red dots with a water saturation of SW = 0.37. The
approximated trend matches our predicted relation well by the black line using Equation
8. It slightly over-estimates direct computations because of our simplified new MDry model
and our approximated equation (Equation 8).

SEISMIC APPLICATION

We forwarded model a synthetic seismic dataset using the Vp and Qp models present in Li
et al. (2015), as shown in Figure 7.Li et al. (2015) built the synthetic models based on the
shallow unconsolidated sand reservoir model in Wang et al. (2013). A shallow gas pocket
with 70% gas saturation is located in the upper part of the second layer, which has low
velocity and high attenuation. Its rock properties porosity and gas saturation are shown
in Figure 8. The shallow shale porosity in Figure 8 is arbitrarily assumed to be very small
and unrelated to the velocity model. This assumption has no impact on our application in
this study, because we do not use porosity in shale for our Qp computations.

To synthesize the seismic data, we downward propagated and attenuated the wavefield
(Shen et al., 2013, 2014) using the Vp and Qp models in Figure 7 with 53 sources and
801 receivers uniformly distributed on the surface. A Ricker wavelet with 20 Hz central
frequency was used as the source wavelet, and the density model was assumed to be spatial
constant.

In practice, Vp and Qp models are unknown in real fields. It is necessary to invert for
these models that are important for generating a seismic migration image. The goal of
our study is to invert for accurate Qp models from the synthetic seismic data with the
assumption that the correct Vp model is known. As a result, we were able to obtain a
seismic migration image with a correction of its Qp effects.

We inverted for the Qp model shown in Figure 9(a) using wave-equation migration Q
analysis (Shen et al., 2013, 2014), and used spatial constant Qp = 100, 000 as the initial
model. The inverted Qp model in Figure 9(a) highlights the area with high attenuation.
However, the sparse reflectors and the limitation of this method result in a low resolution
of the Qp model, especially in the vertical direction. Therefore, we used the relation given
by Equation 8 as a regularization term in the inversion workflow developed by Shen et al.
(2013, 2014). In reference to the correct Qp model in 7(b), the inverted Qp model with
regularization in Figure 9(b) has higher vertical resolution and a better shape than the one
in Figure 9(a).

Figure 10(a) is the migration image without knowing the correct Qp model for the gas
sand. The events under the gas sand are attenuated, in terms of their dimming amplitude,
stretching and distorted wavelets in Figure 10(a). Figure 10(b) is the migration image com-
pensated using the inverted Qp model in Figure 9(b). The results show that compensation
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(a)

(b)

Figure 6: (a)The MDry model is superimposed on the log; (b)The relation between Vp and
Qp of the log. [NR] yishen1/. NR/P.Mdry.log,NR/P.QV.Log



SEP–158 Rock physics models Q constraints 231

adequately restores both the amplitude and frequency of the events below the gas sand.

(a) (b)

Figure 7: (a) Correct Vp model (b) Correct Qp model. The Q values are clipped to 1,000
for a convenient display of the gas layer. The Q values are different in each layer and are
larger than 1,000 in the nongas sand. [ER] yishen1/. layer4.vel,layer4.q
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Figure 8: Rock properties: (a) porosity model; (b) gas saturation model. [NR]
yishen1/. NR/layer4Rock

CONCLUSION

We derived an approximate closed-form solution relating Vp to Qp using rock physics model-
ing. This solution is validated using well data in which the elastic properties were measured
and Q was derived numerically using rock physics. Finally we applied our new Qp − Vp

equation to synthetic seismic data, which produced an improved Q estimated model. We
showed that this improved Q model leads to a better seismic migration image.
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(a) (b)
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Figure 10: Prestack migration image: (a) Attenuated image; (b) Compensated image.
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Rayleigh-wave group velocity tomography using traffic noise
at Long Beach, CA

Jason P. Chang and Biondo Biondi

ABSTRACT

Anthropogenic sources recorded by passive seismic arrays provide the opportunity for
ambient noise cross-correlation techniques to effectively use frequencies well beyond the
microseism band. Using data recorded by a dense array in Long Beach, California, we
demonstrate that high-frequency (> 3 Hz) fundamental- and first-order-mode Rayleigh
waves generated by traffic noise can be extracted from the ambient noise field and
used for tomographic studies. Here, we use travel times of the fundamental-mode
Rayleigh waves in a straight-ray tomography procedure to derive group velocity maps
at 3.00 Hz and 3.50 Hz. The velocity trends in our results correspond to shallow depths
and correlate well with lithologies outlined in a geologic map of the survey region.
As expected, less-consolidated materials display relatively low velocities, while more-
consolidated materials display relatively high velocities. Our results suggest important
implications for research investigations concerned with the near-surface.

INTRODUCTION

Extracting surface waves from the ambient noise field for use in tomographic studies is well-
established at both regional and continental scales (e.g., Shapiro et al., 2005; Yang et al.,
2008; Bensen et al., 2008). The success of these studies has encouraged recent investigation
of this technique at the exploration scale. In ocean-bottom environments, de Ridder et al.
(2014) and Mordret et al. (2014) obtained reliable time-lapse group and phase velocity
maps, respectively, of the Valhall overburden, while de Ridder et al. (2015) recovered phase
velocity and anisotropy maps representative of subsidence patterns at Ekofisk. In those
cases, they examined frequencies in the microseism band (< 2 Hz). In land environments,
passive seismic arrays of sufficient density, size, and duration for these sorts of studies are
rare.

One array that does meet these requirements was located in Long Beach, California (map
in Figure 1). Deployed in January 2012 by NodalSeismic, the array spans an 8.5 × 4 km2

region and consists of approximately 2400 vertical-component geophones. With an average
geophone spacing of 100 m and a continuous 3-month recording period, the array is well-
suited for exploration-scale tomography using ambient noise. Dahlke et al. (2014) were able
to create phase velocity maps at low frequencies (approximately 1 Hz) that resolved the
location of the Newport-Inglewood Fault. At the neighboring array, Lin et al. (2013) were
able to create similar Rayleigh-wave phase velocity maps for frequencies up to 2 Hz that
successfully imaged the same fault.

The focus of our present study is to create high-frequency (> 3 Hz) group velocity maps
at the Long Beach array using passive seismic recordings. At these frequencies, traffic noise
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Figure 1: Map of stations at the
Long Beach passive seismic array.
Coordinates are NAD27, CA State
Plane, Zone 7, kilometers. [CR]
jason1/. map-black

dominates the ambient noise field. Power spectral density maps (Chang et al., 2013; Nakata
et al., 2015) and beamforming of the ambient noise field (Chang et al., 2014) reveal Inter-
state 405 as the dominant source of seismic energy and local roads as the secondary source.
We begin with an overview of our ambient noise processing procedure for harnessing this
traffic noise. We then explain our fundamental-mode Rayleigh-wave travel time selection
process and straight-ray tomography approach. To validate our results, we compare our
group velocity maps to a geologic map of the region. Finally, we examine the resolution of
our results with checkerboard tests.

ESTIMATING GREEN’S FUNCTIONS

To extract inter-station Green’s functions from ambient noise recordings, we apply a process-
ing procedure adapted from Bensen et al. (2007). Continuous recordings from all receiver
pairs are divided into simultaneous, non-overlapping two-hour time windows. To compen-
sate for expected variations in the source amplitude due to varying traffic conditions over
time, we whiten the traces prior to cross-correlation. In the frequency domain, this process
is expressed as:

[G(xB, xA, ω) + G∗(xB, xA, ω)] =
〈(

U(xB, ω)
{|U(xB, ω)|}

)(
U∗(xA, ω)
{|U(xA, ω)|}

)〉
, (1)

where G is the Green’s function between two receiver locations (xA, xB), U(x, ω) is the
spectrum of the wavefield at a given receiver location x, ∗ is the complex conjugate, 〈·〉 is
the time-averaged ensemble, | · | is the magnitude of the spectrum, and {·} is a 0.003 Hz
running window average used for normalizing the signal. This procedure is equivalent to
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calculating the cross-coherence between two traces. For this study, we sum 384 two-hour
time windows (or 32-days worth) of cross-correlations.

Applying this processing procedure to a line of receivers running perpendicular to In-
terstate 405, Chang et al. (2014) verified that the extracted Green’s functions above 3 Hz
were dominated by fundamental- and first-order-mode Rayleigh waves generated by the
highway and local roads. An example of an extracted Green’s function with two Rayleigh-
wave modes is shown in Figure 2. In this study, we use these correlations to perform group
velocity tomography.

Figure 2: Example of an estimated
Green’s function between a virtual
source and receiver at 3.50 Hz.
The earlier peak corresponds to
the first-order Rayleigh-wave mode,
while the later peak corresponds
to the fundamental mode. [CR]
jason1/. high-trace

GROUP VELOCITY TOMOGRAPHY

Travel time selection

Group travel time between two stations is picked as the peak of the envelope of the bandpass-
filtered trace that has been folded over zero time lag. In the frequency domain, the filter
is applied as a Gaussian taper centered at the frequency of interest. For this study, we
are interested in shallow velocity trends. Because the fundamental-mode Rayleigh wave
is more sensitive to shallower depths than the first-order mode (for a given frequency),
we are only interested in travel times of the fundamental mode. For this process, we
calculate two linear moveout windows: one based on the fundamental mode, and the other
based on the first-order mode. Both windows are between 2 and 3 seconds wide for the
frequencies examined. Respective velocities are estimated from the frequency-wavenumber
representation of a virtual source gather centered on Interstate 405 and sorted by radial
offset (Figure 3). We first apply a mute to the moveout window associated with the first-
order mode. This is done for two reasons. One is to avoid accidentally associating this
earlier peak with the travel time of the fundamental mode. Another is to avoid bias in
our signal-to-noise ratio (SNR) estimate due to the presence of multiple distinct peaks.
Here, we calculate SNR as the ratio of the maximum amplitude of the envelope inside the
fundamental-mode moveout window to the root-mean-square of the envelope outside both
the fundamental and first-order moveout windows.

For the two central frequencies we examined (3.00 Hz and 3.50 Hz), we kept correla-
tions with SNR greater than 5. Figure 4 shows maps of travel times obtained from traces
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Figure 3: Frequency-wavenumber
plot derived from a virtual source
gather centered at Interstate 405.
Note the two clear Rayleigh
wave modes. The shallower slop-
ing event corresponds to the
fundamental mode, while the
steeper sloping event corresponds
to the first-order mode. [CR]
jason1/. fk-freeway1-high

at 3.50 Hz that have passed the SNR criterion for four different virtual source locations.
Because Interstate 405 effectively serves as an active source, it causes artificially early peaks
in the correlations where the virtual source and receiver are on opposite sides of the high-
way. These earlier-than-expected peaks degrade the SNR and lead to the lack of accepted
travel times on the opposite side of Interstate 405. We can see this effect in Figures 4(a)
and 4(b). In the former figure, the virtual source is located north of the highway, and the
truncated border of the travel time map toward the south correlates well with the path of
the highway. A similar pattern is observed in the latter figure, where the virtual source is
located south of the highway. Further away from the highway, the ambient noise field is
dominated by Rayleigh waves generated by local traffic (Chang et al., 2014). Thus, it is no
surprise that we still have suitable travel times when the virtual source is in the center of
the array (Figure 4(c)). In the sparse southeast part of the array, there are relatively few
sources of traffic noise due to the lack of busy roads and the presence of a marina. Thus, it is
expected that there are very few suitable travel times in that part of the array (Figure 4(d)).
Together, these travel time maps suggest that our fundamental-mode Rayleigh-wave travel
time selection process is potentially reliable.

For our tomography study, we only use correlations with virtual source-receiver spacing
between 0.5 and 1.7 km at 3.00 Hz and between 0.4 and 1.5 km at 3.50 Hz. The mini-
mum spacing is approximately one wavelength longer than the suggested minimum of three
wavelengths (Moschetti et al., 2007). The maximum spacing is chosen by looking at the
travel time maps. Out of a possible 2, 980, 143 traces, we kept 530, 876 traces (18%) at
3.00 Hz and 403, 523 traces (13%) at 3.50 Hz. Although we used significantly fewer traces
than available, the inversion problem remains highly over-determined. The goal is to use
the most reliable travel times, not the most number of travel times.

Inversion procedure

To obtain group velocity maps, we employ a straight-ray tomography procedure with reg-
ularization. The problem is posed as solving for the slowness perturbation, ∆m, with
respect to an average slowness m0. Therefore, the final slowness model, m, is defined as
m =m0 + ∆m. The average slowness is calculated from the travel time and offset infor-



SEP–158 Tomography using traffic noise 239

(a) (b)

(c) (d)

Figure 4: Fundamental-mode Rayleigh-wave travel time maps at 3.50 Hz for four different
virtual source locations (indicated by red asterisks). Warmer colors correspond to later
travel times. Only travel times obtained from correlations with SNR greater than 5 are dis-
played. (a) Virtual source north of Interstate 405. (b) Virtual source south of Interstate 405.
In these cases, note the lack of suitable travel times on the other side of the highway. (c) Vir-
tual source near the center of the array. (d) Virtual source near the coastline. The relative
lack of suitable travel times in the southeast region of the array is likely due to the relative
lack of traffic noise. [CR] jason1/. traveltime1,traveltime2,traveltime3,traveltime4
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mation of all traces that pass quality control. We subtract the contribution of the average
slowness from each travel time to obtain residual travel times, ∆t.

Modeled residual travel times are obtained by applying a straight-ray tomography op-
erator, F, to a slowness perturbation model. Rows of the operator contain the length of a
straight ray through each model grid cell for a single virtual source-receiver path. For this
data set, we construct a 110× 220 model grid space, with each grid covering a 50× 50 m2

region. We use a conjugate gradient approach to minimize the following objective function:

J(∆m) = ||F∆m−∆t||22 + ε||∇2∆m||22 . (2)

∇2 represents the Laplace operator, which is the roughening operator used for regulariza-
tion. ε represents regularization strength, which balances the data-fitting objective and the
model-smoothing objective. We iterated 25 times, which is enough to converge to a solution
(Figure 5).

(a) (b)

Figure 5: Norm of the data residual as a function of iteration. Residuals
are normalized by the initial residual. (a) 3.00 Hz. (b) 3.50 Hz. [CR]
jason1/. error-3p00hz-eps4,error-3p50hz-eps4

Model selection

To choose the regularization strength (and hence a model), we examine the L-curve (Aster
et al., 2013). An L-curve is a trade-off curve between the data residual misfit (||Fm−d||2)
and the model semi-norm (||∇2m||2). Different regularization strengths will plot different
points on this graph, with lower values sitting at the top left of the curve and higher values
sitting at the bottom right of the curve. The resulting curve shape is typically an “L”.
Often, the ε that produces a solution closest to the corner of this curve is chosen, as it
balances the model smoothing and data fitting parameters best.

For these tomography problems, we examine ε values from 0 to 5, in increments of 0.25.
The resulting L-curves for 3.00 and 3.50 Hz are shown in Figures 6(a) and 6(b), respectively.
To better locate the corner point, we plot the axes on a logarithmic scale. In both cases,
we choose a regularization strength of 1.50 (indicated by the red dots on the curves).
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(a) (b)

Figure 6: Trade-off curves between the norm of the data residual and the semi-norm of
the resulting model for different regularization strengths ε (0 is at the top left of the curve
and 5 is at the bottom right of the curve). (a) For 3.00 Hz. (b) For 3.50 Hz. The red
dot corresponds to ε = 1.50 and is used for the velocity maps shown in this paper. [CR]
jason1/. lc-3p00hz-eps4,lc-3p50hz-eps4

GROUP VELOCITY MAPS

Due to the dispersive nature of Rayleigh waves, the group velocity map at 3.00 Hz (Fig-
ure 7(a)) shows generally higher velocities than those in the group velocity map at 3.50 Hz
(Figure 7(b)). However, because the wavelengths at these two frequencies are similar, it
is not a surprise that they show the same general velocity trends and features. We inter-
pret our results with the guidance of a geologic map of the survey region in Figure 7(c)
(California Department of Conservation, 2012).

One of the most prominent trends in our group velocity maps is a boundary cutting
northwest-southeast across the array that separates a lower velocity region (north) from
a higher-velocity region (south); it is most distinct south of the eastern portion of Inter-
state 405. The location of this boundary matches well with a boundary in the geologic map
that separates Holocene to late Pleistocene alluvial valley deposits (north; light yellow) from
late to middle Pleistocene lacustrine, playa, and estuarine deposits (south; deep yellow).
The deposits in the north typically consist of unconsolidated to slightly consolidated mate-
rial, while the deposits in the south typically consist of slightly to moderately consolidated
material. Thus, it is no surprise that we find the northern region to be of a lower velocity
than the southern region. Another prominent feature is a low velocity zone in the southeast
region of the array. This zone corresponds to the location of Alamitos Bay, which is built
on artificial fill (grey region in Figure 7(c)). Thus, our tomography results appear reliable,
since artificial fill typically displays relatively low velocities (Wills and Silva, 1998).

Two other features are the high velocities overlaying Interstate 405 and the low velocities
overlaying the Newport-Inglewood Fault. The former trend could be an artifact, as travel
times from ray paths that cross the highway can be artificially early due to the highway
acting as an active source. The latter trend is curious, as the fault displays relatively high
velocities at low frequencies and deeper depths (Dahlke et al., 2014; Lin et al., 2013), whereas
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(a) (b) (c)

Figure 7: Group velocity maps generated at (a) 3.00 Hz and (b) 3.50 Hz. (c) Geologic map
of the survey region (California Department of Conservation, 2012). Note the similarities
between the velocity trends in the tomography results and the lithologies outlined in the
geologic map. [CR] [CR] [NR] jason1/. tomo-3p00hz,tomo-3p50hz,geo-coord

the fault seems to display relatively low velocities at higher frequencies and shallower depths.
We require better understanding of fault systems to determine whether this low-velocity
fault trend is reasonable.

MODEL RESOLUTION

We address the spatial resolution of the model in two ways. First, we examine the cumulative
ray length in each model grid cell (Figure 8) when using acceptable travel times at 3.50 Hz.
Longer ray lengths correspond to more rays passing through the cell. As expected, the ray
coverage is highest in the center of the array. The relatively low-coverage areas correspond
to gaps in the array. The lack of coverage is particularly evident in the southeast region
of the array, where the effect of the lack of receivers is compounded by the relative lack of
traffic noise.

Second, we run checkerboard tests. Although there are shortcomings when using this
method to assess spatial resolution (Lévěque et al., 1993), we use it here for qualitative pur-
poses. For this procedure, we first add a sinusoidal, or checkerboard, velocity perturbation
to our final inverted model. For our study, we examine two checker sizes: 500 m ×500 m
(Figure 9(a)) and 250 m ×250 m (Figure 10(a)). Peaks of the perturbation are set to ±15%
of the modeled velocity, which is smaller than the maximum percent difference between the
major low- and high-velocity regions. As a result, the actual pattern is not uniform over the
model. We then use our forward tomography operator to generate synthetic travel times
between virtual source-receiver pairs for the perturbed velocity model. To simulate noise
in our actual travel time picks, we add random travel time error to each synthetic travel
time based on a Gaussian distribution with a mean of 0 and a standard deviation of 14%
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Figure 8: Cumulative ray length
map for all station pairs used at
3.50 Hz. Although ray lengths
in the southeast part of the ar-
ray are relatively short, there is
still enough coverage to trust the
general low-velocity trend. [CR]
jason1/. raylength-3p50hz

of the travel time. This standard deviation is calculated by taking the root-mean-square
(RMS) of the absolute differences between each observed travel time and the corresponding
synthesized travel time from the final velocity model, normalized by the observed travel
time (|tobs − tsyn|/tobs). It is 14% for both velocity models. Finally, we invert these noisy
synthetic travel times using the same parameters we used when inverting the actual data.

The inverted results for the larger checkers (500 m ×500 m) and smaller checkers (250 m
×250 m) are shown in Figures 9 and 10, respectively, for both 3.00 Hz and 3.50 Hz. For
both checker sizes and both frequencies, it is clear that the high amount of noise in the
travel times affects the smoothness of the recovered checkerboard pattern. This suggests
we cannot completely trust the absolute velocity in every grid cell of our group velocity
maps. Despite this, the overall checkerboard pattern is resolved to a reasonable degree in
all cases. For larger checkers, the pattern is resolved throughout nearly the entire array.
The exception is the southeast region of the array, where there is some smearing of the
pattern. This is not a surprise since there was relatively low ray coverage in that region.
For smaller checkers, there is very poor resolution in the same southeast region of the
array. The resolution is worse when looking at 3.50 Hz (Figure 10(c)) than when looking at
3.00 Hz (Figure 10(b)). This is likely because there are fewer acceptable ray paths through
that region at higher frequencies due to attenuation. These results show that we have up
to 250 m ×250 m resolution in the center of the array, and up to nearly 500 m ×500 m
resolution on the fringes of the array. This level of resolution is high enough to trust the
broad velocity features we find in our group velocity tomography results.

CONCLUSIONS AND FUTURE WORK

We showed that high-frequency Rayleigh waves primarily generated by traffic noise can
be extracted from ambient noise recordings using cross-correlation techniques. The travel
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(a) (b) (c)

Figure 9: Checkerboard test results using sinusoidal checkers 500 m ×500 m
in size and a maximum velocity perturbation of 15%. (a) Modeled check-
ers. (b) Inverted results at 3.00 Hz. (c) Inverted results at 3.50 Hz.
Note the poor resolution in the southeast region of the array. [CR]
jason1/. cb-3p00hz-500m-model,cb-3p00hz-500m-recon,cb-3p50hz-500m-recon

(a) (b) (c)

Figure 10: Checkerboard test results using sinusoidal checkers 250 m ×250 m
in size and a maximum velocity perturbation of 15%. (a) Modeled check-
ers. (b) Inverted results at 3.00 Hz. (c) Inverted results at 3.50 Hz.
Note the poor resolution in the southeast region of the array. [CR]
jason1/. cb-3p00hz-250m-model,cb-3p00hz-250m-recon,cb-3p50hz-250m-recon
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times of the fundamental-mode Rayleigh waves appear to be reliable enough for performing
group velocity tomography on the entire array. From our group velocity maps, we are able
to distinguish velocity trends that agree with a geologic map of the region. Unconsolidated
materials in the northern region appear to have relatively low velocities, while more consoli-
dated materials in the southern region appear to have relatively high velocities. We are also
able to resolve low-velocity material in Alamitos Bay, which is built on artificial fill, as well
as a low velocity signature that aligns with the Newport-Inglewood Fault. Resolution tests
indicate that we can trust these features. Because our investigation frequencies are high,
and hence correspond to shallow depths, our results can potentially be useful for identifying
regions that are susceptible to serious damage during earthquake-related shaking.

Our future goals are to improve the quality of our travel time picks, since they are
currently noisy. A more careful selection of minimum and maximum virtual source-receiver
distances could be beneficial, as we want to ensure that we avoid picking travel times when
the fundamental and first-order modes interfere. We would also like to test our method of
harnessing traffic noise by using a sparser subset of receivers because land arrays as dense as
the Long Beach array are rare. Finally, it is highly unlikely we need 35-days worth of data
to obtain stable correlations. We hope to create travel time maps from daily correlations
for time-lapse monitoring purposes. Detectable changes in the subsurface could be due to
earthquake events or precipitation.
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Applying interferometry to ambient seismic noise recorded
by a trenched distributed acoustic sensing array

Eileen Martin, Jonathan Ajo-Franklin, Nate Lindsey, Tom Daley, Barry Freifeld, Michelle
Robertson, Craig Ulrich, Shan Dou and Anna Wagner

ABSTRACT

We deployed a shallow trenched distributed acoustic sensing (DAS) array consisting
of multiple fiber optic cables and casings to assess the suitability of DAS to recording
ambient noise for near-surface characterization. We briefly describe the acquisition
of an ambient noise dataset, our processing workflow, and preliminary results of in-
terferometry on a small data subset. The approximate virtual source responses show
reasonable Rayleigh wave velocity estimates compared to geophones. The results of sev-
eral types of cable casings are comparable, which is encouraging for surveys deployed
in conditions requiring durable materials. We show coherent virtual source responses
at a relatively high frequency range and short recording period relative to most passive
seismic surveys.

INTRODUCTION

DAS uses a standard fiber optic cable as both a strain rate sensor and a means of transmit-
ting data to a storage array. A laser probes the cable with a pulse the length of a channel
(in our experiments 1 m), then optical Rayleigh backscattering is recorded (Daley et al.,
2013). Modifications of the optical time-domain reflectometry (OTDR) technique are used
to convert the optical backscattering profile into acoustic traces associated with each 1 m
channel. Refer to Bakku (2015) for more details on DAS.

DAS is becoming more popular due to its low cost per sensor, its dense spatial sampling,
the potential for flexible geometries, and the possibility of deployment in situations that
would be prohibitive for traditional sensors (Mateeva et al., 2013). Its limitations include
noise spikes, directional sensitivity, and power loss along long cables. DAS only detects
strain changes in-line with the cable. Additionally, the method for generating acoustic
traces acts as a spatial derivative, leading to a cos2 θ sensitivity to plane waves at an
angle θ with the cable. This increased directionality has been verified experimentally with
active sources for both surface DAS arrays (Lancelle et al., 2014) and borehole deployments
(Mateeva et al., 2012; Ajo-Franklin et al., 2014).

Most DAS surveys in the literature use cables deployed in wells and active sources. DAS
has been used to passively record microseismic events in a reservoir (Webster et al., 2013).
The detection and analysis of active sources and microseismic events is quite different from
the use of interferometry on ambient microseismic noise. Ambient noise interferometry is a
powerful and cost effective technique that shows promise for characterizing the near surface
(Wapenaar et al., 2006; Bensen et al., 2007; Chang et al., 2014; de Ridder, 2014).

247



248 Martin et al. SEP–158

We present a novel survey designed as a pilot study on the suitability of DAS to ambient
noise studies, particularly for applications requiring low-cost continuous monitoring of the
near surface.

SURVEY DESIGN

We deployed a trenched DAS array made up of several types of fiber optic cables and
recorded data using a Silixa iDAS interrogator unit at the Richmond Field Station (RFS)
in Richmond, CA, as shown in Figure 1. We also deployed a helical cable, but only present
the results of the straight cables here. The trenches were approximately 2 ft. deep and
all cables were laid flat along the bottom before the trench was backfilled. Along the east-
west trench, we installed 24 three-component geophones at approximately 3 m spacing for
comparison purposes. Further details of the deployment are described in Ajo-Franklin et al.
(2015).

Mobile MiniJunction Box 100 m (east-west line)

112 m 
(north-south line)

OCC (hybrid)

AFL (6sm)
Draka stainless (hybrid, gel)

OCC rodent-proof (6sm)

Figure 1: The trenched DAS survey at Richmond Field Station. We tested four types of
straight fiber optic cable spliced end to end. The control unit and recording system are in
the Mobile Mini. The cables pictured are: OCC hybrid 6 sm (blue), AFL 6 sm (green),
Draka stainless-steel encased hybrid (black), and OCC rodent-proof 6 sm (purple). [NR]
eileen1/. surveyDesign

Sensitivity analysis of DAS with respect to incoming plane wave angle and frequency shows
survey design greatly influences the information detected. This survey was oriented to
detect Rayleigh waves produced by noise sources including a nearby road and railway. The
DAS data presented here were recorded at 2 kHz, and the geophone data were recorded at
1 kHz.
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AMBIENT DAS DATA

As seen in Figures 2 and 3, the raw traces from a DAS channel and a geophone show some
clear differences. There are differences in frequency sensitivity of DAS and geophones. An
obvious difference is the presence of spikes in the DAS traces, a known issue in DAS data
(Bakku et al., 2014). There are coherent events during some periods due to the presence of
nearby large trucks and train tracks.

Figure 2: A raw ambient noise trace from the east end of the survey at channel 370 of the
hybrid OCC cable. The DAS traces are recorded in DAS units so this is on a different scale
from geophone traces. [ER] eileen1/. traceSampleDAS

Figure 3: A raw ambient noise trace from the east end of the survey collected by the in-line
component of a geophone. [ER] eileen1/. traceSampleGeo

Although we expected the response of all channels to be relatively uniform, we observed
significant variation both in trace noise and time-varying gather noise. We are continuing
to investigate the source of this variation. Channels were normalized against each other by
scaling by the 1-norm of each trace.
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PROCESSING WORKFLOW

For these initial results, we modified the standard ambient seismic noise interferometry
workflow (Bensen et al., 2007) as seen in Figure 4. Despiking eliminates data points with
absolute value more than twice the median absolute value in a small window (Bakku et al.,
2014). Whitening boosts the magnitude of the spectrum up to a threshold chosen to be the
median magnitude in the frequency band of interest.
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Figure 4: Our processing workflow is similar to the standard ambient seismic noise workflow.
Despiking is necessary for DAS data. [NR] eileen1/. workflow

Geophones and DAS measure different physical quantities, so we did not expect the raw
geophone and DAS traces to look the same, even after filtering. The estimators of virtual
source responses (result of cross-correlations) are also not expected to look the same, but we
hope to have some qualitative similarities between the DAS and geophone cross-correlations,
particularly in the kinematics of observed events. In the final step of the processing workflow
we hope to have dispersion curves revealing somewhat similar velocities. For each virtual
source, the cross-correlation of the one minute windows are weighted by the inverse of the
energy of the source (sum of the squared entries of the trace) then stacked.

VIRTUAL SOURCE RESPONSES FROM DAS

After the preprocessing described in Figure 4 has been completed, we cross-correlate chan-
nels along the same side of the array. This is done for each channel, and the cross-correlations
of each channel with every other channel serve as an estimator for the response to a virtual
source located at that channel.
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(a) (b)

Figure 5: Approximate virtual source responses from 10 minutes of data along the north-
south hybrid OCC cable (cross-correlations with channel 250). The frequency ranges pic-
tured are 5-15 Hz (left), 10-25 Hz (right). Positive and negative time lags are folded. [ER]
eileen1/. xcorr250Lo5Hi15,xcorr250Lo10Hi25

(a) (b)

Figure 6: The estimated response to a virtual source at channel 370 on the east end of the
east-west line of the hybrid OCC cable (left), and at channel 540 on the east end of the
AFL cable (right). The frequency range pictured is 5-15 Hz, and this uses 10 minutes of
ambient noise data. [ER] eileen1/. xcorr370,xcorr540
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In Figures 5(a) and 5(b) we see the approximate response functions for 10 minute stacks
of cross-correlations with a virtual source at the southern end of the hybrid OCC cable. We
show this for two frequency ranges. In many ambient noise interferometry studies, a much
longer recording time is needed to generate coherent virtual source response estimators, but
these data were recorded in a particularly noisy area which contributed favorably to the
convergence of the response estimators. There is little naturally occurring noise above the
20 Hz range, making it more difficult to pick a velocity from cross-correlations resulting
from a short recording period. The response estimators show a dominant Rayleigh wave
velocity between 200 and 400 m/s.

As seen in Figures 5(a), 5(b) and 6(a), the virtual source response approximations of
both the north-south and east-west lines of the hybrid OCC cable show reasonable Rayleigh
wave velocities. We expect different portions of the survey to display some variations in
virtual sources response. It is promising that both trenches (north-south and east-west) can
detect noise sources well enough to yield coherent virtual source responses, and that both
the OCC hybrid and AFL cable show similar results.

DAS AND GEOPHONE COMPARISON

We deployed 24 three-component geophones at approximately 3 m spacing along the east-
west trench, and analyzed the in-line components. Using the workflow from Figure 4 (except
for the despiking step), we cross-correlated the in-line horizontal components of the geo-
phones to estimate virtual source responses. The results in the 5-15 Hz frequency band for
DAS channels and a geophone on the eastern end of the E-W line are shown in Figures 6(a)
and 7, respectively. They appear qualitatively similar, although there are noticeable dif-
ferences.

Figure 7: Cross-correlations of 40 minutes of ambient recording representing a virtual source
from the eastern-most geophone’s in-line component from 5-15 Hz. This is comparable to
the cross-correlations from nearby DAS channels in Figure 6(a). [ER] eileen1/. xcorrGeos

The geophone cross-correlations look rough in comparison to the DAS cross-correlations.
Even when these virtual source responses contain higher frequency information, the virtual
source response estimates look very smooth compared to geophones. This is likely because
the traces are calculated as a difference over a gauge length (about 10 m), which in theory
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could cause a spatial spreading of any virtual source response estimates. Further analysis
and data integration is needed to conclude whether these data reveal the same Rayleigh
wave speed. The velocities appear to be in approximately the same range.

CONCLUSIONS

We deployed a novel survey design, a trenched DAS array to record ambient seismic noise.
We developed a processing workflow to estimate virtual source responses using ambient noise
interferometry. Using a small subset of the recorded ambient noise, this workflow resulted
in estimated virtual source responses that showed Rayleigh wave velocities between 200 and
400 m/s for the frequency bands from 5-25 Hz. Compared to most passive seismic surveys,
this is a relatively high frequency range.

The results presented here are the early analysis of a pilot test towards a system for
low-cost continuous monitoring of the near surface. We aim to incorporate more data to
estimate virtual source responses with more certainty, and to conduct statistical analyses
to understand uncertainties and convergence. Although interferometry revealed reasonable
results for Rayleigh wave velocities, the directional sensitivity of DAS effectively modifies
a theoretical assumption justifying the use of interferometry. In particular, the theory
assumes that random vibration sources are uniformly distributed around the receiver, but
DAS is unable to detect vibrations perpendicular to the cable. Further theoretical work is
needed to support the use of ambient noise interferometry on DAS data in a general context.
In Summer 2015 we look forward to a larger scale deployment in Alaska, where we hope to
image permafrost regions in the subsurface.
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Fast dispersion curves from ambient noise

Eileen Martin

ABSTRACT

To calculate dispersion curves, phase velocity vs. frequency, from ambient seismic
noise, many researchers calculate virtual source responses in the time domain, then
stack. This algorithm scales as O(n2), where n is the number of sensors. If the data
are regularly sampled in space and time, an existing O(n log n) algorithm involves an
F-K transform of the data cube followed by a transform into velocity vs frequency. I
propose a new O(n) algorithm which only takes the Fourier transform of the data in
time. The new algorithm is conceptually simple, parallelizes easily, and does not require
regular spacing between sensors. I show similar results for dispersion curves resulting
from both the O(n) algorithm and the O(n2) algorithm applied to data collected in
a field trial of a trenched distributed acoustic sensing array at the Richmond Field
Station. There are fewer opportunities for accumulating numerical error in the new
O(n) algorithm, so it yields a sharper image than the O(n2) algorithm.

INTRODUCTION

Dispersion curves are a simple way to synthesize ambient seismic noise data. Dispersion
images roughly show how much surface wave energy is traveling at any given frequency and
velocity. Dispersion curves are the result of picking curves along the peaks in frequency
and velocity in these images. They sometimes allow us to see not only fundamental surface
wave modes, but also higher order modes (de Ridder, 2014).

Let n be the number of sensors in a linear array that passively records seismic data. We
are interested in continuous monitoring applications over large regions with many sensors
(ideally, n should scale well into the 10,000’s). In particular, scaling with the number of
sensors of interest when processing ambient seismic noise data collected by a distributed
acoustic sensing (DAS) array due to the dense sensor spacing. We assume ambient seismic
noise is processed in small chunks (on the order of 1 minute with sampling on the order of
1 kHz).

We can reduce the communication and computation cost of calculating dispersion images
(sometimes the peaks of these images are referred to as dispersion curves) from many
sensors acting as virtual sources from O(n2) to O(n) by solving this problem in the Fourier
domain instead of the time domain. Following the derivation of this new algorithm, we
show dispersion images on a small field dataset collected by a distributed acoustic sensing
array.

First, we review some fundamental properties of the Fourier transform that are used in the
derivation of the new O(n) algorithm:

• The Fourier transform is linear, so
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Ft
∑n

r=0 u(xr, t) =
∑n

r=0Ftu(xr, t) =
∑n

r=0 û(xr, ω).

I use the notation that û(ω) is the Fourier transform of a function u(t) throughout
this report.

• A time shift is a frequency shift of the Fourier transform, i.e.

e2πiωpxû(x, ω) = Ftu(x, t + px)

• A cross-correlation in the time domain is a multiplication in the frequency domain.
If we define cross-correlation as

d(x1, t)× d(x2, t) =
∫∞
−∞ d∗(x1, τ)d(x2, τ + t)dτ ,

then the Fourier transform of the cross-correlation is

Ft (d(x1, t)× d(x2, t)) = d̂∗(x1, ω)d̂(x2, ω)

where d∗ denotes complex conjugation.

SUMMARY OF EXISTING ALGORITHMS

A common and conceptually simple algorithm to calculate dispersion curves requires calcu-
lating source responses in the time domain then slant-stacking, but this method scales as
O(n2). A slightly less intuitive but more efficient O(n log n) algorithm involves a Fourier
transform of the data in both space and time, followed by a transform into slowness vs.
frequency. The new O(n) algorithm is inspired by an O(n2) algorithm, so we describe this
existing O(n2) in detail before moving to the derivation of the O(n) algorithm.

Let d(xr, t) be an ambient seismic noise trace recorded for some time period at a sensor
in position xr, perhaps with some filtering and preprocessing applied (see Bensen et al.
(2007) for general outline of preprocessing). Then let

us(xr, t) = d(xs, t)× d(xr, t)

be a cross-correlation that is some realization of a random variable with a mean that is the
response to a virtual source placed at xs (this is sometimes loosely referred to as a Green’s
function). Let p represent slowness (if v is the velocity then p = 1/v). One conceptually
simple method for calculating the dispersion curve, cs, from the response to virtual source,
s, would be to calculate slant stacks along the responses of all sensors to the virtual source
at xs as is done in Chang (2013):

cs(p, t) =
∑n

r=1 us(xr, t + p(xr − xs))
ĉs(p, ω) = Ft(cs(p, t))

Clearly, this approach requires calculating O(n) virtual source responses per virtual source,
and must be carried out for O(n) virtual sources to get an understanding of spatial vari-
ability across the array.
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PROPOSED O(N) FREQUENCY DOMAIN PROCESSING

We will use the basic facts about cross-correlations and the Fourier transform to rewrite
the dispersion curve cs for the response to a virtual source at xs:

ĉs(p, ω) = Ft

(
n∑

r=1

us(xr, t + p(xr − xs))

)

=
n∑

r=1

Ft(us(xr, t + p(xr − xs)))

=
n∑

r=1

ûs(xr, ω)e2πip(xr−xs)ω

=
n∑

r=1

d̂∗(xs, ω)d̂(xr, ω)e2πip(xr−xs)ω

= d̂∗(xs, ω)
n∑

r=1

d̂(xr, ω)e2πip(xr−xs)ω

= d̂∗(xs, ω)e−2πipxsω
n∑

r=1

d̂(xr, ω)e2πipxrω

Let σ :=
∑n

r=1 d̂(xr, ω)e2πipxrω. Clearly, σ can be reused in calculating the dispersion
curves for all sources ĉs(p, ω), and it only takes O(n) calculations. Also, these calculations
are highly parallelizable over the number of sensors. Only a single round of communication
is required for the reduction to calculate σ. A point-wise multiplication in the frequency
domain must be calculated for each source, but that is a constant. Thus, we can calculate
dispersion curves for n sensors in O(n) time.

Algorithm 1 O(n) algorithm:
Given a short chunk of traces d(xi, t) from receivers at x1, x2, . . . , xn

Initialize σ(p, ω) = 0
Calculate σ, the sum of phase shifted data spectra
for i = 1, . . . , n do

Despike and temporal normalization of d(xr, t)
Bandpass and whitening of d̂(xr, ω) = FFT (d(xr, t))
σ(p, ω)+ = d̂(xr, ω)e2πipxrω

end for
for i = 1, . . . , n do

If stored, make filtered version of d̂(xs, ω) available. If not stored, do any filtering
needed to calculate d̂(xs, ω)
Dispersion curve for virtual source at xs is ĉs(p, ω) = d̂∗(xs, ω)e−2πipxrωσ(p, ω)

end for

FIELD DATA EXAMPLE

Using just ten minutes of ambient noise data, we were able to extract coherent virtual source
responses from a trenched distributed acoustic sensing (DAS) array deployed at Richmond
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Field Station. The channel length was 1 meter and the guage length was 10 meters. The
preprocessing of traces is detailed in the companion paper Martin et al. (2015). Although
we demonstrate this algorithm on data collected by a distributed acoustic sensing array,
the algorithm can also be applied to traditional point sensors.

Figure 1: Estimated response to virtual source at channel 250 from 10 minutes of data
filtered in the 5 to 50 Hz range. Virtual source response estimates such as this one must be
calculated for each virtual source in the O(n2) algorithm, but can be avoided in the O(n)
algorithm. [ER] eileen2/. response

In the O(n2) algorithm, the first step is to calculate virtual source responses. We show
these response estimates (folded over zero time lag) in Figure 1 for one virtual source at the
end of the array based on only ten minutes of ambient data. The next step in the O(n2)
algorithm is to stack the response estimates over a variety of time lags and velocities, as
seen in Figure 2.

In the end, we are really interested in what the dispersion image looks like. For this data
set we can see the dispersion image that only includes a virtual source at channel 250 in
Figures 3(a) and 3(b). In the O(n2) algorithm, we can get this dispersion image by taking
the FFT of the τ − p transform along the τ direction. However, in the O(n) algorithm
we can skip calculating the virtual source response estimates and the τ − p transforms,
and directly calculate the dispersion image. Both algorithms yield two strong modes at
approximately the same velocity and frequency.

There are some significant differences in these results due to numerical error despite the
results being equivalent in theory for exact arithmetic. Switching between the time and
frequency domains multiple times in the O(n2) algorithm leads to small nonzero values
below 5 Hz, despite the bandpass filter, which should cut out energy below 5 Hz. However,
the new O(n) algorithm respects the bandpass filter. The new O(n) algorithm results in
a much sharper dispersion image, most likely because it has fewer Fourier transforms and
fewer opportunities for numerical error to accumulate.

There are some features visible in the O(n) algorithm’s dispersion image that are not ap-
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Figure 2: Velocity versus time lag resulting from τ − p transform of response estimate to
virtual source at channel 250. This is a necessary step in the O(n2) algorithm, but can be
avoided in the O(n) algorithm. [ER] eileen2/. velLag

parent in the O(n2) algorithm’s dispersion image. Between the two most readily apparent
modes in the O(n) algorithm’s dispersion image, there appears to be another smaller peak
for each frequency. It is possible this is another mode, but more data must be included
before we can say anything conclusive.

In the O(n) algorithm’s dispersion curve, there are some faint lines running from the low
velocity & low frequency regime up to the high velocity & high frequency regime. The
slope of these lines is approximately 10 meters. More data need to be incorporated before
we can draw any more conclusions about whether this is a coherent feature, and what the
interpretation of this feature could be.

CONCLUSIONS

We propose a fast algorithm to calculate dispersion images from the data spectra of receivers
in a passive seismic survey. This new algorithm scales linearly with the number of sensors.
As demonstrated on an ambient noise data set collected by a distributed acoustic sensing
array, the new algorithm also yields sharper images. The dispersion images resulting from
the new O(n) algorithm are most likely sharper because the simplified algorithm requires
fewer operations that may accumulate numerical errors and spread them over the dispersion
image space.
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(a)

(b)

Figure 3: (Top) Velocity versus frequency dispersion image calculated by the O(n2) algo-
rithm which takes an FFT of the τ − p transform in the τ direction. (Bottom) Disper-
sion image calculated by the O(n) algorithm directly from the data spectra, then binned
into 1 Hz intervals. Both plots show the two strongest modes at approximately the same
velocity and frequency, but the O(n) algorithm results in a much sharper image. [ER]
eileen2/. dispCurve,dispCurveFrq
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Double-difference time-lapse FWI with a total-variation
regularization

Musa Maharramov, Yinbin Ma and Biondo Biondi

ABSTRACT

In this paper we study double-difference FWI with a total-variation (TV) model-
difference regularization (Maharramov and Biondi, 2014c). This data-space technique
reduces the sensitivity of time-lapse FWI to inaccurate velocity model reconstruc-
tion. We describe a computational framework for conducting a TV-regularized double-
difference FWI both as a simultaneous inversion and as an extension of single-model
inversion. The method is demonstrated on linearized time-lapse waveform inversion
of production effects for a synthetic example of compacting sub-salt reservoirs. We
demonstrate the resolution of production effects and discuss stability of the results
with respect to inaccuracies in the background velocity model.

INTRODUCTION

Simultaneous time-lapse (4D) full-waveform inversion (FWI) with a total-variation (TV)
regularization achieved a considerable success in resolving production-induced changes both
in synthetic and field-data tests (Maharramov and Biondi (2015b, 2014c, 2015a), and Ma-
harramov and Biondi (2014a), supplementary material). As a model-space technique, the
simultaneous inversion is stable with respect to repeatability issues such as different acqui-
sition parameters, while the conventional double-difference method (Watanabe et al., 2004;
Denli and Huang, 2009; Zheng et al., 2011; Asnaashari et al., 2012; Raknes et al., 2013)
is quite sensitive to survey repeatability and may require a significant preprocessing effort
to achieve data equalization (Maharramov and Biondi, 2014b,a). However, one important
potential advantage of the double-difference FWI is that once the baseline and monitor data
sets are equalized and measurable production effects can be observed and isolated in the data
difference, the double-difference FWI seeks to resolve the model difference by matching the
data difference only, rather than matching the separate acquisition data sets. This suggests
the double-difference FWI as a potentially useful technique in situations where resolution
of the baseline model is still subject to considerable uncertainty but the production-induced
effects in the data are significant enough to estimate model perturbations that are causing
them. Maharramov and Biondi (2014c) proposed a formulation of the double-difference
method that allows matching the observed data difference by simultaneously inverting sub-
surface models of different vintage while imposing a blockiness-promoting total-variation

263
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regularization on the model difference:

α‖F(mb)− db‖2
2 + β‖F(mm)− dm‖2

2 + (1)
γ‖ (F(mm)− F(mb))− (dm − db) ‖2 + (2)

α1‖WbRb(mb −mPRIOR
b )‖2

2 + (3)
β1‖WmRm(mm −mPRIOR

m )‖2
2 + (4)

δ‖WR(mm −mb −∆mPRIOR)‖1 → min, (5)

In the above equations, subscripts b and m denote baseline and monitor acquisitions, db,m

is a vector of observations (survey data), mb,m are the baseline an monitor models, F is
the forward-modeling operator, Wb,m,W and Rb,m,R are weighting and regularization
operators for the baseline, monitor, and the model difference. Model and model-difference
priors can be explicitly specified in the objective function as shown in (3,4,5), however, in
this work we assume no prior information. For a TV-regularized model-difference inversion,
we use the model-difference regularization operator R such that

Rf(x, y, z) = |∇f |, (6)

i.e., R computes the spatial gradient of its argument function at each point of the sub-
surface. This means that we seek a monitor model mm that differs from the inverted
baseline by a spatially bounded or blocky component (Rudin et al., 1992). The assumption
of blockiness and, more generally, spatial boundedness of production-induced model pertur-
bations is consistent with the physical effects of fluid substitution, reservoir compaction and
overburden dilation (Johnston, 2013). An example of a TV-regularized simultaneous FWI
applied to estimating spatially localized production-induced overburden dilation from Gulf
of Mexico time-lapse data is provided by Maharramov and Biondi (2015a) in this report.
In this work, we assess the feasibility of TV-regularized double differencing with the terms
(1,3,4) omitted, i.e., TV-regularized double-differencing without simultaneously fitting data
of different vintage. In our initial tests we consider a linearized formulation with adaptive
sparsity-promoting steering-filter regularization (Ma et al., 2015a), and compare the results
with the simultaneous linearized inversion of Ma et al. (2015b). Of particular interest to us
is the effect on the two methods of inaccuracies in the baseline model, and whether matching
the data difference only can achieve a greater robustness with respect to the uncertainty in
the background model.

METHOD

We consider the following optimization problem

‖ (F(mm)− F(mb))− (dm − db) ‖2 + (7)
δ‖WR(mm −mb)‖1 → min, (8)

with operator R given by (6). The regularized optimization problem (7,8) can be solved with
respect to the combined baseline/monitor model vector (mb,mm) (i.e., by inverting the two
models simultaneously) or using the traditional double-difference approach by e.g. fixing
the baseline model mb and minimizing with respect to the monitor model mm (Watanabe
et al., 2004; Denli and Huang, 2009; Asnaashari et al., 2012; Zheng et al., 2011; Maharramov
and Biondi, 2014b). The latter approach reduces the size of optimization problem and
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alleviates the null-space issues associated with resolving two subsurface models from the
data difference alone. Note that the latter issue can be remedied by adding back the terms
(1)—i.e., effectively combining the double-differencing with a simultaneous baseline and
monitor model inversion. However this combined approach is outside the scope of this
work.

Our method can be summarized as follows:

1) Invert the baseline model mb:

‖F(mb)− db‖2
2 → min . (9)

2) Generate new synthetic monitor survey data d2 by adding the observed data difference
dm − db to the forward-modeled baseline data F(mb):

d2 = F(mb) + (dm − db) , (10)

3) Invert the monitor model mm from the new synthetic data d2:

‖ (F(mm)− d2) ‖2
2 + (11)

δ‖WR(mm −mb)‖2
2 → min . (12)

Method (9,10,11,12) can be used with both 4D FWI and the linearized waveform in-
version. Note that in the latter case, because the forward-modeling operator F is linear,
the above procedure is the only correct approach to solving (7,8) in the absence of extra
constraints, as the linearized inversion problem has a null space dimension of (at least) the
subsurface model: adding the same perturbation to both the baseline and monitor models
does not affect the data difference.

Because for linearized inversion the inverted models are qualitatively interpreted as re-
flectivity, the total-variation regularization operator (6) should be replaced in this case with
an operator that promotes blockiness of the reflectivity only along reflector dips while en-
forcing sparsity in the orthogonal direction (Ma et al., 2015a). This is achieved by replacing
the full gradient in (6) with a directional gradient

Rf(x, y, z) = |∇ξf |, (13)

where ξ = ξ(x, y, z) is the dip direction at (x, y, z) that is updated at each iteration of
(11,12). This approach is effectively equivalent to promoting blockiness only along reflector
surfaces, and therefore we will call this approach Steering TV (STV) regularization.

RESULTS

We applied the proposed method to a sub-salt time-lapse reflectivity inversion problem
studied by Ma et al. (2015b) in this report. Synthetic baseline and monitor acoustic velocity
models are shown in Figures 1(a) and 1(b), respectively. The monitor model has been
chosen to simulate the effects of gas substitution with water (a higher velocity below the
reservoir top) and overburden dilation due to reservoir compaction (lower velocity above the
reservoir top) at two locations below and on the left side of the salt body. The time-lapse
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(a)

(b)

Figure 1: (a) Baseline velocity model. (b) Monitor velocity model simulating production-
induced fluid substitution effects (positive change) and overburden dilation effects (negative
change) for two reservoirs. [ER] musa4/. simple.diffT0,simple.diffT2
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linearized waveform inversion seeks to recover image difference between monitor and baseline
migrations, typically using the same (baseline) background velocity model for both baseline
and monitor images. The result of applying the simultaneous STV-regularized linearized
inversion (Ma et al., 2015b) is shown in Figure 4(b). The corresponding STV-regularized
double-difference inversion is shown in Figure 2(b). In both cases a target-oriented inversion
was conducted within a target window shown in the figures, using the exact background
velocity model matching the baseline velocity model. Both methods are expected to achieve
similar results because under the assumption that problem (9) is solved exactly, the two
methods are mathematically equivalent. Production-induced reflectivity changes for both
reservoirs stand out prominently in both images. The double-difference result was obtained
using identical acquisition geometries to match the effect of data equalization that is part
of standard time-lapse processing (Maharramov and Biondi, 2014b). However, when the
background model is inaccurate, the simultaneous inversion and double-difference solve two
different problems: the first method seeks to match two different sets of reflection data
using the wrong background velocity, while the regularized double difference seeks to match
the observed relative data difference by perturbing the predicted (and inaccurate) baseline
reflectivity model. Inversion results for the two methods using a 10% overestimated velocity
model in the target zone are shown in Figures 3(a) and 3(b). While the wrong background
velocity still results in a slight mispositioning of the target reflectors, the double-difference
reflectivity inversion appears to be more robust with respect to inaccurate velocity. The
double-difference inversion is still able to resolve the reflectivity change along two isolated
reflectors corresponding to the two reservoirs, but the simultaneous inversion result using
the wrong background velocity is contaminated with artifacts that can be misinterpreted
as production effects (e.g. the artifacts marked with red circles in Figure 3(a))

CONCLUSIONS AND PERSPECTIVES

Double differencing with steering TV (STV) regularization may yield more robust inversion
of reflectivity changes in the presence of velocity uncertainty. Better imaging of reflectivity
changes due to fluid-substitution effects leads to improved infill strategies and reservoir
monitoring, and therefore is of paramount importance for reservoir production management.
While linearized waveform inversion presents a useful initial application of the regularized
double-differencing technique, application to full-waveform inversion, especially in a hybrid
approach involving simultaneous inversion of the baseline and monitor data-fitting terms
(1,2), requires further analysis and will be subject of our future work.
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(a)

(b)

Figure 2: (a) Steering TV-regularized simultaneous linearized inversion (Ma et al., 2015b).
(b) Steering TV-regularized double-difference method (9-12). In both cases the exact base-
line velocity and reflectivity models were used. Both methods resolved reflectivity changes
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(a)

(b)

Figure 3: (a) Steering TV-regularized simultaneous linearized inversion using a 10% overes-
timated velocity model. (b) Steering TV-regularized double-difference method (9-12). The
simultaneous inversion result is now contaminated with artifacts (e.g. marked with red cir-
cles) that are absent from the double-difference result. [CR] musa4/. marked,DDwrongv
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Total-variation minimization with bound constraints

Musa Maharramov and Stewart A. Levin

ABSTRACT

We present a powerful and easy-to-implement algorithm for solving constrained op-
timization problems that involve L1/total-variation regularization terms, and both
equality and inequality constraints. We discuss the relationship of our method to
earlier works of Goldstein and Osher (2009) and Chartrand and Wohlberg (2010), and
demonstrate that our approach is a combination of the augmented Lagrangian method
with splitting and model projection. We test the method on a geomechanical problem
and invert highly compartmentalized pressure change from noisy surface uplift obser-
vations. We conclude the paper with a discussion of possible extension to a wide class
of regularized optimization problems with bound and equality constraints.

INTRODUCTION

The primary focus of this work is a class of least-squares fitting problems with a total-
variation (TV) regularization and bound model constraints:

‖|∇m|‖1 +
α

2
‖F(m)− d‖2

2 → min,

m1 ≤ m ≤ m2.
(1)

In (1) we seek a model vector m such that forward-modeled data F(m) match observed
data d in the least squares sense, while imposing blockiness-promoting total-variation (TV)
regularization (Rudin et al., 1992) and lower (m1) and upper (m2) model bounds. Rather
than using a regularization parameter as a coefficient of the regularization term, we use a
data-fitting weight α. TV regularization (also know as the Rudin-Osher-Fatemi, or ROF,
model) acts as a form of model styling that helps to preserve sharp contrasts and boundaries
in the model, even when spectral content of input data has limited resolution. Examples
of successful geophysical application of unconstrained TV-regularized optimization are in-
cluded in this report (Maharramov and Biondi, 2015; Maharramov et al., 2015; Ma et al.,
2015a,b). The regularization provided by bounded total-variation sometimes produces suf-
ficient smoothing side-effect on the inverted model that obviates explicit bound constraints.
However, many applications still require the imposition of additional constraints regardless
of the regularization. For example, reservoir pore-pressure inversion problems often come
with a priori bounds on the estimated pore pressure change, such as the pore pressure
change being non-negative as a result of fluid injection (lower bound) or never exceed-
ing a hydraulic fracturing pressure (upper bound). TV regularization is a key tool in
imaging and de-noising applications (Rudin et al., 1992; Chambolle and Lions, 1997; Gold-
stein and Osher, 2009; Chartrand and Wohlberg, 2010) and require an efficient mechanism
for including a priori model constraints that can significantly reduce model space (Char-
trand and Wohlberg, 2010). While barrier or penalty function methods, such as nonlinear
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interior-point methods (Nocedal and Wright, 2006), can be used to tackle the general con-
strained formulation (1), the presence of a non-differentiable L1-norm total-variation term
and non-quadratic penalty terms pose considerable challenges to practical implementation.
A log-barrier function such as

− const ×
n∑

i=1

log
mi

2 −mi

δ
+ log

mi −mi
1

δ
, (2)

where n is the model space dimension, can be added to the right-hand side of the objective
function to keep solution iterates away from the rectangular bounds. However, this adds
a non-quadratic term to the objective function. For large-scale inversion problems with
n > 105 (such as typical in geophysical applications) often only iterative gradient-based
solution techniques like the nonlinear conjugate gradients (Nocedal and Wright, 2006) are
available, and adding non-quadratic terms may significantly affect convergence properties.
Note that this is in addition to the challenges associated with handling the non-differentiable
TV-regularization term.

Chartrand and Wohlberg (2010) used a splitting approach to decouple the TV-regularized
problem from enforcing the constraints. In our approach, we perform three-way splitting of
problem (1) into a smooth optimization, gradient thresholding and projection steps using
the Alternating Direction Method of Multipliers (ADMM) (Boyd et al., 2010). For uncon-
strained TV-regularized problems this approach is equivalent to the split-Bregman method
of Goldstein and Osher (2009). However, we integrate the projection step associated with
enforcing the bound constraints into the TV-minimization loop and avoid unnecessary it-
erations in the minimization of a proximal term (Parikh and Boyd, 2013) associated with
the projection.

METHOD

First, we recast the TV-regularization part of (1) as a constrained optimization problem
following the approach of Goldstein and Osher (2009). We introduce an auxiliary variable
x and operator Φ : m → x such that for isotropic TV regularization we have a vector of
the model-space dimension

Φ(m) =
√

(∇xm)2 + (∇ym)2, (3)

and for anisotropic regularization a vector twice the model-space dimension

Φ(m) =
[
∇xm
∇ym

]
. (4)

Problem (1) can now be reformulated with an additional equality constraint:

‖x‖1 +
α

2
‖F(m)− d‖2

2 → min,

x = Φ(m),
m1 ≤ m ≤ m2.

(5)

Problem (5) is still a bound-constrained problem. Introducing the projection operator

Π(m) = max{min{m,m2},m1}, (6)
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where min and max are applied component-wise, we reduce (5) to a fully equality-constrained
formulation:

‖x‖1 +
α

2
‖F(m)− d‖2

2 → min,

x = Φ(m),
m = y,

y = Π(m).

(7)

Following the augmented Lagrangian recipe for (7) while assuming the last equality con-
straint still enforced explicitly, we obtain a sequence of problems (Nocedal and Wright,
2006)

(xk+1,mk+1) = argmin ‖x‖1 +
α

2
‖F(m)− d‖2

2 +

λ

2
‖x − Φ(m)‖2

2 − µk
T (x − Φ(m)) +

δ

2
‖m− y‖2

2 − νk
T (m− y) → min,

µk+1 = µk − λ
[
xk+1 −Φ(mk+1)

]
,

νk+1 = νk − δ
[
mk+1 − y

]
, k = 0, 1, 2, . . .

(8)

Coefficients λ and δ are any positive constants above certain problem-specific “threshold”
values (Nocedal and Wright, 2006), and can be selected experimentally. Vectors µk and νk

are vectors of multipliers that converge to the set of Lagrange multipliers for the first two
equality constraints of problem (7). At each step, (8) solves an L1-regularized problem with
respect to the combined model vector (x,m). Introducing new scaled multiplier vectors

bk =
µk

λ
, ck =

νk

δ
, k = 0, 1, 2, . . . (9)

a little algebra shows that (8) is equivalent to

(xk+1,mk+1) = argmin ‖x‖1 +
α

2
‖F(m)− d‖2

2 +

λ

2
‖x − Φ(m)− bk‖2

2 +
δ

2
‖m − y − ck‖2

2 → min,

bk+1 = bk + Φ(mk+1)− xk+1,

ck+1 = ck + y −mk+1, k = 0, 1, 2, . . .

(10)

Here we used the fact that adding a constant term λ/2‖bk‖2
2 + δ/2‖ck‖2

2 to the objective
function obviously does not change the minimizing solution.

Problem (7) can be solved by iteratively projecting the current model vector m onto y,
then conducting the iterations (10) to convergence, then repeating the process. However,
presence of the proximal term δ/2‖m− y‖2

2 in (8) due to the constraint m = y means that
a very accurate solution of (10) at early iterations is wasteful and unnecessary. We instead
carry out a single iteration of (10) followed by the model projection:

(xk+1,mk+1) = argmin ‖x‖1 +
α

2
‖F(m)− d‖2

2 +

λ

2
‖x − Φ(m)− bk‖2

2 +
δ

2
‖m − yk − ck‖2

2 → min,

bk+1 = bk + Φ(mk+1)− xk+1,

ck+1 = ck + yk −mk+1,

yk+1 = Π(mk+1) = max{min{mk+1,m2},m1}, k = 0, 1, 2, . . .

(11)
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The iterative process (11) still requires soling an L1-regularized problem. However, the
L1-norm term now involves only the vector x. Therefore, we can apply Douglas-Rachford
splitting, minimizing

‖x‖1 +
α

2
‖F(m)− d‖2

2 +
λ

2
‖x − Φ(m)− bk‖2

2 +
δ

2
‖m − yk − ck‖2

2 (12)

alternately with respect to m and x in an inner loop of N1 ≥ 1 cycles. Because the proximal
constraint m = y renders good fitting accuracy at early stages unnecessary, N1 can be small.
Further we note that the minimization of (12) with respect to x (in a splitting step with m
fixed) is given trivially by the “shrinkage” operator (Goldstein and Osher, 2009):

xk+1 = shrink
{
Φ(m) + bk,

1
λ

}
, (13)

where
shrink {x, γ} =

x
|x|

max (|x| − γ, 0) , (14)

and is effectively thresholding the model gradient. Our algorithm can be described by the
following 5 steps:

1 Initialization
m0 = starting guess,

x0 = 0,

y0 = max{min{m0,m2},m1},
b0 = 0,

c0 = 0,

(15)

2 Outer loop. Repeat steps 3-5 for k = 0, 1, 2, . . .

3 Inner loop. Iterate (16) N1 ≥ 1 times.

mk+1 = argmin
λ

2
‖xk −Φ(m)− bk‖2

2 +
α

2
‖F(m)− d‖2

2+

δ

2
‖m− yk − ck‖2

2,

xk+1 = shrink
{
Φ(mk+1) + bk,

1
λ

}
, xk = xk+1,

(16)

4 Update the multipliers and project the model onto the bounding rectangle:

bk+1 = bk + Φ(mk+1)− xk+1,

ck+1 = ck + yk −mk+1,

yk+1 = max{min{mk+1,m2},m1}.
(17)

5 Terminate if the target accuracy is reached

‖mk+1 −mk‖2

‖mk‖
≤ target accuracy. (18)

or go back to step 2 otherwise.
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Optimizing (16) with respect to m is in itself a large-scale optimization problem, nonlinear
for a nonlinear modeling operator F. Solving the optimization problem (16) exactly is
unnecessary because for small k (i.e., at early stages of the inversion) vector yk is not the
true model, vector xk is far from the true model gradient, and the multipliers bk,xk could
be far from scaled Lagrange multipliers, s. Therefore, for large-scale problems only a few
steps of an iterative method like conjugate gradients need be carried out. As the solution
converges to the true solution and critical sharp contrasts in the model are identified, an
iterative solver can begin to take advantage of the objective function curvature information
collected at previous iterations of the outer loop, potentially leading to a significantly faster
convergence. Optimal strategies for spanning iterations of nonlinear conjugate gradients
across iterations of the outer loop of our algorithm are the subject of an upcoming report.

RESULTS

We demonstrate our method with a test problem that simulates vertical surface uplift in re-
sponse to distributed dilatational sources, mathematically equivalent to surface deformation
due to pore pressure change (Segall, 2010). Our modeling operator is defined as

F(m) = u(x), u(x) =
∫ A

0

D3m(ξ)dξ

(D2 + (x− ξ)2)3/2
, (19)

where we assume that m = m(ξ), ξ ∈ [0, A] is a relative pore pressure change along a lin-
ear segment [0, A] of a reservoir at a constant depth D, and u = u(x), x ∈ [0, A], within
a proportionality factor determined by poroelastic medium properties (Maharramov and
Zoback, 2015), is the induced vertical uplift on the surface. For demonstration purposes we
consider a one-dimensional model but the results trivially extend to realistic reservoir and
surface geometries. Operator (19) is a smoothing operator, and recovering sharp pressure
contrasts e.g. due to permeability barriers requires model “styling” or regularization such
as blockiness-promoting ROF model. As a true model we used a highly compartmental-
ized pressure model of Figure 1(b). In our experiments, we set D = 100m A = 2km, and
discretized both the model and data space using a 200-point uniform grid. Random Gaus-
sian noise with σ = 15% of the maximum clean data amplitude was added to the clean
forward-modeled data to produce the noisy observations shown in Figure 1(a).

The result of a TV-regularized unconstrained inversion is shown in Figure 2(a) against
the true model and a Tikhonov-regularized inversion. This result was obtained using the
above algorithm by setting δ = 0 (no bound constraints) and using the values of α = 1
and λ = 2. The TV-regularized result captures the compartmentalized picture of pressure
distribution better than the highly smoothed Tikhonov regularization result. However,
due to absence of bound constraints, lower pressure bounds are not honored, resulting in
negative pressure areas that are not present in the true model. The result of running our
bound-constrained TV-regularization algorithm is shown in Figure 2(b). The imposition of
bound constraints not only removed the negative relative pressure areas, but also removed
the pressure spike at about x ≈ 1km in the unconstrained inversion of Figure 2(a) that
apparently had resulted from compensating negative pressures. In both the constrained
and the unconstrained runs we conducted 1000 outer loop iterations with 2 inner loops
cycles. However, the algorithm converged quickly, with only a few initial iterates outside a
tight neighborhood of the final curve, as shown in Figure 3(b). Finally, we note that many
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Figure 1: (a) True and noisy uplift observations. Random Gaussian noise with σ = 15% of
maximum clean data amplitude was added to the clean data. (b) True model exhibibits a
highly compartmentalized “blocky” behavior. [CR] musa5/. tvdata,true

practical implementations of bound constraints often resort to a simplistic way of enforcing
the constraints: the inverted model is projected onto the bounding rectangle either once
after applying a direct unconstrained solver, or at each iteration of an unconstrained solver.
In this case variable y and the associated quadratic regularization term are not introduced
into the objective function. This may result in a violation of the KKT optimality conditions
where the bound constraints are active (Nocedal and Wright, 2006), and is demonstrated
by the blue plot in Figure 3(a). While the bound constraints are honored, the solution is
both qualitatively and quantitatively far from optimal.

CONCLUSIONS AND PERSPECTIVES

Our algorithm combines the advantages of the blockiness-promoting and edge-preserving
ROF model with the ability to impose bound constraints. The splitting mechanism used
for enforcing the bound constraints is naturally integrated into the split-Bregman iterations
and results in no extra computational cost. The method was able to resolve compartmen-
talized subsurface pressure changes from noisy surface uplift observations despite the highly
diffusive nature of the underlying deformation process. The method can be implemented
around any large-scale nonlinear solver such as conjugate gradients or quasi-Newton meth-
ods. Additional equality and inequality constraints can be incorporated into the algorithm
using the general ADMM framework.
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Figure 2: (a) Unconstrained TV-regularized inversion. The algorithm tries to fit the data by
allowing negative relative pressure changes. (b) Bound constrained TV-regularized result.
Note that enforcing lower bounds resulted in a more accurate shape matching of the true
model. [CR] musa5/. tvinv,boundtvinv
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Figure 3: (a) Direct imposition of the bound constraints at each iteration of the un-
constrained solver resulted in a qualitatively and quantitatively wrong inversion. (b)
Convergence of TV-regularized inverted models with bound constraints. The method
quickly resolves both sharp contrasts and active bounds as only a few initial curves
out of 1000 iterates lie outside a small neighborhood of the final curve. [CR]
musa5/. simplefailboundtvinv,boundtvconv
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Illumination compensation by L1 regularization and steering
filters

Yinbin Ma, Musa Maharramov, Robert Clapp and Biondo Biondi

ABSTRACT

L1/L2-regularization techniques often generate better results than the conventional
least-squares solutions for inverse problem in geophysics. We implement a method to
combine L1 regularization with steering filters. We obtain steering filters iteratively
from input data without using any prior information. The numerical examples show
significant improvement in comparison with the standard least squares. We demon-
strate our method is robust with respect to inaccurate steering filters.

INTRODUCTION

L1-regularized optimization often yields more robost results in comparison with the standard
least-squares optimization and is useful in geophysics when data is contaminated by high-
amplitude noise. It is also necessary, if we will apply a filter to the model after inversion
to seperate data from a different physical process, like the primary-multiple separation.
L1 regularization, as a sparsity-promoting technique, is especially useful for time-lapse
inversion, because the area of production-induced change is bounded (Maharramov and
Biondi, 2014a,b, 2015).

In our previous work (Ma et al., 2014), we solved L1-regularized linearized waveform
inversion (Tang, 2008, 2011) using a number of solution techniques: least-squares with
conjugate gradient (CGLS), iterative reweighted least squares (IRLS), alternating direction
method of multipliers (ADMM) and Split-Bregman method (Goldstein and Osher, 2009;
Boyd, 2010), hyperbolic penalty function (HPF) with conjugate directions (Claerbout, 2009;
Zhang and Claerbout, 2010). While all the methods performed well, we demonstrated that
L1 regularization delivered a significant improvement over standard least squares. However,
the results still suffer from lingering effects of illumination gaps in the data. In this work,
we address this issue by combining L1-regularized inversion with the concept of steering
filters (Clapp et al., 2005; Prucha and Biondi, 2002).

Steering filters can improve the quality of inversion, especially in complex overburden.
We style the L1 regularization term in a way that favors specified dip directions and sparsity
in the direction orthogonal to the dip. We study the same test problem as Zhang and
Claerbout (2010), and demonstrate that with suitable prior knowledge of the dip structure,
we can effectively compensate insufficient illumination and greatly improve the inversion
results.

In this work we demonstrate that even without prior geological information, and using
only seismic data, we can iteratively construct L1-regularization steering filters, thereby
achieving a quality of inversion comparable to that when good prior information is available.

279
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We begin by solving a least squares problem with the zero-order Tikhonov regularization
(minimal norm solution) that yields an estimate of the gradient field. We then use this
estimate to construct an initial steering filter. This steering filter is incorporated into the
L1 regularization term as described in Section 2.2, and we use the results of subsequent
regularized inversions to update the steering filter iteratively. We discuss techniques of
regularizing estimated gradient field for the purpose of constructing robust steering filters
in the appendix.

OPTIMIZATION METHOD AND REGULARIZATION

We have implemented several L1/L2 solvers and an HPF solver in our Stanford Explo-
ration Project (SEP)-Vector library. Previously we have tested solvers on a few geophysical
examples (Ma et al., 2014). We have shown that the quality of inversion results and com-
putational costs are comparable for all the solvers in the examples we considered. The
ADMM/Split-Bregman methods are deemed to be better than IRLS for compressed sens-
ing and denoising problems. However, because it is hard to select the proper parameters
of the ADMM/Split-Bregman methods, in this work we conduct L1-regularized linearized
waveform inversion using our IRLS solver.

Regularization plays an important role in geophysical inverse problems. Regularization
prevents overfitting noisy measurements, and ameliorates ill-posedness due to lack of data.
Our mathematical model is only an approximation of a real physical process, and a suitable
regularization may mitigate the mismatch between model and observation.

Regularization can be considered as “model styling”, imparting on our model certain
features considered desirable in the context of our problem (Claerbout, 2014). In this sense,
L1-regularized steering filters can be considered a constraint on model inversion favoring
the continuity of dip structures.

Adaptive regularization has been proposed before, e.g. based on Baysian analysis (Za-
manian et al., 2014). This typically requires solving auxiliary inverse problems. In our
deterministic approach, the L1-regularization term is updated between solution iterations.

LINEARLIZED WAVEFORM INVERSION

Description of the problem and challenges

The target-oriented linearlized waveform inversion has been explored in several previous
works (Clapp et al., 2005; Valenciano, 2006; Tang, 2008, 2011; Zhang and Claerbout, 2010;
Ma et al., 2014). We are trying to solve:

Hm ≈ mmig, (1)

where H is the Hessian operator,mmig is called migrated data which is known, and m is
the model we want to compute.

A standard method to solve the problem is least squares inversion. Regularization terms
are usually included in the objective function for least squares inversion when the modeling
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operators are singular and data contains noise.

In this specific example, we have several challenges, as can be seen from the true re-
flectivity model and data used for inversion in Figure 1. The forward modeling is a linear
approximation of the true operator. We have poor illumination under the salt. The ex-
istence of faults prevent us from getting a high quality model considering that Hessian
operator acts like “convolution” operator.

(a) (b)

Figure 1: (a) Reflectivity model. (b) input migrated image. [NR]
yinbin1/. refl-imaging,data-imaging-mig

Power of L1 regularization and steering filters

Previous results (Zhang and Claerbout, 2010; Ma et al., 2014) using objective function:

J(m) =
1
2
||Hm−mmig||22 + ε||m||1, (2)

suggest that we can get more sparse reflectors in the well-illuminated zone (the left part of
the model) using L1/L2 solvers. However, we do not get significant improvement under the
salt. In addition, the data residues from L1/L2 solvers are more correlated comparing with
CG method, suggesting our results are not convincing.

To further improve the results, the regularization term is replaced by more geologically
plausible constraints, namely steering filters,

J(m) =
1
2
||Hm−mmig||22 + εa||Wa∇rm||1 + εb||Wbm||1, (3)

where Wa and Wb control the strength of regularization at each point, because we do not
have equal illumination. The derivative ∇r is taken along the gradient prior. The geological
information is contained in Wa, Wb and r.

To test the power of L1 regularization and steering filters, we assume we already have a
good prior for Wa, Wb and r from external knowledge. r in Figure 2(a) is used as a prior
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gradient field. The choice is natural, because previous constraints ∇xm would penalize
dipping reflectors. Next, we set Wb = 1. for x < 10000ft and Wb = 0. for x > 10000ft,
and Wa = 1.. We made this choice based on knowing the area under the salt is poorly
illuminated, and we need more compensation from steering filters.

(a) (b)

Figure 2: (a) x component of correct gradient prior. (b) x cpomponent of wrong gradient
prior. [ER] yinbin1/. CorrectPriorDx,WrongPriorDx

The final results in Figure 3(e) are better comparing with CG method (Figure 3(a)) and
previous L1/L2 results (Figure 4(a)). We have obtained sparse reflectors as expected from
hybrid L1/L2 solvers. The faults are correctly recovered and the reflectors under the salts
are properly inverted. The data residue in Figure 3(f) looks more random comparing with
previous results. We have run 30 by 20 CG steps to obtain the results in Figure 3(e), which
is ∼ 10 times more expensive than the CG method. The cost is acceptable considering the
improvement of inversion results.

Obtaining steering filters from the data iteratively

In the previous subsection, we have demonstrated L1 regularization and steering filters
can help in the inverse problems. However, it is not trivial to obtain proper geological
constraints. We can add external knowledge that is independent of seismic data: geophysi-
cal, geological, and geomechanical information. Before we have enough knowledge, we can
squeeze the data and construct reasonable steering filters from the seismic data.

Numerically, assume a prior gradient field is not available, though a little ”external
information” is known: the strongly dipping events at z ∼ 4000ft and x ∼ 12000ft are
artifacts. We use the following workflow. First, we do inversion with uniform constraints
as in equation 8. Next, we extract the gradient field r from the inversion results and mute
the dipping reflectors near z ∼ 4000ft and x ∼ 12000ft. Then we use the gradient field
as prior to construct steering filters and do the inversion again with equation 3 and repeat
the process until the results converge. Wa, Wb should also be changed iteratively based
on previous inversion results; however, we adjust them manually for simplicity.

We run the IRLS algorithm 6 times, and we can see the results in Figure 4. Significant
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Comparison of linearized waveform inversion results and residues: (a)
CGLS inversion result. (b)CGLS inversion residue. (c) IRLS inversion result . (d)
IRLS inversion residue. (e) IRLS inversion result with gradient prior. (f) IRLS
inversion residue with gradient prior. All figures are clipped at the same level. [CR]
yinbin1/. LSICGmod,LSICGresd,L1Sparsemod,L1Sparseresd,L1SteeringFiltermod,L1SteeringFilterresd
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improvement can be observed which means we can really get more information from the
data if we go beyond simple least squares inversion. However, we could not match the
results in the previous section (where we assume we know good prior).

Do the wrong steering filters ruin the inversion results?

We put our knowledge into the objective function as prior and we want to know how our
choice affects the results. Firstly, we are geophysicists, not data scientists. When we solve
an inverse problem, we rarely obtain our results exclusively from the data. Even in the
simplest case of geophysical inverse problem with regularization, the extra terms ∇rm or
m come from our geophysical knowledge of the previous subsurface studies. Secondly, we
iteratively construct steering filters and there is inevitable inaccuracy.

Ideally, we want proper prior to promote correct reflectors in the poorly illuminated
area, and wrong prior has negligible effects. We can justify our assumption qualitatively.
Because the true model lies close to the null spaces of forward modeling operator H and
correct regularization operator ∇r, the correct objective yields minimum norm solution
within the intersection of the two null space. If the null space is not large, we would expect
the inversion results to be close to the true model. However, if we provide wrong constraints
∇r̃, then Null(H) would be far away from Null(∇r̃), and there is no way to fit them at the
same time. Considering the weight on the regularization term is small comparing with the
weight of the data fitting term, the wrong constraints will be negligible.

We use the same objective function as described in the previous subsection with the
wrong gradient prior as in Figure 2(b). We set Wb = 1 everywhere, because in this case
as we assume we do not know whether the gradient prior is good or bad. We also twist
the gradient prior as in Figure 2(b), and we can see the inversion result in Figure 5(c).
The correct gradient prior yields better results at the gaps under the salt, while the wrong
gradient prior does not introduce too many artifacts at the gaps, which proves our method
is robust against inaccurate steering filters.

CONCLUSIONS

In conclusion, we present a workflow to obtain better results from geophysical inverse prob-
lems by combining L1 regularization with steering filters. We prove improvement is possible
when no prior knowledge is available. When applying the methods to a real problem, we
can use external knowledge like geomechanics to construct more reasonable steering filters.
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Comparison of linearized waveform inversion results and residues: (a)
1st iteration of inversion with no prior. (b) 2nd iteration of inversion with prior.
(c) 3rd iteration of inversion with prior. (d) 4th iteration of inversion with prior.
(e) 5th iteration of inversion with prior. (f) 6th iteration of inversion with prior. [NR]
yinbin1/. L1Sparsemod,L1SteeringFilter2mod,L1SteeringFilter3mod,L1SteeringFilter4mod,L1SteeringFilter5mod,L1SteeringFilter6mod
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(a) (b)

(c) (d)

Figure 5: Comparison of linearized waveform inversion with different gradient prior: (a),
(b) Inversion result and residue with gradient prior in Figure 2(a). (c), (d) Inversion result
and residue with gradient prior in Figure 2(b). All figures are clipped at the same level.
[CR] yinbin1/. CorrectPriormod,CorrectPriorresd,L1WrongPriormod,WrongPriorresd
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APPENDIX A: CONSTRUCTION OF STEERING FILTERS BASED
ON LEAST SQUARES

In this appendix, a method to construct steering filters from images is presented. The
filters are used as prior information for the next iteration, before we understand how to
incorporate geomechanics into regularization.

We are interested in obtaining a smoothly varying gradient field. Correct gradient
direction boosts the desired events in the area of poor illumination. Incorrect prior of
gradient direction is ignored by the optimization process thus does not create many artifacts,
as proved previously by (Prucha and Biondi, 2002). In order to test the strength and
weakness of our method, we apply it to the example in Figure 6, following the idea from
Hale (2007).

Figure 6: Test model with all dipping directions. [ER] yinbin1/. RingRefl

Suppose we have a 2D image m0(x, z) from which we want to extract the gradient field.
We first use the Sobel filter to estimate ∂xm0 and ∂zm0, from which we can compute the
norm of gradient ‖∇m0(x, z)‖2 and dipping angle θ0(x, z). It is obvious that θ0(x, z) cannot
be directly used as prior gradient field for the next iteration. θ0 is not smooth because of
the noise in the image and crossing events, etc. θ0 is not reliable when ‖∇m0(x, z)‖2 ≈ 0.

To fix those problems, we need to construct a weighting function W(x, z) to suppress
unreliable θ0. We choose

W(x, z) = ‖∇m0(x, z)‖2 × (λ + |m0(x, z)|), (4)

where we have a smaller weight when ‖∇m0(x, z)‖2 ≈ 0 or |m0| ≈ 0. With this weight
function we can set up a linear inverse problem with an objective function,

J(θ) =
1
2
‖W(θ − θ0)‖2 +

ε

2
‖∇2θ‖2. (5)

The first term is data fitting with larger weight on the reliable estimation of gradient
direction. The second term is regularization which promotes a smooth solution.
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We can solve the optimization problem to obtain θ∗, we can see θ0 and θ∗ in Figure 7.
There are some artifacts in θ0 caused by the numerical issue with 3 by 3 Sobel filter, and
the artifacts are removed in θ∗.

(a) (b)

Figure 7: Left: θ0 − π/2. Right: θ∗ − π/2. [ER] yinbin1/. RingDip0,RingDip

Once we obtain a smooth gradient field characterized by dipping angle, we can construct
local steering filter,

Lθ∗ = ∇r∗⊥
, (6)

where r∗⊥ is perpendicular to the gradient direction associated with θ∗. We apply the
local filter to the original image, and obtain the result in Figure 8(a). We can see that our
method works very well except for the vertical-dipping direction. The reason is that our
objective function is built on angle and suffers from branch cut problem. Removing the
branch cut will lead to a nonlinear optimization problem that is beyond the scope of this
report.

(a) (b)

Figure 8: (a) Apply local filter to original image.(b) Reconstructed image from noise. [ER]
yinbin1/. RingDipDestruct,RingDipConstruct
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We also test the local filter by solving an inverse problem with

F(m) =
1
2
‖Lθ∗m− d‖2

2 +
α

2
‖m‖2

2, (7)

where d is uniform random noise. We would expect m∗ obtained by minimizing F(m)
should have the same curvature as the original image. We can see m∗ in Figure 8(b).

Finally, in this paper, we apply our method to the example from the Sigbee2A model
and the results can be seen in Figure 9(c). It is interesting to see that after applying the
local filter, we are able to see the fault and multiple more clearly.

(a) (b)

(c) (d)

Figure 9: (a) θ0 − π/2. (b) θ∗ − π/2. (c) Apply steering fil-
ter to original image. (d) reconstructed image from noise. [ER]
yinbin1/. SigbeeDip0,SigbeeDip,SigbeeDipDestruct,SigbeeDipConstruct
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Time Lapse seismic imaging with L1 regularization and
steering filters

Yinbin Ma, Musa Maharramov, Robert Clapp and Biondo Biondi

ABSTRACT

We propose a new L1-regularized simultaneous time-lapse linearized waveform inver-
sion method. We test the proposed method on models exhibiting production induced
reservoir compaction and overburden dialation. We demonstrate that L1 regularization
and steering filters significantly improve image quality in the presence of acquisition
nonrepeatability issues, such as those caused by different acquisition parameters.

INTRODUCTION

Time-lapse seismic imaging and velocity analysis are challenging in complex subsurface
structures because of various repeatability issues, such as different acquisition geometries,
noise in the data, and insufficient illumination under the salt (Ayeni and Biondi, 2010,
2011). In a companion paper, we showed (Ma et al., 2015) that L1 regularization with
steering filters can greatly improve the quality of inversion in areas of poor illumination. In
this paper, we apply this technique to time-lapse seismic imaging.

First, we implement the acoustic wave equation and Born modeling for constant den-
sity, and set up four-dimensional (4D) seismic imaging as an optimization problem. It is
known that the adjoint state method is an efficient way to compute the gradient for partial-
differential-equation (PDE) constrained optimization. This paper is limited to the study
of linearized waveform inversion, therefore the adjoint operators can be written explicitly.
Both forward and adjoint operators are expressed in matrix form, confirming the conclusion
from the adjoint state method.

A simple synthetic model is used to test our codes. We take a shallow part from
Sigbee2A model away from the salt. The velocity is perturbed near the sea bottom and
used as monitor velocity model. Numerical results show that L1 regularization is able to
recover clean 4D signals. The algorithm is robust against different acquisition geometries
and noise.

Our method is also tested on a synthetic model with complex subsurface structure. We
construct our model from Sigbee2A model with salt body, and then, perturb the velocity
in the area with poor illumination under the salt. Least squares reverse time migration
(LSRTM) results suggest it is already difficult to obtain the reflectors under the salt as
can be seen in Figure 7, not to mention 4D signals. L1 regularization with steering filters
is used to improve the quality of time lapse signals. We could not completely solve the
time-lapse imaging problem with our method, thereby indicating the necessity to introduce
geomechanical knowledge in the time-lapse study.

291
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METHOD

In the first part of this section, the wave-equation operators used for seismic imaging are
derived. In the second part, we show the objective function and optimization strategies
incorporating L1 regularization with steering filters.

Acoustic wave equation and Born modeling for constant density media

We start with the wave equation from Tarantola (1984) as follows:

[
1

K(r)
∂2

∂t2
−∇

(
1
ρ
∇
)

]u(r, t) = f(r, t), (1)

where K(r) is the bulk modulus, ρ is the density and u(r, t) is the pressure field and f(r, t)
is the source function. In this paper, we assume constant density in our numerical examples,
and we have v2 = K/ρ. The wave equation can be simplified as:

[∂2
t − v2(r)∆]u(r, t) = s(r, t), (2)

where we define s(r, t) ≡ v(r)2f(r, t).

In a seismic imaging problem, we want to find the velocity perturbation, namely the
difference between the true velocity (stratigraphic velocity) and migration velocity (smooth
velocity). For constant density media, there is direct relationship between velocity per-
turbation and acoustic reflectivity. Assuming the true velocity to be v(r) and the smooth
velocity used for migration/inversion to be v0(r), two different solutions can be obtained
for each velocity using equation (1):

[∂2
t − v2(r)∆]utrue(r, t) = s(r, t) (3)
[∂2

t − v2
0(r)∆]u0(r, t) = s(r, t). (4)

Substract equation (4) from equation (4), we can get:

[∂2
t − v2

0(r)∆]u(r, t) = m(r)∂2
t u0(r, t), (5)

where we define u ≡ utrue − u0, m(r) = −2δv(r)/v(r) and δv(r) = v(r)− v0(r).

To set up an inverse problem, both the forward and adjoint of modeling operators are
needed. Based on the adjoint state method, the forward operator can be written as:

u(r, 0) = 0
∂tu(r, 0) = 0
(∂2

t − v0(r)2∆)u(r, t) = s(r, t),

(6)

and the corresponding adjoint operator is:



SEP–158 4D imaging 293


u(r, T ) = 0
∂tu(r, T ) = 0
(∂2

t − v(r)2∆)†u(r, t) = s(r, t).

(7)

The forward and adjoint operators for nonlinear modeling with varying density are
computed in Appendix A, which allows us to extend our work to velocity estimation in
the near future. The Born modeling operator in matrix form is derived in Appendix B,
which serves as pseudocode for the numerical examples in this paper.

Joint inversion with steering filters and L1 regularization

Fixing the migration velocity v0(r), the data recorded at surface d is a linear function of
m(r), as can be seen from equation (5). We use L to represent the linear mapping,

Lm = d. (8)

In the following of the paper, we use subscripts b and m to denote baseline and monitor,
respectively. Data for baseline db and monitor dm are collected using true velocity model.
Reverse time migration (RTM) is used to obtain images mRTM

b and mRTM
b as initial guess

for inversion. We do an inversion for baseline and monitor separately as a first step using
the following objective function,

J1(mb,mm) =
1
2
||Lbmb − db||22 +

1
2
||Lmmm − dm||22 (9)

+
ε

2
||mb||22 +

ε

2
||mm||22, (10)

where ε → 0 in the numerical sense to fit the data. After a fixed number of iterations, we
obtain images mLSRTM

b and mLSRTM
b . This step is crucial, because it balances the amplitude

and attenuates the acquisition related artifacts in the RTM images. LSRTM images are also
used to extract a prior gradient field, which is part of the joint-inversion objective function.

The final step is to resolve the time-lapse signal using the joint inversion, with following
objective function:

J2(mb,mm) =
1
2
||Lbmb − db||22 +

1
2
||Lmmm − dm||22 (11)

+
α

2
||W(mm −mb)||1 (12)

+
β

2
||W(∇r(mm −mb))||1 (13)

+
ε

2
||mb||22 +

ε

2
||mm||22, (14)

where W is weight function and ∇r is the derivative perpendicular to r. In the objective
function, The terms (11) are data fitting and the terms (14) are used to fill the null space.
The terms (12) promotes sparse 4D signals and further reduces acquisition related artifacts.
Line (13) is the steering filter that promotes 4D signals along particular directions r. In (Ma
et al., 2015), we showed that steering filters are able to compensate illumination changes
under the salt, and we proposed a method to construct a steering filter that can be used as
prior information for inversion.
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SYNTHETIC EXAMPLE 1

We select part of Sigbee 2A model as our true baseline velocity model. We perturb the
velocity at the boundary of subsurface layers and use it as true monitor velocity model.
Migration velocity is the same for both baseline and monitor. The velocity differences
between true velocity and migration velocity are shown in Figure 1.

(a) (b)

Figure 1: (a) baseline velocity perturbation. (b) monitor velocity perturbation. [ER]
yinbin2/. simple.diffT0,simple.diffT2

Model size is 301×701 with 20 meters (m) between neighboring pixels. 48 sources spaced
every 200 meters with up to 701 receivers spaced every 20 meters, are used to create the
synthetic data. To simulate the acquisition nonreproducibility issues, we turn off receivers
randomly for baseline and monitor surveys. We also assume there are 100 receivers missing
in the monitor recording because of the presence of a platform right above the reservoir.
Uniform random noise is added to the data. The synthetic data can be seen in Figure 2.
For one shot gather, we have 397 traces for baseline, and 224 traces for monitor.

RTM image from baseline model is used as initial guess in LSRTM step for both baseline
and monitor. Figure 3 shows the LSRTM results after 500 conjugate gradient (CG) steps.
The amplitude difference at the reservoir is observable at this stage. Substracting the
two images, as seen in Figure 4(a), we get very noisy results contaminated by footprints
from the acquisition gap in the monitor survey. Nevertheless, the time-lapse signal can be
interpreted.

Simultaneous joint inversion is then solved using iteratively reweighted least squares
(IRLS) for 20 by 10 CG steps, and the results are shown in Figure 4(b). Weight function
W has non-zero values in a rectangle around the area with production induced velocity
change. Because of the simplicity of the model, ∇r = ∇x would be sufficient. In this
example, 4D signals with L1 regularization can be recovered.

SYNTHETIC EXAMPLE 2

In this section, the target area is selected under the salt. Because of the complexity, we
add acquisition nonrepeatability issues gradually to identify the boundary of failure and
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(a)

(b)

Figure 2: (a) baseline shot gather. (b) monitor shot gather. (same percentile clip) [CR]
yinbin2/. simple.DataShot1,simple.DataShot2
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(a)

(b)

Figure 3: (a) baseline image from LSRTM. (b) monitor image from LSRTM. (same per-
centile clip) [CR] yinbin2/. simple.LSRTM1,simple.LSRTM2
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(a)

(b)

Figure 4: (a) difference bewteen baseline and monitor images from LSRTM. (b) difference
between baseline and monitor from Joint IRLS. The clean rectangle in the middle is where
W(r) 6= 0. [CR] yinbin2/. simple.LSRTMDIFF,simple.IRLSRTMDIFF
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success. The first subsection shows results with different acquisition geometries. The second
subsection shows results with an additional acquisition gap in the monitor.

The true velocity models for baseline and monitor are constructed from part of the
Sigbee 2A model with salt. Model size is 301×501 with 20 meters (m) between neighboring
pixels. 48 sources spaced every 180 meters with up to 501 receivers spaced every 20 meters,
are used to create the synthetic data. Migration velocity is the same for both baseline and
monitor. The velocity differences between true velocity and migration velocity are shown
in Figure 5. Two reservoirs are included in our model, one in the relatively easy part and
another one under the salt.

(a) (b)

Figure 5: Left: baseline velocity perturbation; right: monitor velocity perturbation. [ER]
yinbin2/. subsalt.diffT0,subsalt.diffT2

Subsalt 4D imaging with different acquisition geometry

Each shot gather contains 383 traces for the baseline and 330 traces for the monitor. Two
shot gathers are shown in Figure 6, from baseline and monitor survey seperately. RTM
images from baseline and monitor are created seperately and used as initial guesses for
LSRTM. Images from LSRTM in Figure 7 are computed after 200 CG steps. The predicted
4D signals are shown in Figure 8(a).

From the LSRTM results, a smooth gradient field is constructed using the method in
Ma et al. (2015), and used as prior information for the joint inversion.

Finally, we solve the joint inversion problem using IRLS for 20 by 10 iterations, and the
result can be seen in Figure 8(b).

Subsalt 4D imaging with different acquisition geometry and acquisition
gap

50 receivers are removed from the monitor survey to create an acquisition gap. Two shot
gathers are shown in Figure 9. RTM images from baseline and monitor are created seper-
ately and used as initial guesses for LSRTM. Images from LSRTM in Figure 10 are computed
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(a)

(b)

Figure 6: (a) baseline shot gather. (b) monitor shot gather. (same percentile clip) [CR]
yinbin2/. subsalt1.DataShot1,subsalt1.DataShot2
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(a)

(b)

Figure 7: (a) baseline image from LSRTM. (b) monitor image from LSRTM. (same per-
centile clip) [CR] yinbin2/. subsalt1.LSRTM1,subsalt1.LSRTM2
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(a)

(b)

Figure 8: (a) difference bewteen baseline and monitor images from
LSRTM. (b) difference between baseline and monitor from Joint IRLS. [CR]
yinbin2/. subsalt1.LSRTMDIFF,subsalt1.IRLSRTMDIFF
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after 200 CG steps. The predicted 4D signals are shown in Figure 11(a). The acquisition
gap leads to a incorrect prediction of 4D signals under the salt. Around x = 5000m, LSRTM
results suggest there are reflectivity changes both above and below the true velocity per-
turbation, near z = 3000m and z = 5000m.

We then solve the joint inversion problem using IRLS for 20 by 10 iterations, and the
result can be seen in Figure 11(b). The incorrect prediction of 4D signals is not completely
removed from the joint inversion with steering filters, maybe because they are in the null
space of steering filter and forward modeling operator L. The limitation of steering filters
indicates that more sophisticated regularization terms are necessary in time-lapse study.

CONCLUSIONS AND FUTURE WORK

We applied L1 regularization and steering filters to the time-lapse imaging problem. Our
numerical results suggest great improvements can be achieved when the subsurface structure
is relatively simple. We also demonstrated enhancement of 4D signals under the salt can
be achieved. The methods in this paper extract information purely from the seismic data.
Subsalt imaging is still challenging when reliable data is not present. The bright side is
that in 4D we have additional data from reservoir simulation, well logs, rock physics and
geomechanics etc. In our next work, we need to bring in geomechanical information to build
more robust algorithms.
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(a)

(b)

Figure 9: (a) baseline shot gather. (b) monitor shot gather. (same percentile clip) [CR]
yinbin2/. subsalt2.DataShot1,subsalt2.DataShot2
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(a)

(b)

Figure 10: (a) baseline image from LSRTM. (b) monitor image from LSRTM. (same per-
centile clip) [CR] yinbin2/. subsalt2.LSRTM1,subsalt2.LSRTM2
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(a)

(b)

Figure 11: (a) difference bewteen baseline and monitor images from
LSRTM. (b) difference between baseline and monitor from Joint IRLS. [CR]
yinbin2/. subsalt2.LSRTMDIFF,subsalt2.IRLSRTMDIFF
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APPENDIX A: FULL WAVEFORM INVERSION GRADIENT AND
LINEARIZED VERSION

We aim at inverting velocity and density simultaneously. In this appendix, we derive the
Frechet derivative of objective function for a full-waveform inversion. We follow the no-
tations of (Liu and Tromp, 2006; Plessix, 2006; Bai and Yingst, 2014). We compute the
gradient for a single-shot gather. Our objective function is:

J(v, ρ) =
1
2

∑
r

∫ T

0
‖u(xr, t)− d(xr, t)‖2

2dt, (15)

where u(xr, t) is a computed wavefield and d(xr, t) is recorded data. Our objective function
is constrained by the following PDE:


[ 1
v2 ∂2

t − ρ∇(1
ρ∇)]u = f

u(x, 0) = 0
∂tu(x, 0) = 0.

(16)

The Lagrangian:

L(v, ρ, λ, µ1, µ2) =
1
2

∑
r

∫ T

0
‖u(xr, t)− d(xr, t)‖2

2dt (17)

−
∫ T

0

∫
〈λ,

1
v2

∂2
t u− ρ∇(

1
ρ
∇u)− f〉d3

Ωxdt (18)

−
∫

Ω
〈µ1, u(x, 0)〉d3x (19)

−
∫

Ω
〈µ2, ∂tu(x, 0)〉d3x. (20)

Perturb Lagrangian and we can get:

δL =
∑

r

∫ T

0

∫
〈u(xr, t)− d(xr, t), δu(x, t)〉δ3(x− xr)d3xdt (21)

−
∫ T

0

∫
Ω
〈λ,− 2

v3
δv∂2

t u− δρ∇(
1
ρ
∇u) + ρ∇(

δρ

ρ2
∇u)− δf〉d3xdt (22)

−
∫ T

0

∫
Ω
〈λ,

1
v2

∂2
t δu− ρ∇(

1
ρ
∇δu)〉d3xdt (23)

−
∫

Ω
〈µ1, δu(x, 0)〉d3x (24)

−
∫

Ω
〈µ2, ∂tδu(x, 0)〉d3x. (25)

Before we go further, we want to briefly mention the effects of each term in the previous
equation. Line (22) is used to derive the Frechet derivative. Line (21) and (23) form another
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PDE by properly choosing the Lagrangian multipliers, which are used in the computation
of gradient. Line (24) and (25) vanish with proper µ1 and µ2.

We will first derive the PDE constraints for λ. Define A to be the sum of line (23), (24),
and (25) of δL,

A = −
∫ T

0

∫
Ω
〈λ,

1
v2

∂2
t δu− ρ∇(

1
ρ
∇δu)〉d3xdt (26)

= −
∫

Ω
〈µ1, δu(x, 0)〉d3x−

∫
Ω
〈µ2, ∂tδu(x, 0)〉d3x

= −
∫ T

0

∫
Ω
〈 1
v2

∂tλ−∇†(
1
ρ
∇†(ρλ)), δu〉d3xdt

−
∫

Ω
〈µ2 −

1
v2

λ, ∂tδu(x, 0)〉d3x−
∫

Ω
〈µ1 +

1
v2

∂tλ, δu(x, 0)〉d3x

−
∫

Ω
〈λ,

1
v2

∂tδu(x, T )〉d3x

−
∫

Ω
〈−∂tλ,

1
v2

δu(x, T )〉d3x.

We can choose µ2 = 1
v2 λ, µ1 = − 1

v2 ∂tλ to simplify the previous equation. Define B to be
the sum of line 22 of δL, assuming δf = 0 and proper boundary condition, we get:

B = −
∫ T

0

∫
Ω
〈λ,− 2

v3
δv∂2

t u− δρ∇(
1
ρ
∇u) + ρ∇(

δρ

ρ2
∇u)− δf〉d3xdt (27)

=
∫ T

0

∫
Ω
〈λ,

2
v3

∂2
t u〉δvd3xdt∫ T

0

∫
Ω
〈λ,

1
ρ
(∇ρ)(∇u)〉δρd3xdt.

Substitute A and B back into δL,

δL =
∫ T

0

∫
Ω
〈λ,

2
v3

∂2
t u〉δvd3xdt (28)∫ T

0

∫
Ω
〈λ,

1
ρ
(∇ρ)(∇u)〉δρd3xdt

−
∫ T

0

∫
Ω
〈 1
v2

∂tλ−∇†(
1
ρ
∇†(ρλ))−

∑
r

(u(xr, t)− d(xr, t))δ3(x− xr), δu(x, t)〉d3xdt

−
∫

Ω
〈λ,

1
v2

∂tδu(x, T )〉d3x

−
∫

Ω
〈−∂tλ,

1
v2

δu(x, T )〉d3x.

Choose the λ such that the last three lines vanish, and we get the gradients,
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{
∂J
∂v =

∫ T
0

∫
Ω〈λ, 2

v3 ∂2
t u〉d3xdt

∂J
∂ρ =

∫ T
0

∫
Ω〈λ, 1

ρ(∇ρ)(∇u)〉d3xdt,
(29)

subject to:


1
v2 ∂tλ−∇†(1

ρ∇
†(ρλ)) =

∑
r(u(xr, t)− d(xr, t))δ3(x− xr)

λ(x, T ) = 0
∂tλ(x, T ) = 0.

(30)

λ satisfies the adjoint of wave equation, and we emphasize that ∇† 6= ∇.

In this paper, we only need linearized waveform inversion with constant density, and we
can simplify the gradient expression:

∂J

∂v
=

∫ T

0

∫
Ω
〈λ,

2
v3

∂2
t u〉d3xdt (31)

1
v2

∂tλ− (∇†)2λ =
∑

r

(u(xr, t)− d(xr, t))δ3(x− xr) (32)

λ(x, T ) = 0 (33)
∂tλ(x, T ) = 0 (34)

ρ(x) = ρ0. (35)

APPENDIX B: UNDERSTANDING FORWARD/ADJOINT OF WAVE
PROPAGATION IN MATRIX FORM

In this section, Born modeling for constant density in matrix form is derived, following the
idea of (Ji, 2009; Almomin, 2013) . All the necessary modules are included and they should
be ready to translate into real code.

We discrete time into [0,∆t, 2∆t, · · · , N∆t], with T = N∆t. Assume we have obtained
the wavefield ũ(x, t) for t = 0,∆t, · · · , N∆t, we can then approximate ∂2

t u0(x, t) for t =
0,∆t, · · · , (N − 1)∆t, using a second order finite difference.

Use ui to represent the wavefield at t = i×∆t, and use U = [u0, u1, · · · , uN ]T ∈ RN×dom

to represent wavefield at the domain in which we are interested. First, we need to create
the source term S = [s0, s1, · · · , sN−1, sN = 0]T , it can be described as:

S = BV m, (36)

where B = [D2
t u

0, D2
t u

1, · · · , D2
t u

N−1, 0]T , and V = v(r)2. D2
t is 2nd order finite difference

operator.

An implicit trick we want to impose is a shift operator T1 with the effect:
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T1S = T1


s0

s1

...
sN−1

sN = 0

 =


0
s0

s1

...
sN−1

 . (37)

We need this operator to compute u1, · · · , uN ; and we need s0, · · · , sN−1, and the shift
operator to simplify the following expression. It is also important to obtain the correct final
state for the adjoint operator.

The explicit form for time marching is:

ut+1 = (2− ∆t2

∆x2
v2∆)ut − ut−1 + st. (38)

After the source wavefield is obtained, we claim the following operator is time marching:

Mt ≡

 I(t−1)×(t−1) 0 0
0 A3×3 0
0 0 I(N−t−2)×(N−t−2)

 . (39)

which maps [u0, · · · , ut, st, · · · , sN−1]T to [u0, · · · , ut, ut+1, st+1, · · · , sN−1]. The time march-
ing kernel:

A =

 I 0 0
0 I 0
−P PT P

 (40)

T = 2− ∆t2

∆x2
v2∆, (41)

with P as absorbing boundary operator. The effect of Mt can be checked by induction, and
the boundary term need some attention.

Now, we have:

MN−1MN−2 · · ·M0T1BV m = U =


u0 = 0

u1

...
uN−1

uN

 . (42)

Thus, it is obvious that MN−1MN−2 · · ·M0T1BV is the forward operator for Born modeling.

It is interesting to see the exact adjoint of this method:
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T T
1 MT

0 · · ·MT
N−1


u0

u1

...
uN−1

uN

 = T T
1


s0 = weird state

s1

...
sN−1

sN

 =


s̃0

s̃1

...
s̃N−1

s̃N = 0

 , (43)

which is exactly what the adjoint formula predicts, with the correct final condition.
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Acquiring rotation data on the ocean bottom without
rotation sensors

Ohad Barak, Kerry Key, Steven Constable, Paul Milligan and Shuki Ronen

ABSTRACT

There are currently no widely available rotation sensors that can operate on the ocean-
bottom. We derive rotation data on the ocean bottom from two surveys that were not
originally designed to record them: 1) from geophone recordings in the Moere Vest
ocean-bottom survey by differencing adjacent geophones; and 2) from magnetometer
recordings in the SERPENT CSEM ocean-bottom survey by extrapolating from the
deviations in magnetic field projections on the magnetometer components.

INTRODUCTION

Rigid bodies in a three dimensional world have six degrees of freedom: three components of
translation and three components of rotation. The time derivatives of translations are the
particle velocities and the rotations are the pitch, roll and yaw, as shown in the following
table:

Axis Translation Rotation
Z Vertical vz Yaw rz

X Radial vx Roll rx

Y Transverse vy Pitch ry

where vi are particle velocities along the i axis, and ri are rotation rates around the i axis.

In ocean-bottom node acquisition, multicomponent geophones that are coupled to the
seafloor record the vertical and the two horizontal components of particle velocity ~v. Ad-
ditionally, a hydrophone records the divergence of the translation wavefield P = κ (∇ · ~u),
where ~u are particle displacements and κ is the bulk modulus of the water to which the
hydrophones are coupled. Rotation rates are a measurement of the curl of the particle
velocity wavefield ~r = 1

2(∇ × ~v), and are a recording of the anti-symmetric strains of the
medium (Cochard et al., 2006).

Vassallo et al. (2012) use hydrophones together with pressure gradient sensors in marine
streamer acquisition to interpolate the pressure wavefield in the crossline direction, between
streamer cables. Similarly, the rotational components can be used to interpolate vertical
geophone data (Edme et al., 2014), and spatial aliasing of high-wavenumber arrivals can
thus be mitigated. Barak et al. (2014b) show that rotation data are extra information,
are independent of geophone data, and can be used in conjunction with geophone data to
identify and separate wave-modes on land using singular-value decomposition polarization
analysis.
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As of yet there are no industry-grade solutions for recording rotational motion on the
ocean bottom, though a few such recording stations have been deployed previously by Pillet
et al. (2009). The objective of this paper is to show how rotation data can be extracted
from existing ocean-bottom recordings.

THE MOERE VEST OCEAN-BOTTOM SURVEY

The Moere Vest data include a group of 26 four-component ocean-bottom nodes, a “mi-
crospread,” which have a unique geometry in that they are spaced at 2 m intervals. We
estimated the three-component rotational motion by differencing adjacent geophones of
these microspread nodes. Geophone differencing as a method of estimating rotational mo-
tion has been shown previously in Muyzert et al. (2012) and Barak et al. (2014a). In the
case of the microspread, the short 2 m interval between receivers ensures that most of the
data are sampled well enough to prevent spatial aliasing. Therefore, we assume that a
differencing of the data recorded by adjacent nodes pertains to differences of displacements
within half a wavelength.

Though the acquired data may be of high quality, any differencing of data coming from
physically separate sensors must be done with the caveat that we are in effect decreasing
the signal to noise ratio in the resulting differenced data. Each sensor may have a slightly
different coupling to the medium, reducing the reliability of the difference signal. Also, the
data and the data-difference are not collocated in space. The proper way of obtaining a
recording of any physical quantity is to design a sensor that can measure that particular
quantity directly at one point in space. The resulting rotation data we get from differencing
are an estimate of the data which would have been recorded with rotation sensors. We are
able to obtain this estimate due to the special geometry of the microspread.

Estimating rotational motion from geophone data

The stress-displacement relation for tangential stresses reads:

σij = µ (∂jui + ∂iuj) , (1)

where σij are the tangential stresses, ui are particle displacements and µ is the shear mod-
ulus.

At a free surface, or at an interface between a medium with shear strength and one
without shear strength (such as the ocean-bottom interface), the tangential stresses σij are
zero. Therefore, assuming we have receivers laid out on a flat, horizontal sea bottom, we
have

∂zuy = −∂yuz,

∂zux = −∂xuz, (2)

meaning that the vertical derivative of the horizontal displacement component is equal to
the horizontal derivative of the vertical displacement component.

Rotation is defined as the curl of the wavefield. Since our geophones record the time
derivative of displacement (particle velocity), we use the time derivative of rotation, or
rotation rate:
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~r =
1
2
(∇× ~v) = X̂ (∂yvz − ∂zvy) /2

+ Ŷ (∂zvx − ∂xvz) /2
+ Ẑ (∂xvy − ∂yvx) /2, (3)

where X̂, Ŷ and Ẑ are the rotation axes. Substituting equation 2 into 3, we see that on the
sea bottom

rx = ∂yvz, ry = −∂xvz, rz =
1
2

(∂xvy − ∂yvx) , (4)

i.e., the horizontal rotation-rate components can be derived from the vertical geophones,
and the vertical rotation-rate component can be derived from the horizontal geophones.

Microspread geometry

Since we intend to perform geophone differencing, the receiver positions are of high impor-
tance. An error in positioning could lead to an error in the derived rotation data. There
were two sets of fields in the SEGY files that indicated receiver positions. One of them was
the “as-laid” positions, which are the coordinates of the underwater Remotely Operated
Vehicle (ROV) that deployed the nodes on the sea bottom. The other set of receiver posi-
tions were calculated using the first-break arrival time at each node from all shots in the
survey. Figure 1(a) shows these two sets of receiver positions.

Despite the fact that the first-break positions appear too “regular”, we opted to use these
node positions for the microspread, since we also have video footage of the node deployment
showing a very regular geometry. An example is shown in Figure 1(b). The ability of the
ROV operator to see all nodes during deployment contributed to the positioning accuracy.

The length of the shot line we used was 55 km, with a shot interval of 50m, traversing
almost directly above the nodes of the microspread. The microspread nodes were positioned
near the center of the shot line. More than 90% of the shots have less than 5 m of crossline
offset. Since the receivers were at a depth of 1.6 km, the data are effectively 2D. We removed
the receiver instrument signature and aligned the horizontal geophone components to the
2D survey coordinates.

6-component data from the Moere Vest survey

To generate the three-component rotation-rate data we differenced adjacent receiver sta-
tions, effectively executing a finite-difference approximation to equations 4. Figures 2(a),
2(c) and 2(e) are the vertical (vz), inline (vx) and crossline (vy) geophone components of
the receiver gather of one node of the microspread. Figures 2(b), 2(d) and 2(f) are the yaw
(rz), roll (rx) and pitch (ry) rotational components. Notice that adjacent to each particle
velocity component is the rotational component around that geophone’s axis.

We are not displaying the direct arrival and some of the associated bubbles that are
between t = 1.08s and t = 1.75s. The water-bottom multiple appears at t = 3.25s, and can
be seen on the vz and vx sections.
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(a) (b)

Figure 1: (a) Microspread receiver “as-laid” positions (blue) vs. first-break positions (red
circles). The length of the receiver line is 26 m, and the nominal receiver spacing is 2 m. (b)
Photo taken by ROV operator showing four of the ocean-bottom nodes of the microspread.
The sensors are indicated by the red circles. Note the regularity of the deployment. [NR]
ohad1/. gxgy-all,node1587-photo

The vz component seems to contain mostly high-frequency reflections with a moveout
consistent with P-wave velocity, but there are some lower frequency events that have a
much slower moveout. These events are commonly called “Vz noise”, and may be caused
by shear-wave scattering in an inhomogeneous seabed, which in turn can generate Scholte
waves on the seabed. The vx component contains mostly those shear-induced events, but
some of the P-wave events apparent on vz are also visible. The vy component is much
weaker than the other two geophone components, but a shear-induced event similar to the
one on the vx component at t = 3.3s is prominent. It is possible that the shear energy is
indeed coming from shear-wave reflections, however on a receiver gather it is difficult to tell
the difference between reflected shear waves and scattered Scholte waves based solely on
moveout information.

Observing the rotational components, we see that the one with the greatest energy is
ry. This fits with our expectation. Since the survey geometry is practically 2D, most of
the translation should occur in the vertical and inline directions, which means that most of
the rotational motion should occur around the crossline direction. Note also the generally
increased noise level on the rotational components, which we attribute to the geophone
differencing operation.

Compare the vz and ry components, and observe how the P-waves are almost not visible
on ry, even though this section was obtained using two adjacent vertical geophones. This
indicates that the P-waves generate a similar response on adjacent vertical geophones, and
are removed by the differencing. Another way of saying the same thing is that the P-waves
do not generate a strong rotational deformation of the surface. Instead, we see a section that
is more similar to vx, with events that have shear-wave moveouts (though slightly delayed
compared to vx). Shear and Scholte waves generate a shear deformation of the surface,
which manifests itself as rotational motion. Therefore, rotation data should preferentially
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record shear waves, and indeed the P events on the ry component are much weaker than
those visible on the vz and vx components.

The rx rotational component seems to also contain some shear-induced events. They
are slightly weaker than the events on ry, indicating that if these are indeed the result of
scattered shear waves, then these waves are causing mainly rotation around the crossline
axis. The rz section is the weakest of the rotations (by a factor of 2 compared with ry).
This component should record events that cause a horizontal deformation around the ver-
tical axis. The energy on the rz component seems to also be related to the shear-induced
waves. One explanation could be that multiple scatterings in the near surface are generating
horizontal shear deformations of the medium.

THE SERPENT ELECTROMAGNETIC SURVEY

The SERPENT controlled source electromagnetic survey (Key et al., 2012; Naif et al., 2013)
took place offshore Nicaragua on May 2010. 55 ocean-bottom EM nodes were deployed
along a line perpendicular to a sudbuction zone. Each node had two horizontal induction-
coil magnetic field sensors, and two horizontal electric field sensors. A composite node also
had a three-component geophone in addition to the EM sensors. Information from the
USGS website regarding this earthquake is shown in Figure 3, displaying the earthquake,
node line and composite node positions.

As expected, the earthquake was recorded on the geophone components of the composite
node. The data are shown in Figure 5(a). The P-wave arrives at about t = 3186.5s, and
the S-wave comes in 2 seconds later. Unexpectedly however, the data of the two magnetic
components in Figure 5(b) show a remarkably similar behaviour to the geophone data.

We interpret the magnetic data as resulting from a rotation of the ground caused by the
seismic waves generated by the earthquake. The node body is coupled to the seabed via a
150 kg slab of concrete. Therefore, the magnetic sensors in the node body rotate together
with the ground. The Earth’s magnetic field, however, does not rotate and is effectively
constant in direction and in amplitude for the duration of the earthquake. The ground
rotation therefore manifests itself as a change in the projection of the Earth’s magnetic
field on the node’s magnetic sensor components. An illustration of this is shown in Figure
4. This concept was explored previously in Kappler et al. (2006) using land data recorded
by USGS permanent stations.

From magnetic field projections to ground rotations

After designature, the magnetometer data are in terms of deviation of the magnetic field
strength on the two horizontal components over time:

∆ ~H(t) = [∆Hx(t),∆Hy(t)]. (5)

We deduced the vertical magnetic component by rotating the horizontal node compo-
nents to geographic North. We then added the ambient magnetic field values for the North
and East magnetic components, as given by the British Geological Survey’s World Magnetic
Model, to the rotated magnetic horizontal components. We then use the total magnetic
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Six-component receiver gather of one node of the microspread of the
Moere Vest data. (a) Vertical particle velocity vz. (b) Yaw rotation rz. (c)
Inline particle velocity vx. (d) Roll rotation rx. (e) Crossline particle ve-
locity vy. (f) Pitch rotation ry. The rotational components contain mostly
the shear-induced energy, and have a lower signal to noise ratio. [CR]
ohad1/. 6c-node1730-vz,6c-node1730-rz,6c-node1730-vx,6c-node1730-rx,6c-node1730-vy,6c-node1730-ry
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Figure 3: USGS report pertaining to
the earthquake (indicated by the red
star) that occurred during the SER-
PENT EM survey. The blue line in-
dicates the EM ocean-bottom node
line, where the yellow dot is the po-
sition of the composite sensor which
had a three-component geophone in
addition to the EM sensors. [NR]
ohad1/. M54EQ

(b)	
  (a)	
  

Figure 4: Illustration of how ground rotation is recorded on the magnetic field sensor as
represented by the compass, which is coupled to the ground. (a) Before ground rotation, the
magnetic field (red) is recorded only by the North component (yellow). (b) During ground
rotation, the magnetic field (red) does not change, but its projection on the North and East
components (yellow) changes. We can calculate the amount of rotation from the change in
projection. Note that translations of the ground will not result in a change of the projection
of the magnetic field on the magnetic components. [NR] ohad1/. compass-rotation
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field strength at the location of the node and at the time of the survey to obtain the vertical
magnetic component:

Hz(t) =
√

H2
total −H2

x(t)−H2
y (t). (6)

The angle of rotation between consecutive time steps can now be calculated by

θ(t) = cos−1

 ~H(t + ∆t) · ~H(t)∣∣∣ ~H(t + ∆t)
∣∣∣ ∣∣∣ ~H(t)

∣∣∣
 , (7)

while the unit vector describing the axis of rotation is

ν̂(t) =
~H(t)× ~H(t + ∆t)∣∣∣ ~H(t)× ~H(t + ∆t)

∣∣∣ . (8)

In order to have the rotation-rate data in terms of Euler angles in the reference frame
of the geophone component axes, we must use a quaternion representation. Our quaternion
four-vector system state begins with no rotation, i.e.

qt=0 =


qw

qx

qy

qz

 =


1
0
0
0

 . (9)

We use equations 7 and 8 to get the rotation angle θ and the rotation axis ~u, and then we
convert to a quaternion representation by

p(t) =


cos θ(t)

2

ux(t) · sin θ(t)
2

uy(t) · sin θ(t)
2

uz(t) · sin θ(t)
2

 . (10)

In order to rotate our system from its state at time t to its new state at time t + ∆t, we
need to apply quaternion multiplication (?) of the quaternion q by p:

q(t + ∆t) = p(t + ∆t) ? q(t) = (pwqw − ~p · ~q, pw~q + qw~p + ~p× ~q) . (11)

We can now retrieve the change in rotation for every time step in terms of Euler angles
around each axis using:

∆~r(t) =


arctan

(
qyqz+qwqx
1
2
−(q2

x+q2
y)

)
arcsin (−2 (qxqz − qwqy))

arctan
(

qxqy+qwqz
1
2
−(q2

y+q2
z)

)
 . (12)

To get the rotation rate, we must divide ∆~r by the time step: ~̇r(t) = ∆~r
∆t
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Six-component earthquake data

Figure 5(c) shows the three rotational components as derived from the changes in the
projection of the magnetic field on the magnetometer components. The radial geophone
component seems to correspond with the rotational pitch components, while the roll and
yaw components seem relatively weaker. The ratio between mm/s of particle velocity and
mrad/s of rotation rate in these data is approximately 10:1. This is similar to what we
see for offsets of a few hundred meters in previous rotational studies done with active land
seismic surveys. Additionally, assuming a nominal total magnetic field of 50,000 nT, we
expect rotation rates to be on the order of 1 mrad/s for magnetic deviations on the order of
1 nT, as occurs here. However, we do not know if the ground rotation is the only source of
the changes in the magnetic field projections in the seismic frequency band. Other effects
such as the seismoelectric effect may be occurring in conjunction with the ground rotation
and contributing to the recorded changes.

DISCUSSION

In current seismic acquisition, geophones record only the displacements but not rotations.
However, with the advent of a new generation of seismic sensors, these physical values will
be measurable at each receiver position, providing us with 7-component seismic data: 1
pressure, 3 displacements and 3 rotations. Rotation sensors exist and have seen some very
limited use in seismic test surveys on land. On the ocean-bottom though, there are as of
yet no industry-grade rotation sensors. We therefore derived the rotational components by
alternate means for the datasets mentioned in this paper.

We used the fact that the receivers were deployed with small spacings in the Moere Vest
survey to difference their data and estimate the rotational motion that would have been
recorded had we instruments that were able to measure these physical variables directly on
the ocean-bottom, thereby generating seven-component data. We also derive six-component
ocean-bottom earthquake data from a three-component seismometer and a two-component
horizontal magnetometer deployed for the SERPENT CSEM survey.

Both methods we show have possible sources of error in the derived rotation data, and
without proper experimentation there is, in principle, no way to validate them. We intend
to conduct a land experiment to confirm the derivation of rotations from magnetometer
recordings. The experiment will take place in the Mojave desert in California, and will
include 3-component rotation sensors, 3-component magnetometers and vertical geophones.
We will compare the rotation data as derived from the magnetometers to the rotation
data recorded by the rotation sensors. If successful, we may tentatively envision future
7-component seismic acquisition comprising hydrophones, geophones and magnetometers.
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(a) (b)

(c)

Figure 5: Data of the first 14 second of the earthquake that occurred during the SERPENT
survey. Horizontal component data are rotated to minimize the energy on the geophone
transverse component. (a) Particle velocity recorded by 3C geophone. (b) Deviations in
projection of magnetic field on 2C horizontal magnetometer components. (c) 3 components
of rotation rate derived from the 2C magnetometer data. Note the strong amplitudes of
the radial geophone component and how there is some correspondence between it and the
pitch rotational component. [ER] ohad1/. geo-win2,mag-win2,rot-win2
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Toward PZ summation without Z

Ettore Biondi and Stewart A. Levin

ABSTRACT

We examine the possibility of separating up-going and down-going wavefields of ocean-
bottom data using only one component. This possibility relies on differential static
shifts of the up-going events caused by near sea-bottom inhomogeneities. We down-
ward continue a survey to the sea bottom to recover these shifts while leaving non-
primary arrivals smoothly curved. We then explore whether or not these static shifts
are detectable in the curvelet domain. In addition, we show how suppressing fine-scale
curvelet coefficients affects an event distributed along a disrupted hyperbolic curve.
From our synthetic examples, we demonstrate that the curvelet domain has the poten-
tial to separate up-going from down-going events.

INTRODUCTION

The separation of up-going and down-going waves of a multicomponent dataset is one of the
fundamental preprocessing steps in ocean-bottom acquisition (OBN) (Grion, 2010). This
wavefield decomposition is usually performed by summing the pressure (P ) and vertical
velocity (Vz) components (Schalkwijk et al., 1999), a process commonly known as ‘PZ
summation’. Before summing the two components, the difference in instrument coupling
response between the geophone and hyrophone must be properly accounted for by applying
a calibration filter to the recorded vertical velocity (Melbø et al., 2002; Biondi and Levin,
2014).

Many applications have already demonstrated the advantages and the importance of
such wavefield separation. For example, water reverberations can be attenuated by using the
extracted up-going events (Rosales and Guitton, 2004). Furthermore, a source wavelet can
be easily estimated from the down-going separated direct arrival (Wong and Ronen, 2009).
In addition, the combined information of the two wavefields can be used in the context
of improving the images obtained by least-squares reverse-time migration (LSRTM)(Wong
et al., 2010).

Current up-down wavefield separation techniques rely on the assumption that the data
contain noise-free up- and down-going events. However, it is well known that the vertical
velocity component can be contaminated by shear wave energy (Paffenholz et al., 2006),
a phenomenon commonly called Vz noise. The leakage of shear energy into the vertical
velocity, which is not recorded by hydrophones, can degrade PZ summation results and
subsequent imaging (Campman et al., 2005). Different techniques have been proposed to
suppress or dampen the effect of Vz noise present in the vertical component (Shatilo et al.,
2004). We discuss how the up-down wavefield separation may be performed using only the
pressure field of the recorded data. We start by explaining the main assumption, seafloor
statics, on which this single component separation relies. We show that by downward
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continuing a survey line to the sea bottom we can retrieve the static shifts of the up-going
events caused by the near sea-bottom inhomogeneities. We then briefly review the curvelet
transform and apply this transformation to two hyperbolic events, one of which is affected
by static shifts. We show the differences between these events in the curvelet domain. The
possibility of separating up- and down-going energy without the combination of the pressure
and vertical components can enable application of the wavefield separation to the horizontal
components as well.

UP-GOING AND DOWN-GOING STATIC DIFFERENCES

We recall the concept of wavefield focusing shown by Claerbout (1976) to exlain why up-
going events should exhibit static shifts not present on the down-going arrivals after down-
ward continuation of the survey to the sea bottom. Consider a wavefront that has been
disrupted by small-scale inhomogeneities present in the subsurface. When this wavefront
propagates through a homogeneous medium (e.g., a water layer), the wavefront heals and
the energy spreads out smoothly. The longer the wave propagates through the homogeneous
medium, the more it will heal.

We start with the layered earth model shown in Figure 1a. This figure displays a
reciprocal ocean-bottom acquisition scenario where the shots and receiver are on the sea
bottom. The black arrow indicates a primary event that we would record with this survey.
The recorded reflection is disrupted by the near sea-floor variations as we see in the common-
shot gather of Figure 1b. We then upward continue the receivers to the sea surface (Figure
2a) to simulate the physical reciprocal experiment of an OBN acquisition. The red and
green arrows in this figure indicate the direct arrival and its first-order surface related
multiple respectively, which are not affected by the near sea-bottom inhomogeneities. Figure
2b displays the common-shot gather of these events and the upward continued primary
reflection. Ignoring the minor artifact introduced by the upward continuation, we note that
the static shifts present on the primary event are eliminated, and the energy is distributed
along a smooth hyperbolic curve. This effect comes as a result of wavefront healing as the
wave propagates through the homogeneous water layer.

Now, if we downward continue the gather shown in Figure 2b, we expect to focus the
energy of the direct event at the source location and at zero time, and also start collapsing
the energy of the other events (Figure 3a). This is indeed what we see in the downward
continued gather of Figure 3b. In fact, the energy of the direct event is tightly focused, and
the two other events have started focusing. The main point to note is that the static shifts,
initially present in the primary reflection, have been retrieved by sinking the receivers to
the sea floor. In contrast, the energy of the other down-going event is still distributed along
smooth curves or lines.

This simple illustrative example shows that the difference in static shifts between the
up-going and down-going events can be recovered by downward continuing the survey line
to the sea floor. This difference is the key element on which our separation criterion relies.
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Figure 1: Initial acquisition setting with source and receivers at the sea bottom. (a) Earth
model used for generating one up-going event displayed by the black arrow. [NR](b) Single
up-going event recorded at the sea floor. The effect of the near sea-floor variations are
visible in the statics present in the hyperbolic event. [ER] ettore1/. startNR,data
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Figure 2: Events recorded when the receivers are at the sea surface. (a) Illustration of
the recorded events. The red, green, and black arrows represent the direct arrival, its
multiple, and the upward continue primary event, respectively. [NR](b) Common-shot
gather showing the upward continue primary event, the direct arrival, and its first-order
multiple. The statics present on the primary reflection of Figure 1b are eliminated by the
propagation of the event toward the sea surface. Some artifacts of the upward continuation
are also present. [ER] ettore1/. upNR,total-ann
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Figure 3: Downward continuation of the events shown in Figure 2. (a) Illustration of how
the recorded events change when the receivers are downward continued to the sea-floor
surface. [NR](b) Downward continued common-shot gather of Figure 2b. The direct event
tends to focus at zero time; while, its multiple starts collapsing. The statics of up-going
primary event are recovered when the receivers are downward continued to the same depth
of the source. [ER] ettore1/. downNR,downtotal
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THE CURVELET TRANSFORM

Before explaining how the curvelet transform can capture the differences between events
disrupted by static shifts and arrivals distributed along smooth curves, we briefly show the
basic concept behind the curvelet transform. The curvelet domain was originally developed
in the context of image processing, and it has been widely used for image denoising (Starck
et al., 2002; Candés et al., 2006). This transform has also been applied to seismic imaging
to attenuate the effect of Vz noise on the PZ summation results (Peng et al., 2013).

The main idea of the curvelet transform is to take an original signal f(x), usually an
image, and decompose into it a sum of wavelets ϕj,l,k(x) with a different j scale, l orientation,
and k position,

f(x) =
∑
j,l,k

c(j, l, k)ϕj,l,k(x), (1)

where c(j, l, k) coefficients are given by the scalar product of the original signal with the
basis functions

c(j, l, k) = 〈f, ϕj,l,k〉 =
∫

f(x)ϕj,l,k(x)dx. (2)

Figure 6 shows the curvelet transform flowchart by Starck et al. (2002). The image is
divided into a different number of blocks for each scale. As the level of the detail that we
want to represent increases, the number of blocks increases as well. At first, we take the
whole image and apply a wavelet transform. Then, we divide the image into a fixed number
of blocks, and apply the wavelet transform on each section. This process continues until we
reach the desired number of scales. The wavelet transform is performed as a combination
of Fourier and Radon transforms followed by a ridgelet transform along lines in the Radon
domain. All the mathematical details can be found in Starck et al. (2002). The ability
of the curvelet transform to analyze different level of details on an image, thanks to the
inclusion of the j scale factor in the wavelet expansion, enables us to capture the difference
between events disrupted by static shifts and events unaffected by them as we see in the
next section.

THE EFFECT OF STATICS IN THE CURVELET DOMAIN

In this section, we show the differences of two hyperbolic events in the curvelet domain, one
disrupted by static shifts and one unaffected by static shifts. Figure 5 displays these two
hyperbolic events. The left panel shows the down-going sea-bottom multiple event, which
is unaffected by statics. The right panel depicts the up-going reflection event with static
shifts resulting from the near sea-floor variations.

By applying the curvelet transform described in the previous section, we obtain the
panels of Figure 6. These images display the coefficients of the curvelets necessary to
represent the original functions. The central square panel represents the coefficients of the
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Figure 4: Figure from Starck et al. (2002). Graphical explanation of the curvelet trans-
form. An input image is decomposed into a different number of blocks as a function of the
scale to be analyzed. The wavelet/ridgelet transform is then applied to each block. [NR]
ettore1/. curvelet
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(a) (b)

Figure 5: Hyperbolic events used for analyzing apparent differences in the curvelet domain.
(a) Event with no static shifts. (b) Event affected by statics. [ER] ettore1/. clean,statics

curvelets of the whole image scale. The surrounding red zone is present just to separate
the coefficients from one scale to another. The next four surrounding blue rectangles are
the coefficients of the curvelets of a finer scale. As we move to the external rectangles, we
find the multiplicative factors of finer scale curvelets. Comparing the curvelet transform
factors of the two events, we observe that the finer scale coefficients are more scattered for
the hyperbola with static shifts (Figure 6b) than for the hyperbola with no static shifts
(Figure 6a).

The same conclusion can be drawn from the closeups of the central curvelet domain
coefficients, shown in Figure 7. However, from these closeups it is apparent that at a coarse
scale, the two events are similar. The scattering behavior of the fine scale coefficients of the
disrupted hyperbolic event can be a distinctive factor that enables us to separate up-going
energy from down-going arrivals, after the downward continuation of the survey line.

In the following synthetic example, we show how to employ the curvelet domain to sep-
arate the two hyperbolic events, one with statics and one without them. Figure 8(a) shows
the gather containing these two events, and Figure 8(b) is the curvelet domain representa-
tion of the gather. From the previous observations, we can say that the curvelet domain
coefficients of the event with statics are more dispersed than the ones for the smooth hy-
perbolic event (Figure 6b). Figure 9 is the result of filtering the scattered coefficients of the
last four fine curvelet scales and applying the inverse curvelet transform. Observe that we
are able to correctly reconstruct the static-free event, and make the disrupted event more
similar to random noise distributed along a hyperbolic curve. This random energy can be
then attenuated by applying a denoising technique (Kahoo and Siahkoohi, 2009; Han et al.,
2014), and thus separating the two events.

FUTURE WORKS AND CONCLUSIONS

Performing a wavefield up-down separation by using just one component of a multicompo-
nent ocean bottom dataset is an attractive goal, especially when PZ summation algorithms
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(a)

(b)

Figure 6: Curvelet domain coefficients of the hyperbolic events of Figure 5. (a) Coefficients
of static-free event. (b) Coefficients of event affected by statics. As we look toward finer
scale factors (external blue rectangles), the coefficients of the disrupted event become more
scattered. [ER] ettore1/. cur-clean,cur-static
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(a)

(b)

Figure 7: Closeups of the first three scales of the curvelet transform factors of Figure
6. (a) Closeup of curvelet factors of static-free event. (b) Closeup of curvelet factors
of event affected by statics. Comparing the whole image scale curvelet factors, we note
that the two image are similar. However, as we move to finer scale factors, the coeffi-
cients for the disrupted event tend to become less concentrated on a single area. [ER]
ettore1/. clean-zoom,static-zoom
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(a)

(b)

Figure 8: Synthetic example for explaining how to separate an event affected by stat-
ics from an event unaffected by them. (a) Gather with the two hyperbolic events. (b)
Curvelet domain representation of the two events. The scattered coefficients at fine scales
represent the amplitudes of the curvelets of the event disrupted by the static shifts. [ER]
ettore1/. events,cur-events
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Figure 9: Resulting gather after filtering out the fine-scale curvelet coefficients of the event
affected by statics. The event distributed along the smooth hyperbola is completely recon-
structed. The hyperbolic trend of the event with statics can still be seen, but its energy
now appears as random noise. [ER] ettore1/. events-clean

fail because of the presence of Vz noise in the recorded vertical velocity. We discussed the
possibility of doing up-down wavefield separation by downward continuing the survey line to
the ocean bottom, and then separating up- and down-going energy in the curvelet domain.
We explained how to retrieve the static shifts caused by near sea-floor inhomogeneities that
affect up-going events by downward continuation. We observe that the curvelet domain is
able to capture the differences between events affected by statics and events without them.
We have also shown that by suppressing the fine scale curvelets coefficients of the disrupted
event, we were able to make this event appear as a random noise feature, making it easier
to filter it out with denoising techniques. This example demonstrates that the curvelet
domain has the potential to separate up-going events from down-going ones. In the future,
we will use these observations to separate up-going energy from down-going events, both
on a more complex synthetic gather and a real common-receiver gather of an OBN dataset.
Furthermore, because this wavefield decomposition is based on a single component, we will
be able to apply this curvelet domain separation on the pressure and vertical components
geophone components separately, and possibly also on the horizontal geophone components.
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