Approximating () propagation to speed up finite
differences

Robert G. Clapp

ABSTRACT

Propagating wave-fields using explicit finite difference is the kernel for Reverse
Time Migration (RTM) and high end velocity analysis algorithms. To avoid grid
dispersion artifacts, the cost of propagation is proportional to the frequency of
the energy being propagated raised to the fourth power. Attenuation in the
earth tends to decrease usable frequencies as a function of time. By using an
approximation to the wave equation for attenuated media, to save computation,
we can approximate the earth’s behavior. As a result we can use coarser sampling
at large time. Combined with limiting grid propagation to around the source at
early times we can achieve large speedups in modeling, migration, and potentially
velocity analysis.

INTRODUCTION

Imaging and velocity analysis are the most computationally intensive parts of seismic
processing. As a results researchers are always trying to find ways to speedup these
processes (Bednar and Neale, 2002; Stork, 2013). One approach used to speed up
downward continuation based algorithms is to recognize that the earth attenuates
seismic signals. As a result, as we push the wave-field down in depth, we can ignore
higher and higher frequencies and still obtain an accurate image(Clapp, 2002). This
approach lowers the cost as you increase in depth. This technique is well suited for
downward continuation based approaches which are done frequency by frequency.
Reducing the frequencies downward continued as a function of depth is particularly
effective in combination with recognizing that there was no reason to propagate waves
a large distance from the source at early times. While following the wavefield is used
routinely in RTM, taking advantage of attenuation is not commonly used. Reasons
include: the cost of propagation with an attenuated wave equation, attenuation is a
function of medium parameter, and propagation is generally done in the the time,
rather frequency domain.

In this paper I use a constant-(QQ approximation based on the work of Zhu and Har-
ris (2014). As I propagate my source I resample my medium based on the maximum
frequency that has not been significantly attenuated. Combining this approach with
following the wave-field, I show that I can achieve significant computational speedups.
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MODELING

Explicit finite difference modeling is constrained by figuring out a sampling in time
and space that results in stable propagation and does not create dispersive events.
For stability the Courant-Friedrichs-Lewy condition (Courant et al., 1967) must be
met. Stability is a function of limiting what percentage of a grid cell energy can move
in one time step. Stability is therefore a function of the maximum velocity v,,q., the
minimum spatial sampling d,,;,, and the time step dt. For stability,

vmaggdi < .5. (1)

mein

The stability condition pushes one to use larger spatial sampling (faster, but less
resolution) and/or finer time sampling (more expensive). Dispersion, on the other
hand, is a function of the minimum velocity v,,;,, the maximum frequency f,q., and
the maximum spaital sampling d,,... To avoid grid dispersion we need to sample a
given frequency with a minimum number of points. There isn’t a consensus on the
minimum number of points. For the purpose of this paper I will require 3.2 points
therefore,

JCUL;" > 3.2, 2)

The dispersion constraint pushes us towards smaller (more expensive) spatial sam-
pling, because of the stability constraint, and results in smaller the steps. Minimizing
dispersion is the real reason for the expense of finite differences. To avoid grid dis-
persion and achieve the same level of stability the number of operations increase by
the fourth power (three due to space sampling and one for time).

From observation we know that the earth attenuates acoustic signals. Attenuation
varies as a function of frequency and earth materials. The first approximation I am
going to use is the concept of the constant (Q model introduced by Kjartansson (1979).

Q is defined as
E

where a% is the fraction of energy lost per cycle. The larger the ) value, the less
energy loss per cycles. The constant (Q assumption assumes that energy dies out is a
function of the number of wavelengths traveled through a medium. The higher the
frequency, the faster the energy is attenuated.

Constant-(QQ Formulation
Building on this foundation Zhu and Harris (2014) used a fractional Laplacian ap-

proach to perform attenuated propagation in the time domain. Given a forcing func-
tion f(t) and the wave-field P(t) they proposed the equation,

d 2
nL 4+ 7H— — v’2a—

V| PO = (), )
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where

L=(-v?)""" (5)
H=(-V)""2. (6)

The constants in equation 4 are defined as

n = —vPwy? cosmy, (7)
7 = v Lwy? sin 7, (8)
and
= — 0
7T tan? %

The first term in equation 4 deals the dispersive effect of attenuation. The middle term
deals damping. For a constant ) approximation I can further simplify equation 4,
approximating V? for H. My resulting equation is then

V2 —7Vi— — v 2| P(t) = f(t). (10)

Figure 1 shows the wave-field using the standard acoustic wave equation (left)
and an attenuation wave-field (right). Note the difference in the frequency content.
This is can be more clearly seen in Figure 2 which shows the spectrum of wave-field
at .3,1.3,2.3, and 3.3 seconds with ) = 200. Notice the energy decay of frequency
over time. The key observation is that there is no reason to worry about dispersion
at frequencies that have attenuated. Specifically, I redo my dispersion calculation
(equation 2) several times while propagating a wave-field. At each time block I use
a fmar based on frequencies whose energy has not been reduced more than some
percentage (in this paper 96%). As a result, as I forward propagate in time my grid
cells, and if I desire, time sampling, get larger. Figure 3 shows the speedup factor
(defined as the number of grid cells times time steps) as a function of propagation time
for different QQ values. The longer the time record, the more using Q pays off in terms
speed up. Using this approach the early time steps dominate the computation. For
example assuming an initial maximum frequency of 90H z and a constant velocity of
2000m/s, a Q value of 200, the total speedup is 4 even though most of the propagation
time shows significantly more speedup. Figure 4 shows the speedups for Q values
ranging from 150 to 350.

Another speedup trick used by many when doing modeling/migration is to rec-
ognize that there is no need to propagate the wave-fields significantly away from the
source at early times. The number of cells we need to propagate increases as a power
of three (expanding wave-field) in modeling, and somewhat less in migration due to
the spatial extent of our receivers. This speedup trick is most effective at early times
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Figure 1: The wave-field with the standard acoustic wave equation (left) and the
attenuated wave-field (right) at the same time. [ER]

Figure 2: The frequency of the
wave-field at various times. Note
the reduction of the high frequen-
cies over time. Note at .3 seconds,
total amplitude is less because the
source has not been fully injected
into the medium. [ER]

Figure 3: Speedup values as a
function of propagation time for
Q values ranging from 150 to 350.
Note how the longer the time
record the more the computation
is sped up. [ER]
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Figure 4. Total speedup for dif-
ferent values of Q. Note the rel-
atively small speedups compared
to what one might expect looking
at Figure 3. Total time is the in-
verse of the sum of the inverses of
speedups. [ER]
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and useless at late times when energy has propagated throughout the model, the
opposite behavior as the constant-Q trick. Figure 5 shows a typical wide azimuth ge-
ometry and the speedup as a function of time again assuming 2km /s medium. Total
speedup for following the source is only 2-2.5. Combining the two tricks is where we
begin to see big payoffs. The left plot of Figure 6 shows the result of combining the
two approaches for different values of Q. The right plot shows the total speedup as a
function of Q. Note how the maximum cost is in the 1 to 3 second range depending
on the value of ). Without following the wave-field the total speedup ranged from 1.8
to 4, we now get speedups between 15 and 250.  Calculating speedup numbers is far

o
(=]

Modeling
Figure 5: Speedup by following 2 e
the wave-field in the case of mod- g
eling a single shot and in the case %Oi
of an array of receivers. Note how Fo
these curves move in the oppo- ]
site direction to those in Figure 3. S
[ER] o
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from an exact science. My choice of a low constant velocity helps me by improving
the speedups due to following the wave-field and hurts me by allowing larger time
steps. Computational time and the number of grid cells do not completely linear
relation. Smaller grids, means better cache behavior, and can lead to significant im-
provements in performance. In addition my propagator is more expensive than the
standard acoustic propagator which isn’t taken into account.

The basic algorithm for modeling is shown in Algorithm 1. Figure 7 shows the
wave-field propagating through a relatively complex synthetic after 2 seconds using
resampling tricks (left) and a static grid (right).
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Figure 6: The left plot shows speed up as a function of propagation time for a series
of Q values. The right plot shows the total speedup as a function of Q. Note on the
left how total speedup is a combination of the trends shown in Figures 3 and 5. Note
on the right the significant speedup compared to those shown in Figure 4. [ER]

Algorithm 1 Forward propagation
1: for timeblock 0...n do
2:  Calculate max frequency of interest relevant at the beginning of time window
3:  Calculate max extent of wave-field at end of time window
4:  Calculate sampling of medium and time based on stability /dispersion con-
straints

5:  Resample wave-field and velocity

6: for t=0...n in timeblock do

7: Propagate wave-field with QQ approximation
8: Inject source

9: if Imaging step then

10: Store wave-field

11: end if

12:  end for

13: end for
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Figure 7: The left panel shows the wave-field using a static grid, the right panel using
the approach outline in algorithm 1 both using equation 10. Note the low frequency
artifact in the right panel, but otherwise the plots are nearly identical. [ER]

MIGRATION

Applying the method described above to RTM is relatively straightforward. Modeling
is done using the approach outlined in algorithm 1. Back propagation starts with low
frequencies and then increases in frequency at smaller times. For real data there is
no need to use the approximate QQ propagator because the whole assumption of this
approach is that there is no useful information at high frequencies at large times. The
back projection step is described in algorithm 2.

Algorithm 2 Backward propagation for real data
1: for timeblock n...0 do
2:  Calculate max frequency of interest relevant at the beginning of time window
3:  Calculate max extent of wave-field at end of time window
4:  Calculate sampling of medium and time based on stability /dispersion con-
straints

5:  Resample wave-field, velocity

6:  Resample temp image to full image and sum
7. Create temp image

8  for t=n..0 in timeblock do

9: Propagate wave-field
10: Inject source

11: if Imaging step then

12: Apply imaging condition store in temp image
13: end if

14:  end for

15: end for

Figure 8 shows the result of migrating a single shot using a standard static grid,
left, and a changing grid, right. There is significantly more noise, particularly away
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from the main energy train, using the variable grid, but the main energy train is
nearly identical. Figure 9 shows the result of migrating an entire dataset using the
changing grid method. After summing all the shots the artifacts seen in Figure 8
have disappeared.
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Figure 8: The left plot shows the result of migrating a single shot using a static grid,
the right plot shows the result using the changing grid described by algorithms 1 and
2. Note the spurious energy away from the main energy train using the changing grid.
[ER]

DISCUSSION

The tests shown in this paper are limited to modeling and migration. Another obvious
area to apply these techniques is velocity analysis. For waveform inversion techniques
that rely on low frequencies this approach will lead to minimal speedup advantages
but the cheap approximation of attenuation might prove useful. The big advantage is
for Wave Equation Migration Velocity Analysis(Zhang and Biondi, 2014) and Total
Full Waveform Inversion(Almomin, 2014) techniques. In addition to potentially a
better approximation of matching the physics of the real data, these technique are
interested in large time records and higher frequencies, which is where this approach
leads to significant performance improvments. The reduction in data size, resulting
from coarser sampling of the wave-field could also prove useful.

CONCLUSIONS

[ use an approximation to Zhu and Harris (2014) to simulate propagation in an
attenuated earth. I take advantage of the fact that frequencies decay with time
by resampling my propagation grid at later times. Combining this approach with
following the wave-field leads to significant speedups in modeling and RTM. The
approach is also potentially useful for Wave Equation Migration Velocity Analysis
and Total Full Waveform Inversion.
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Figure 9: The result of migrating an entire dataset using the changing grid approach.
Note how the artifacts seen in Figure 8 are not apparent in the final migration. [CR]
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