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ABSTRACT

I implement a free surface boundary condition for the generation of surface waves
using a 10th order in space and 2nd order in time finite-difference staggered-grid
scheme. I show an example of a field seismic section and recreate its main features
using the proposed scheme. The synthetic data created show Rayleigh waves,
backscattered waves and mode conversions, and fit the kinematics of the field
data.

INTRODUCTION

Surface waves appear whenever the interface between two elastic media can be de-
scribed as a free surface, i.e., a boundary that exhibits null stress components acting
on the plane of the interface (Takeuchi and Saito, 1972). In seismology, this condi-
tion is observed in ground-to-air and sea floor interfaces. Therefore, surface waves
are ubiquitous in seismic land data and increasingly more common in marine data
with the advent of sea bottom receivers like ocean bottom cables (OBCs) and ocean
bottom nodes (OBNs) (Boiero et al., 2013).

In seismic data, surface waves are observed as slow, dispersive linear high wavenum-
ber events and are usually considered coherent noise that needs to be either filtered
or muted out (Boustani et al., 2013). However, they contain important information
about the elastic properties of the shallow layers of the subsurface and could give
hints into their understanding. This makes surface wave modeling an interesting and
yet understudied subject in seismic.

In Alves and Biondi (2014), I focused in the implementation of a finite-difference
staggered-grid method for modeling elastic waves. That work was based on the work
of Virieux (1986) and followed the algorithm later proposed by Ikelle and Amundsen
(2005). Here, I extend the previous work, adding a free-surface boundary condition
that allows the generation of surface waves. The methodology still follows that pre-
sented in Ikelle and Amundsen (2005), but the spatial derivative stencils used are 10th

order. In the next section, I present the changes to the implementation adopted to
achieve this higher order boundary condition.

Finally, I compare a field seismic section and an equivalent synthetic data set
generated using the proposed algorithm.
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METHOD

The introduction of a free surface in the elastic finite-difference code imposes a non-
slipping contact and null stresses at the boundary, thus satisfying the continuity
relations for strain and stress. I implement these boundary conditions in a 10th order
stencil using the method of mirror images, similarly to the 4th order implementation
described in Ikelle and Amundsen (2005). However, due to the longer stencil, the
method of mirror images must be applied gradually as the differential equation is
evaluated at different distances from the free surface. Equations 1 through 4 describe
the normal stress calculated at the grid points close to the boundary at a fixed time
step. For the solution shown here, the free surface is located at z = 1 and the indeces
correspond to the grid positions where the properties are evaluated:

τzz(x, 1) =
∆t

∆x
((λ(x, 1) + 2µ(x, 1))× (1)

( c1 (Vz(x, 6) + Vz(x, 4))

+ c2 (Vz(x, 5) + Vz(x, 3))

+ c3 (Vz(x, 4) + Vz(x, 2))

+ c4 (Vz(x, 3) + Vz(x, 1))

+ c5 (Vz(x, 2)− Vz(x, 1)))

+ λ(x, 1)×
( c1 (Vx(x + 5, 1)− Vx(x− 4, 1))

+ c2 (Vx(x + 4, 1)− Vx(x− 3, 1))

+ c3 (Vx(x + 3, 1)− Vx(x− 2, 1))

+ c4 (Vx(x + 2, 1)− Vx(x− 1, 1))

+ c5 (Vx(x + 1, 1)− Vx(x, 1))));

τzz(x, 2) =
∆t

∆x
((λ(x, 2) + 2µ(x, 2))× (2)

( c1 (Vz(x, 7) + Vz(x, 3))

+ c2 (Vz(x, 6) + Vz(x, 2))

+ c3 (Vz(x, 5) + Vz(x, 1))

+ c4 (Vz(x, 4)− Vz(x, 1))

+ c5 (Vz(x, 3)− Vz(x, 2)))

+ λ(x, 2)×
( c1 (Vx(x + 5, 1)− Vx(x− 4, 1))

+ c2 (Vx(x + 4, 1)− Vx(x− 3, 1))

+ c3 (Vx(x + 3, 1)− Vx(x− 2, 1))

+ c4 (Vx(x + 2, 1)− Vx(x− 1, 1))

+ c5 (Vx(x + 1, 1)− Vx(x, 1))));
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τzz(x, 3) =
∆t

∆x
((λ(x, 3) + 2µ(x, 3))× (3)

( c1 (Vz(x, 8) + Vz(x, 2))

+ c2 (Vz(x, 7) + Vz(x, 1))

+ c3 (Vz(x, 6)− Vz(x, 1))

+ c4 (Vz(x, 5)− Vz(x, 2))

+ c5 (Vz(x, 4)− Vz(x, 3)))

+ λ(x, 3)×
( c1 (Vx(x + 5, 1)− Vx(x− 4, 1))

+ c2 (Vx(x + 4, 1)− Vx(x− 3, 1))

+ c3 (Vx(x + 3, 1)− Vx(x− 2, 1))

+ c4 (Vx(x + 2, 1)− Vx(x− 1, 1))

+ c5 (Vx(x + 1, 1)− Vx(x, 1))));

τzz(x, 4) =
∆t

∆x
((λ(x, 4) + 2µ(x, 4))× (4)

( c1 (Vz(x, 9) + Vz(x, 1))

+ c2 (Vz(x, 8)− Vz(x, 1))

+ c3 (Vz(x, 7)− Vz(x, 2))

+ c4 (Vz(x, 6)− Vz(x, 3))

+ c5 (Vz(x, 5)− Vz(x, 4)))

+ λ(x, 3)×
( c1 (Vx(x + 5, 1)− Vx(x− 4, 1))

+ c2 (Vx(x + 4, 1)− Vx(x− 3, 1))

+ c3 (Vx(x + 3, 1)− Vx(x− 2, 1))

+ c4 (Vx(x + 2, 1)− Vx(x− 1, 1))

+ c5 (Vx(x + 1, 1)− Vx(x, 1)))),

where τzz(x, z) is the normal stress component in the z direction; Vx and Vz are the
particle displacements in the x and z directions, respectively; and λ(x, z) and µ(x, z)
are the Lamé parameters. Equation 5 shows the values of c1 to c5, which correspond
to the 10th order finite-difference coefficients, according to Liu and Sen (2009).
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c1 =
35

294912
, (5)

c2 = − 405

229376
,

c3 =
567

40960
,

c4 = − 735

8192
,

c5 =
19845

16384
.

The equations for the horizontal stress can be obtained by swapping the (λ(x, z)+
2µ(x, z)) and λ(x, z) terms in Equations 1 through 4. For the shear stress τxz, the
derivatives of the displacement field are shown on Equations 6 through 10. Continuity
of the physical parameters requires the shear stress be null exactly at the boundary
at z = 1. The coefficients for the 10th order stencil are the same as in the previous
set of equations.

τxz(x, 1) = 0 (6)

τxz(x, 2) =
∆t

∆x
((µ(x, 2))× (7)

( c1 (Vx(x, 6) + Vx(x, 4))

+ c2 (Vx(x, 5) + Vx(x, 3))

+ c3 (Vx(x, 4) + Vx(x, 2))

+ c4 (Vx(x, 3) + Vx(x, 1))

+ c5 (Vx(x, 2)− Vx(x, 1))

+ c1 (Vz(x + 4, 2)− Vz(x− 5, 2))

+ c2 (Vz(x + 3, 2)− Vz(x− 4, 2))

+ c3 (Vz(x + 2, 2)− Vz(x− 3, 2))

+ c4 (Vz(x + 1, 2)− Vz(x− 2, 2))

+ c5 (Vz(x, 2)− Vz(x− 1, 2)))),
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τxz(x, 3) =
∆t

∆x
((µ(x, 3))× (8)

( c1 (Vx(x, 7) + Vx(x, 3))

+ c2 (Vx(x, 6) + Vx(x, 2))

+ c3 (Vx(x, 5) + Vx(x, 1))

+ c4 (Vx(x, 4)− Vx(x, 1))

+ c5 (Vx(x, 3)− Vx(x, 2))

+ c1 (Vz(x + 4, 3)− Vz(x− 5, 3))

+ c2 (Vz(x + 3, 3)− Vz(x− 4, 3))

+ c3 (Vz(x + 2, 3)− Vz(x− 3, 3))

+ c4 (Vz(x + 1, 3)− Vz(x− 2, 3))

+ c5 (Vz(x, 3)− Vz(x− 1, 3)))),

τxz(x, 4) =
∆t

∆x
((µ(x, 4))× (9)

( c1 (Vx(x, 8) + Vx(x, 2))

+ c2 (Vx(x, 7) + Vx(x, 1))

+ c3 (Vx(x, 6)− Vx(x, 1))

+ c4 (Vx(x, 5)− Vx(x, 2))

+ c5 (Vx(x, 4)− Vx(x, 3))

+ c1 (Vz(x + 4, 4)− Vz(x− 5, 4))

+ c2 (Vz(x + 3, 4)− Vz(x− 4, 4))

+ c3 (Vz(x + 2, 4)− Vz(x− 3, 4))

+ c4 (Vz(x + 1, 4)− Vz(x− 2, 4))

+ c5 (Vz(x, 4)− Vz(x− 1, 4)))),

τxz(x, 5) =
∆t

∆x
((µ(x, 5))× (10)

( c1 (Vx(x, 9) + Vx(x, 1))

+ c2 (Vx(x, 8)− Vx(x, 1))

+ c3 (Vx(x, 7)− Vx(x, 2))

+ c4 (Vx(x, 6)− Vx(x, 3))

+ c5 (Vx(x, 5)− Vx(x, 4))

+ c1 (Vz(x + 4, 5)− Vz(x− 5, 5))

+ c2 (Vz(x + 3, 5)− Vz(x− 4, 5))

+ c3 (Vz(x + 2, 5)− Vz(x− 3, 5))

+ c4 (Vz(x + 1, 5)− Vz(x− 2, 5))

+ c5 (Vz(x, 5)− Vz(x− 1, 5)))).
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It is important to note that the spatial derivatives calculated from the displace-
ments are not centered at the same indices as the stress components. That is due
to the staggered grid method, which prescribes different postions in the modeling
domain for the displacements, stresses and elastic parameters, according to Virieux
(1986).

The equations for the displacements in the x and z directions for the grid points
near the free surface can be calculated in a similar fashion and will not be shown
here.

RESULTS

The method was used to create a 2D synthetic common shot gather that simulated a
field shot gather. The example was taken from Claerbout (2010) and contains surface
related events such as ground roll and backscattered waves from what appears to be
a near-surface anomaly.

Figures 1(a) and 1(b) show the field data and synthetic data, respectively. The
field data common-shot gather shows (A) hyperbolic events due to reflections within
a thin shallow layer, (B) high amplitude dispersive surface waves (ground roll) and
(C) backscattered waves created by a near surface discontinuity. It is also possible to
see forward scattered converted waves from the same discontinuity. In the synthetic
example, the same events are observed and with the same kinematics. The hyperbolas
at the top are much weaker in the synthetic example, due to a very strong contrast
inside the low velocity layer. The dynamics of the example could be improved by
manually adjusting the model properties.

The elastic parameters used to create the synthetic data emulate a free surface over
a low velocity layer with steeply increasing shear velocities in the vertical direction
and a near surface scatterer at x = 250m. Figures 2(a), 2(b) and 2(c) show the
models for Vp, Vs and ρ, respectively. The modeling parameters are ∆x = ∆z = 0.5m
and ∆t = 3.27 × 10−5. I used an explosive source with a peak frequency of 25
Hz. Although these grid parameters are finer than those usually employed in finite
difference modeling at this frequency, they are required to avoid numerical dispersion
of the slower surface modes.

DISCUSSION

A free-surface boundary condition was successfully implemented for a 10th order in
space and 2nd order in time finite-difference stencil. The results show that the al-
gorithm correctly recreates surface waves and that they are kinematically similar to
those observed in a field data gather. The dynamics of the field data appear to have
been reproduced, although a better correspondence might be achieved if an elastic
model for the field data was available.
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(a) (b)

Figure 1: (a) 2D field data and (b) synthetic data. The events marked as A, B
and C correspond to primaries, ground roll and backscattered waves, respectively.
Kinematically, there is a good match between the events observed in each gather,
including the mode conversions from P to S waves at x = 250m. [NR] [ER]

(a) (b) (c)

Figure 2: (a)Vp, (b) Vs and (c) ρ models. [ER]
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Due to the slower speeds of propagation for surface waves, the spatial sampling of
the model was refined to avoid numerical dispersion. Consequently, the time sampling
of the modeling must also be refined to maintain numerical stability.
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