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ABSTRACT

Wave-Equation Migration Velocity Analysis (WEMVA) is widely used as a tool
to reconstruct a model of the subsurface, such that some features of the migrated
image are met. I show an anisotropic WEMVA workflow based on the Vertical
Transverse Isotropic (VTI) approximation for the velocity model and a pseudo-
acoustic anisotropic two-way wave-equation modeling engine. I derive the theory
of WEMVA starting from the gradients of the anisotropic Full Waveform Inversion
(FWI) that provides the input images for the velocity analysis. In doing so,
I introduce the concept of generalized images that defines the FWI gradients
computed with respect to the anisotropic parameters as different images of the
subsurface. The results of some preliminary tests on the use of the generalized
images as input for WEMVA suggest that this approach could help improving
the accuracy and rate of convergence of WEMVA.

INTRODUCTION

Velocity model building is a key element in the context of seismic processing and
is still one of the most challenging problems in the exploration industry. Currently,
velocity building is conducted with techniques that work either in the data-space or
image-space. To the first class belong all those algorithms that go under the name
of Full Waveform Inversion (FWI); whereas, to the second class belong the so-called
Wave Equation Migration Velocity Analysis (WEMVA) processes. There are various
advantages that drive to the use of image-space techniques as opposed to data-space
techniques: First, the migrated images are usually cleaner than recorded data. More-
over, the requirements for the initial model are less strict for WEMVA rather than
FWI techniques.

Most of the time, WEMVA is conducted under an isotropic approximation of the
subsurface model, neglecting its anisotropic characteristics. However, the increasing
offset and azimuth in recent seismic data acquisition has heightened the need for an
anisotropic parametrization of the velocity model. Neglecting the anisotropy can, in
fact, lead to a wrong interpretation of the subsurface structures. In many cases, a
Vertical Transverse Isotropic (VTI) approximation can be used to more accurately
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describe the subsurface. Li and Biondi (2011) showed that WEMVA can be success-
fully used to retrieve an anisotropic model using a one-way VTI wave-equation as
propagation engine. Many authors (Duveneck et al. (2008); Fletcher et al. (2009);
Zhang and Zhang (2009)) proposed migration and modeling algorithms schemes for
VTI media, primarily based on the pseudo-acoustic approximation first proposed by
Alkhalifah (1998). Because the anisotropic parameters are sensitive to events that
propagate with large angles, the use of two-way wave-equation modeling algorithm

can provide significant improvement to the results of anisotropic WEMVA (Li et al.,
2012).

In this paper, I show an anisotropic WEMVA workflow based on two-way wave-
equation propagation engine. I first introduce briefly the wave-equation I use; and
then, I derive the computation of the WEMVA gradients. In doing so, I start from
the gradients of FWI that provide the input image for WEMVA. T also show some
preliminary results on the use of the anisotropic generalized images as input for the
image-space velocity model inversion.

ACOUSTIC VERTICAL TRANSVERSE ISOTROPIC
WAVE-FIELD MODELING

To avoid complications coming from the presence of shear waves and for computa-
tional efficiency, wave propagation modeling with two-way wave-equation is usually
conducted under the pseudo-acoustic VTI approximation (Alkhalifah, 1998). This
approximation consists of setting the shear-wave velocity to zero in the exact elas-
tic wave equations and leads to the following system of partial differential equations
(Duveneck et al., 2008):
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where €(z,y,2), 6(x,y,2) and v,(z,y, z) are, respectively, the anisotropic Thom-
sen parameters (Thomsen, 1986) and the vertical P-wave velocity. py(z,vy, z,t) and
po(,y, 2,t) are the horizontal and vertical normal stresses. Similarly, f,(z,v, z,t)
and f,(z,y,z,t) are the horizontal and vertical source terms. The system 1 can be
re-written in a matrix-vector notation as follows:

L(v,,&,0)p = f, (2)

where p = [pn, po]”, £ = [fn, fo]" is the source term and
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When both € and § are set to zero, system 1 is equivalent to the isotropic acoustic
second-order wave-equation.
Because the equations previously presented have been derived with the acoustic VTI
approximation, they are kinematically equivalent to acoustic VTI equations previ-
ously described in the literature (e.g., Fletcher et al. (2009); Zhang and Zhang (2009))
and share both the benefits and drawbacks of all the equations based on an acoustic
approximation. They have the well-known problem of source-generated shear waves
(Grechka et al., 2004), which for the purposes of P-wave modeling are regarded as
artifacts. In my work, I always consider the case of an acquisition surface placed in
an isotropic layer; and thus, the source-generated shear waves does not constitute a
problem. Another consequence of the acoustic VTI approximation is the condition
€ > 0 to ensure stability.

The system of equation in 1 is a special case of the one presented in Li et al. (2012)
for the specific case of a constant density medium. I used these equations as the basis
for an anisotropic two-way modeling and reverse-time migration implementation for
all the examples in this paper.

IMAGING PRINCIPLE FOR VERTICAL TRANSVERSE
ISOTROPIC MIGRATION

What is usually referred to as the subsurface image in the context of seismic migration
can be computed as the first gradient of a Full Waveform Inversion (FWI) inverse
problem (Tarantola, 1984), when the initial model does not contain any sharp con-
trasts. The objective function that is usually minimized for solving the FWI problem
is defined in the data-space as follows:

1
JFWI =3 <dobs - desty dobs - dest> ) (4>

2

where d, is the recorded data and d is the data estimated using the wave-equation
in 1 and the current models (¢,0,v,). dest is simply obtained by the sampling of the
wavefield p at the location of the original acquisition surface where d was recorded.
At the very first iteration, we usually have only a smooth estimate for the subsurface
models. If we only account for the reflection events (neglecting the diving waves, the
refractions and the direct arrivals), then des, = 0 because no reflection events can be
generated when using a smooth model. The FWI gradient would try to introduce
exactly those interfaces needed to explain the reflection events recorded and observed
in the data giving as output what we usually call “migrated image.”
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Li et al. (2012) show that the gradient of the FWI objective function can be computed
using the adjoint-state method. The final result is the following:

OL
VmJrwt = — <q, 8_mp> ; (5)

where (,) indicates the scalar product in time and q = [qn(2,y, 2, 1), ¢u(2,y, 2,1)] is
the wavefield computed by back-propagating the data residual dops — des;. m indicates
the vector of the model parameters that describe the subsurface. Depending on the
case under analysis, m can be either 1D or multidimensional. For the isotropic case,
m = [v,]; while for the anisotropic scenario described in the previous section, m is the
vector of the three components of the anisotropic subsurface model (m = [v,, €, 8]").
Equation 5 can be expanded as
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The explicit expressions for the computation of the three gradients are
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In analogy with the isotropic acoustic case in which the first FWI gradient is
referred as “the image”, I refer to the three components of the gradient of the VTI
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FWI objective function (I,,, I and I5) as generalized images. In fact, the expressions
in equation 10 can be seen as generalized imaging principles for the VTT migration.
From a kinematic point of view, they all contain the same events: They all give an
image of the same subsurface interfaces. However, they are not equivalent in term of
amplitudes and illumination of the subsurface reflectors. Figure 1 shows two angle
gathers extracted from, respectively, I,, and I, for a simple synthetic example. The
models used to both generate and compute the FWI gradients are all constant (v,, €
and 0) with a single, sharp discontinuity that simulates a flat reflector positioned at
2z =1,800 m.

The main difference between the two images is the lack of illumination at zero-
incidence angle for the case of I.. This behavior is in accordance with the theory:
Events traveling almost vertically have no sensitivity to the anisotropy parameter e.
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Figure 1: Angle gathers extracted from (a) I,, and (b) I.. Notice the differences in
the illumination. [NR]

ANISOTROPIC WAVE EQUATION MIGRATION
VELOCITY ANALYSIS

Wave Equation Migration Velocity Analysis (WEMVA) is a nonlinear inversion pro-
cess that aims at estimating a background (anisotropic) velocity model, such that a
pre-selected objective function is minimized. Unlike FWI, the objective function for
WEMVA is defined in the image-space. The generic objective function for WEMVA
is
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1
JWEMVA:§<PI,PI>, (11)

where [ is a seismic image and P is a penalty operator. P is usually chosen, such
that the minimization of the objective function leads to a seismic image with some
desired features. The most commonly used objective functions are

Joso = + (hI(x, h), hI(x, b))
(12)
Joss =5 (16,0 = 0), I(x.h = 0))..

I is expressed as a function of the position x = (x,y, z) and the subsurface offset
shift (lag) h = [h,, hy,] (Sava and Fomel, 2006). The former is the so-called Differential
Semblance Optimization (DSO), while the latter is the Power of Stack Migration
(PSM) (Symes and Kern (1994); Toldi (1989); Shen (2004)). The images used as
input for WEMVA can be computed as shown in the previous section, solving the
first step of the FWI. In particular, the image as a function of the Subsurface Offset
Domain Common Image Gathers (SOCIG) can be computed as (for the case of I,,,)

i) = 2 ([ EE s g [EE s ),y

where Sy, is a shifting operator that shifts the wavefield by +h in the x direction.
Similarly, the operator S_j, shifts the wavefield in the opposite direction. Note that
(Sin)* = S_n. I(x,h) and I5(x,h) can be computed similarly. When the correct
model is used for the construction of the seismic images, all the energy is focused at
zero-lag (h = 0). Moreover, the image extracted at h = 0 corresponds to the one that
can be obtained by stacking (along the angles dimension) the seismic image decom-
posed in angle gathers. The DSO objective function measures the nonfocused energy
in the subsurface-offset-gathers and is thus minimized when performing WEMVA. On
the other hand, the PSM measures the energy of the stack along the angles of the
seismic image and has thus to be maximized.

I now show the computation of the gradients of the WEMVA inverse problem when
the objective function is the DSO and using I, as input. The same derivation can
be used also to compute the gradients for the case of the PSM objective function. I
follow a symbolic derivation based on the adjoint-state method (Plessix, 2006) that
can be found in Li et al. (2012). For the sake of the notation, I indicate with Iy, the
generalized image I, (x, h).

The first step is the definition of the Lagrangian augmented functional as
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The adjoint-state equations can then be computed as

oL OL
p + Eh 8vp<5+h) (S-nq)7n = 0; (15)
oL oL
_—= —L _— _ * = :
a4 p+ Eh avp(s n) (S¢nP)m = 0;
a—lh——%-l—h Iy, = 0.

The solution of the adjoint-state equations allows the retrieval of the the adjoint-
state variables (A(x,t), u(x,t),v(x,h)). The gradients of the objective function in
equation 12 with respect to the three anisotropy parameters then can be computed
as follows:

+

OL
Vo, JWEMVA = <)\, _8_p>
Up

OL*
— . 16
<u, o, q> ; (16)
OL oL*
Ve JwEMva = <)\, —EP> <M, e Q> ;

OL oL*
VsJwemva = <)\7 —%p> + <M; s Q> :

Generalized images

+

As previously discussed, I consider herein the model for the subsurface to be char-
acterized by the three Thomsen parameters v,,€,0. Equation 10 shows that in this
case, the seismic images at our disposal are three as well. Regardless the choice of the
specific cost function (either DSO or PSM), it is possible to minimize/maximize the
objective function computed with any of the three images by computing the gradi-
ents with respect to the three parameters. In the derivation followed in the previous
section, for instance, I derived the gradients of WEMVA for v,, € and § by using I,
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as input. This input would correspond to find the anisotropic model, such that the
image I,,, has the desired characteristics. As a matter of fact, anisotropic WEMVA
is often performed using only I,, and inverting for all the anisotropic parameters
(Weibull and Arntsen (2014); Li et al. (2012)).

However, it is also possible to use the correspondent image when trying to invert
for a specific parameter. This would mean, for instance, to minimize/maximize the
DSO/PSM computed using I,,, when inverting for v,, I, for € and I5 for §. The choice
of the image to be used as input affects the computation of the WEMVA gradient.
As a matter of fact, the seismic image chosen as input for WEMVA plays a role in the
computation of the adjoint-state variables (equation 16). It is reasonable to expect
the associated image to have a greater sensitivity to the correspondent image rather
than the image computed for another parameter. All the parameters affect all the
three images but each parameter produces a first-order effect to the correspondent
image, and a second-order effect to the other two. If, for instance, I,, is used as input
to invert for all the parameters, the inaccuracies in the € and § model would produce
second-order effects on the image and they would thus be less significant than the
effects caused by inaccuracies in the velocity model.

In the next section, I show the result of two preliminary tests I performed to val-
idate the previous assumptions.

NUMERICAL TESTS

To validate my assumptions, I performed two tests. I computed the images I, and
I, using the correct v, and 0 models but varying the e model. With the computed
images, I evaluated the associated DSO and PSM objective functions values obtained
with the different epsilon models.

Test 1

The velocity and epsilon models for the first test are shown in Figure 2. The first layer
is isotropic with a vertical velocity of 2,000 meters per second (m/s). The second layer
is characterized by a gradient (increasing with depth) in both the velocity and epsilon
model starting at a depth of 800 meters (m). The initial values for the gradients in
velocity and epsilon are, respectively, 2,000 m/s and 0. The final values (at z = 1,800
m) are 2,400 m/s for the velocity gradient and 0.3 for the parameter epsilon. A sharp
contrast is inserted in the velocity model at a depth of 1,800 m while the epsilon
model is constant below that depth. Using these models, I generated a synthetic
dataset with a finite difference code based on the two-way wave-equation presented
in the first section. The acquisition geometry is constituted of 61 sources that go
from x = 2,000 m to x = 14,000 m at depth zero and receivers everywhere on the
same surface as the sources. Receiver spacing is 20 m.
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Figure 2: Test 1. Vertical velocity (a) and epsilon (b) models used for the generation
of the synthetic dataset. The initial values for the gradients in velocity and epsilon
are, respectively, 2,000 m/s and 0. The final values (at z = 1,800 m) are 2,400 m/s
for the velocity gradient and 0.3 for the parameter epsilon. [ER]

I generated different epsilon models by rescaling the gradient in the second layer:
The initial value is always 0, while the final one (at z = 1,800 m) goes from 0.2 to
0.6. I used the different epsilon models to compute I,,, and I..

_8.2 0.3 0.4 0.5 0.6 0.7 6.2 0.3 0.4 0.5 0.6 0.7
epsilon epsilon

(a) (b)

Figure 3: Test 1. PSM (a) and DSO (b) curves computed using /,,, (red) and I (blue)
with different epsilon models. The DSO curve associated to I. seems to indicate a
greater sensitivity to the variations in the epsilon model. [NR]

The red curves in the graphs of Figure 3 show the values of the PSM (a) and DSO
(b) objective function with respect to the epsilon model computed with I, . The blue
curves are the ones computed using I.. The curves obtained using the two different
images are almost equivalent for the case of the PSM objective function. For the case
of the DSO, though, the one associated to I, seems to indicate a greater sensitivity to
the variations in the epsilon model. Indeed, especially around the minimum location,
the DSO curve associated with I, is steeper than the one associated with I, , meaning
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that the same variation in the ¢ model produces a bigger change in I, rather than in
I

Vp -

Test 2

The velocity and epsilon models for the second test are shown in Figure 4. The first
layer is characterized by a constant vertical velocity of 2,000 m/s. The epsilon model
is composed of a constant background (e = 0) with a Gaussian anomaly centered at
z=1,200 m and x = 8,000 m. The anomaly has a maximum value of 0.3. A sharp
contrast that simulates a tilted reflector is inserted in both the velocity and epsilon
models. The dip of the reflector is 5 degrees. These models were used to generate a
synthetic dataset with the same acquisition geometry of Test 1.
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Figure 4: Test 2. Vertical velocity (a) and epsilon (b) models used for the generation
of the synthetic dataset. [ER]

I generated the different epsilon models by rescaling the epsilon anomaly in the
first layer. The shape of the anomaly is always the same, but the maximum value
(at x = 8,000 m, z = 1,200 m) varies between 0 and 0.7. As for Test 1, I used the
different epsilon models to compute I,, and /.

The red curves in the graphs of Figure 5 show the values of the PSM (a) and DSO
(b) objective function with respect to the epsilon model computed with I,,. The
blue curves are the ones relative to I.. The curves computed with the two different
images (/,, and I.) show more significant differences with respect to those of Test
1, probably because the fact that the dipping reflector enhance the contribution of
the events associated with large reflection angles. These events are indeed the ones
that carries most of the information about the parameter e. Also in this case, the
variations in the epsilon model seem to affect I, more than I, .

The minimum/maximum of the curves in both tests do not coincide with the model
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Figure 5: Test 2. PSM (a) and DSO (b) curves computed using /,,, (red) and I, (blue)
with different epsilon models. Notice that the curves do not have their minimum at
the same locations. The DSO curve associated to I, seems to indicate a greater
sensitivity to the variations in the epsilon model. [NR]

used to generate the data (the minimum should be at € = 0.3). I attribute this to
finite-difference acquisition artifacts. Moreover, the location of the minimum is dif-
ferent for the curves computed using I, and I. and seems to be closer to the correct
position when using the latter. More studies are needed to correctly analyze the
problem.

CONCLUSIONS

In this paper, I presented a workflow for WEMVA derived using the VTT approxima-
tion. I used a pseudo-acoustic two-way wave-equation as the modeling engine. I also
presented some preliminary results on the use of the generalized images as input for
WEMVA. Although the preliminary tests seem to suggest that the proposed proce-
dure could improve the accuracy and convergence rate of the velocity analysis, it is
still unclear if the use of generalized images as input for WEMVA produces significant
benefits with respect to the conventional approach.

FUTURE WORK

Additional work is needed to both evaluate the proposed WEMVA workflow based on
the pseudo-acoustic two-way wave-equation and to further investigate the suggested
approach of using the generalized images. For the first task, a code for the com-
plete tomographic loop is needed. For the evaluation of the new proposed approach,
on the other hand, further theoretical studies are needed for both gaining a better
understanding of the problem and designing additional tests.
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