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Preface

The electronic version of this report! makes the included programs and applications available
to the reader. The markings [ER], [CR], and [NR] are promises by the author about the
reproducibility of each figure result. Reproducibility is a way of organizing computational
research that allows both the author and the reader of a publication to verify the reported
results. Reproducibility facilitates the transfer of knowledge within SEP and between SEP
and its sponsors.

ER denotes Easily Reproducible and are the results of processing described in the pa-
per. The author claims that you can reproduce such a figure from the programs,
parameters, and makefiles included in the electronic document. The data must either
be included in the electronic distribution, be easily available to all researchers (e.g.,
SEG-EAGE data sets), or be available in the SEP data library?. We assume you have
a UNIX workstation with Fortran, Fortran90, C, C++, X-Windows system and the
software downloadable from our website (SEP makerules, SEPlib, and the SEP latex
package), or other free software such as SU. Before the publication of the electronic
document, someone other than the author tests the author’s claim by destroying and
rebuilding all ER figures. Some ER figures may not be reproducible by outsiders
because they depend on data sets that are too large to distribute, or data that we do
not have permission to redistribute but are in the SEP data library.

CR denotes Conditional Reproducibility. The author certifies that the commands are in
place to reproduce the figure if certain resources are available. The primary reasons
for the CR designation is that the processing requires 20 minutes or more, MPI or
CUDA based code, or commercial packages such as Matlab or Mathematica.

NR denotes Non-Reproducible figures. SEP discourages authors from flagging their fig-
ures as NR except for figures that are used solely for motivation, comparison, or
illustration of the theory, such as: artist drawings, scannings, or figures taken from
SEP reports not by the authors or from non-SEP publications.

Our testing is currently limited to LINUX 2.6 (using the Intel compiler), but the code should
be portable to other architectures. Reader’s suggestions are welcome. More information on
reproducing SEP’s electronic documents is available online?.

"http:/ /sepwww.stanford.edu/private/docs/sepl55
2http:/ /sepwww.stanford.edu/public/docs/sepdatalib/toc_html
3http://sepwww.stanford.edu/research/redoc/
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Image space separation of linearly blended data

Chris Leader and Biondo Biondi

ABSTRACT

Separating simultaneously acquired seismic data is the link between more efficient ac-
quisition and conventional imaging techniques. Successful methods of separating these
data rely strongly on random source timings and positionings; loosening this acquisition
restriction would make survey design and implementation more flexible. By perform-
ing a series of transformations it is possible to isolate and remove overlapping artifacts
that are ubiquitious when imaging simultaneously acquired data with constant time
delays. Initially, Extended Reverse Time Migration is applied, generating a roughly
focused image in subsurface offset. The image is transformed to the angle domain and
a hyperbolic radon transform is then applied, isolating certain events and allowing a
separation to be performed as a function of curvature. Basic tests have shown that after
a few iterations of this transform events become well separated. The reverse transforms
are then applied and the data demigrated, giving the equivalently unblended dataset
without requiring accurate velocity control.

INTRODUCTION

Contemporary seismic targets are increasingly often associated with steeply dipping struc-
tures and strong velocity contrasts. In order to illuminate these difficult features data with
large offsets and multiple source boats are acquired (Verwest and Lin, 2007). Intuitively
this leads to both more expensive acquisition and an increase in field waiting time. This
latter ramification is due to the fact that it is necessary to allow the energy from the pre-
vious source to sufficiently dissipate before recording the next source point. If waiting time
was not a restriction then denser sampling could be recorded per unit time and acquisition
would be significantly more efficient (Beasley (2008); Hampson (2008); Berkhout and Blac-
quiere (2008)). Practically, it is possible to disregard this waiting time and fire the next
shot when in position; this is often called continuous recording of seismic data. Recording
overlapping data in this manner will require more processing time than conventionally ac-
quired data, since separation will be necessary to mitigate imaging artifacts. However the
economic gains from reduced acquisition time far outweigh this extra processing cost.

These simultaneously acquired data can be used to directly invert for model properties
(Dai and Schuster (2009); Tang and Biondi (2009)). However such methods require exact
velocity model knowledge. Separation and subsequent imaging could be integrated into
production data flows; successful existing methods rely on random sampling in the source
timings and locations (Abma and Yan (2009); Moore et al. (2008)). For example, constant
receiver gathers can be transformed into the f-k or tau-p domain and iteratively thresholded
(Doulgeris et al., 2011), iteratively removed in the parabolic random domain (Ayeni et al.,
2011), removed by using a convex projection approach (Abma and Foster, 2010), or through
compressive sensing methods (Herrmann et al., 2009).
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Image domain processing has been used effectively for coherent energy removal/attenu-
tation by posing the problem in the extended image space (Zhang et al. (2012); Sava and
Guitton (2005)). It is possible to untangle certain events in this domain and recreate cleaner
shot gathers by virtue of higher signal-to-noise ratio and reduced dimensionality. Addition-
ally, when using the extended image space (Sava and Vasconcelos, 2011), event kinematics
are preserved. Consequently, if the velocity model is inaccurate then demigration is still
possible (Chauris and Benjemaa, 2010).

Similarly, blended data can be untangled by using extended imaging. This is done by
imaging these data across a range of subsurface offsets and then applying a transformation
to the angle domain. It is possible to distinguish events from separate shots in this domain,
by then applying some variety of curvature dependent filtering energy from overlapping
sources can be removed. These data can then be demigrated, resulting in the equivalently
unblended dataset.

This discussion will investigate how these overlapping data manifest themselves in the
Angle Domain Common Image Gathers (ADCIGs) and how best to isolate and remove the
energy identified as noise. Subsurface offset domain image gathers will be constructed and
compared for conventional data and data blended using a constant time delay, these will
also be contrasted in the angle domain. By using a hyperbolic radon inversion methodology
the energy from interfering shots can be focused, isolated and removed. Thus only events
of interest will be left and these data can be demigrated, resulting in successful separation
of blended data.

A number of existing techniques are successful in separating data acquired using a
random timing approach, thus the focus of this study will be on data acquired using a
constant time delay. This is referred to from hereon as linearly blended data.

ADCIG CONSTRUCTION

The imaging technique used for this study will be Reverse Time Migration (RTM.) This is
an algorithm based on direct solutions of the wave equation, meaning that energy associ-
ated with multiply scattered events, steep dips and a broad range of wavenumbers will be
preserved. This process can be described in equation 1.

m(x) = Z f(w)Go(x,x5,w) ZGO(x,xr,w)d*(xr,xs,w), (1)

Xg,w

where x represents the spatial coordinates, m(x) the scattering field, x5 the current source
coordinates, x, the current receiver coordinates, w the temporal frequency, d*(x,, Xs,w) the
complex conjugate of the data and Gy the relevant Green’s function. Only the zero-offset
image (Claerbout, 1971) is calculated and this will contain all necessary amplitude and
kinematic information for demigration, assuming the velocity model accurately represents
the data.

However, for the problem of separating continuously acquired data a stringent require-
ment on the velocity model is undesirable. Direct application of equation 1 with an incorrect
velocity model will result in the loss of certain events, and subsequent demigration will not
well represent the original dataset. To preserve all event kinematics extended imaging must
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Figure 1: Linearly blended data migrated into the subsurface offset domain using the correct
velocity model (top) and a model 10% too slow (bottom.) [CR] |chrisl /- oPﬁmgs|
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be used. If zero-offset imaging can be described by equation 2, then extended imaging can
be described by equation 3.

o
©

arduy
20—

oog

(w) yydeg
0081

0082

o 2000 4000 6000
[nline (m)

20'1T

arduy
20—

oog

(w) yydeg
0081

0082

0 2000 4000 6000
[nline (m)

Figure 2: The same images as Figure 1 but with the third axis transformed into the sub-
surface angle domain, rather than subsurface offset. [CR|] |chrisl /- angimgs|

nshots

I(xayaz)z Z Zps(iﬂ,y,Z,t;Si)PT(ZC,y,Z,t;Si). (2)
) t

nshots

I(x7yazaxhayh) = Z ZP5($ + ZTh, Y +yhazat; Si) * (3)
[ t

Pr($ —ThyY — Yn, Z t; Si)

Here, I(x,y, z) is the image in space, Ps is the source wavefield and P, is the receiver
wavefield. If lag coordinates in = and y are introduced (z; and yp), a 5D image can be
created. It is possible to have lags in both ¢ and z to create a 7D image, or any combination
thereof. From here on this discussion will be limited to subsurface offsets in the z direction
only.

If the correct velocity model was used for imaging then the energy will be focused to a
point in subsurface offset. If an incorrect model was used then the energy will be spread out
over a range of offsets. Analysing this moveout as a function of the velocity model is the
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core concept of Wave Equation Migration Velocity Analysis (WEMVA) (Sava and Biondi,
2003).

Figure 1 shows an image of some simple linearly blended data imaged with both the
correct velocity model and with an incorrect model. In both cases the energy resulting from
the overlapping data are readily identifiable. To filter this overlapping energy it is desirable
to apply a second transform to these offset panels that can isolate events according to their
curvature. In this paper a hyperbolic radon transform will be used.
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Figure 3: The angle domain image with the correct velocity model after a single hyperbolic
transform (top) and the slow velocity image after a single hyperbolic radon transform.
[CR] | chrisl/. anghypcomp

Initial inspection shows that the subsurface offset domain is not the ideal domain for
this moveout-based separation. If a radon transform is applied to a focused point, the result
will be a line in the transform space. We would like our data to either be all points or all
lines, not a mixture of the two. While in this case the incorrect velocity model only results
in curves it is not desirable to restrict the case where the velocity may be accurate for
certain events. A simple transform from the offset domain to the angle domain can be used.
Figure 2 shows the same two panels as in Figure 1, but in the angle domain (ADCIGs).

It is still possible to clearly identify the events from the primary data and overlapping
data. However, now all the events in this new domain are associated with a given curvature
and applying a curvature based transform will not result in the spreading out of some of
this energy, but rather focusing of all events.
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RADON INVERSION IN THE IMAGE SPACE

Initially, a hyperbolic radon transform was applied to the ADCIGs in Figure 2, and the result
can be seen in Figure 3. Two things are evident from studying these images - the transform
has been successful in beginning to separate these data according to their moveout, however
they are not well focused in this new domain. There is some clear transform noise and a
spreading over curvature values for all events. To improve this focusing a simple gradient
based inversion can be used instead of a direct adjoint methodology. By using this transform,
it’s adjoint and a conjugate directions solver this gradient based inversion can be easily
constructed (Claerbout, 2001).

Figure 4 shows the result of applying one instance of this radon transform and the
result after applying ten iterations of this radon based inversion to the image obtained
with the correct velocity model. It is immediately clear that the latter of these served to
greatly improve the focusing of these events in curvature space, and that curvature based
filtering will remove the overlapping data. The reverse transforms can then be applied and
the separated data constructed. Figure 5 then shows these two panels but for the image
obtained with a velocity model which was 10% too slow.
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Figure 4: The angle domain image with the correct velocity model after a single hyperbolic
transform (top) and after ten linear iterations of the transform (bottom.) Note the focusing

at zero curvature (corresponding to a flat angle gather.) [CR] |chrisl /- anghyp|

Again, the inversion was able to more tightly focus these events for given values of
curvature. This focusing now occurs at a non-zero value of curvature, however the relative
differences in curvature values between primary and overlapping data are the same. Thus
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these events can still be filtered according to their curvature, even though these data were
imaged with an incorrect velocity model. The events do not focus at an exact curvature
value because a hyperbola does not describe these shapes exactly. However, within a range of
curvature values the overlapping events are still localised, meaning penalisation or filtering
can be used.

CONCLUSIONS

It is demonstrated herein that it is possible to untangle linearly blended data in the image
domain. Migrating these data into ADCIGs serves as the first step, resulting in a space
where it is possible to distinguish between primary data and overlapping data. A hyperbolic
radon inversion can then isolate these events into given measurements of curvature; certain
curvature values can then be removed or penalised, effectively removing energy associated
with overlapping shots. The remaining energy can then be transformed back to ADCIGs
and then demigrated, with the final output being the separated dataset. This separation
scheme does not depend on a well constratined velocity model.
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Figure 5: The angle domain image with the incorrect velocity model after a single hyperbolic
transform (top) and after ten linear iterations of the transform (bottom), note the focusing

is now at non-zero curvature. [CR|] |chrisl /. slowhyp|
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FUTURE WORK

While the hyperbolic transform does focus these events over a smaller range of curvature
values, the events in the angle domain can not be exactly described by hyperbolae. This
is even more true for data acquired over a more complex model. It would be better to
decompose these events into parabolic curvature and tangent values, this will be attempted
next.
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Chaotic wavefield gradiometry

Sjoerd de Ridder and Biondo Biondi

ABSTRACT

We propose a new technique for passive seismic imaging via the direct application of
operators to noise recordings. We propose a time-domain 2D scalar wave equation to
describe the propagation of surface waves within a narrow frequency range. Outside the
source region, this scalar wave equation relates the second-order spatial and second-
order temporal derivatives of the wavefield with the local velocity. Different from
seismic interferometry, this technique does not rely on cross-correlations to reveal the
statistical coherence of a chaotic wavefield at two locations. Rather, it relies on the
local measurements of velocity obtained directly from the ratio between temporal and
spatial derivatives of the wavefield. The new method allows us to do passive imaging
with much shorter passive recordings. Numerical data examples show that this theory
can yield reliable images if the wavefield is sampled sufficiently in space and time.

INTRODUCTION

Geophysicists have long attempted to image chaotic wavefields. Aki (1957) first derived
the dispersion of surface waves from the cross-correlations of a circle of stations. Claerbout
(1968) showed that the one dimensional auto-correlation of transmission responses would
yield the reflection response and later conjectured an extension to three-dimensions by
cross-correlations. See Wapenaar et al. (2008) for a good review of seismic interferometry.
Almost all approaches have centered on correlating long ambient seismic recordings made at
two stations. Seismic interferometry has found its most wide application in the retrieval of
surface waves (Campillo and Paul, 2003; Shapiro and Campillo, 2004; Shapiro et al., 2005;
Gerstoft et al., 2006; Yao et al., 2006; Lin et al., 2008).

However, the advent of ever larger and denser arrays covering the earth’s surface provides
a complete recording of the surface-wave wavefield not aliased in either time or space in
many regions and frequency bands of interest. This essentially entails a direct measurement
of local medium properties because the temporal and spatial derivatives of the wavefield
are related by the medium properties through the wave equation. Here we exploit this
relationship by the development of a wavefield gradiometry method that can be directly
applied to chaotic (and non-chaotic) scalar wavefields.

Using wavefield gradients to infer propagation velocity is not a new concept. Using
the gradients of the wavefield gradiometry to extract the velocity field has been proposed
by Langston (2007a,c,b). The first-order spatial and temporal derivatives of the wavefield
amplitudes can be inverted for a set of wavefield coefficients, which relate to the local
ray parameter, local wave directionality, local geometrical spreading and local radiation
pattern. This technique was applied on recordings of the Embayment Seismic Excitation
Experiment in a one-dimensional linear array (Langston, 2007a,b), in two dimensions using
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local earthquakes recorded by a small array near Moscow Tennessee (Langston, 2007¢) and
on several earthquakes recorded by US Array (Liang and Langston, 2009).

The fundamental assumption of this work is that the wavefield at each point consists
of non-overlapping propagating plane waves from a point source (Langston, 2007a,c). This
assumption limits the use of wavefield gradiometry to deterministic wavefields where specific
arrivals can be identified. However, here we pose a two-dimensional scalar wave equation for
the propagation of a chaotic wavefield consisting of single mode surface waves. We devise a
strategy for chaotic wavefield gradiometry based on second-order partial derivatives of the
observed chaotic wavefield amplitudes.

In this paper we first develop the method as a discrete computation for wavefields densely
and irregularly sampled in space and regularly in time. Then I provide several numerical
examples using both an analytic and finite-difference solution to the two-dimensional scalar
wave equation.

CHAOTIC WAVEFIELD GRADIOMETRY

We assume that surface wave propagation in two dimensions is governed by a two-dimensional
scalar wave equation for each frequency component of the wavefield:

Az, w)V2i(z, w) + wi(z,w) = —§(z,w), (1)

where u is the wavefield variable observable in time and space and 1 its Fourier transformed
counterpart, s is a generalized source term and § its Fourier transformed counterpart, V2
is the Laplacian acting on the spatial dimensions and c is the phase velocity. After a
sufficiently narrow bandpass filter (with central frequency w’), for frequencies over which
we can neglect the frequency dependence of the phase velocity, the filtered wavefield obeys:

c2/(2)V2u(z, t) — Pu(z,t) = —s(z, 1), (2)

where 07 is the second-order derivative acting on the time dimension and c,, is the phase
velocity for this central frequency.

For chaotic wavefields the source distribution is generally unknown. Unless local sources
dominate, we can assume that the source distribution is zero within the area of recordings:

V2u(z,t) 2, (x) = 0%u(z,t). (3)

If sufficiently dense recordings are available we can evaluate the spatial and temporal second-
order derivatives by finite differences. Let u(x,t) denote the discrete recordings of the
wavefield, and D¢ and Dyx are (usually sparse) matrices containing finite-difference ap-
proximations of the second-order derivative operators applied to the wavefield in time and
space, respectively. Then for each time slice u; = u(x,t;) equation 3 can be written as:

Wdiag {Dyxu;} c2/(x) = WDy, (4)

where Dy operates on a few adjacent time slices, diag{ } denotes a diagonal operator
specifying the elements on the diagonal between { }. We can discard locations with poor
measurements using a masking operator, W, which has the structure of a diagonal matrix
with ones and zeros on the diagonal elements. Equation 4 has the structure F; m = b;,
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where m = c2,(x), F; = diag {Dxxu;}, and b; = Du;. We form these data fitting

w
equations for a set of N¢ time slices in the data, and the least-squares estimator for m is

given by inverting:

Nt Nt
Y FIWIWF, m =) F/Wiwb, (5)
=1 i=1

where T denotes matrix adjoint. The solution for each element of m(x) is essentially an
independent division of the second-order temporal derivative of the wavefield by the second-
order spatial derivative of the wavefield. This ratio is evaluated at each point in space and
averaged over all recording time by linear regression. We implicitly assume that the velocity
does not change significantly across the length of the spatial finite-difference stencil.

We wish to add a spatial smoothness constraint on m by adding the spatial smoothness
regularization €V2m = 0, where ¢ determines the importance of the model-styling goal
versus the data-fitting equations. To aid the inversion, we decompose m into a background
and a perturbation, m = mg + Am. This Laplacian is evaluated using the same finite-
difference approximation Dy as before. The least-squares estimator for Am is given by
inverting:

Ny
S FIWIWE, + EZDLXDXXI Am = ©)
i=1

Ny Ny

> _FIWIWb; — |} "FIW'WF,; + eQDLxDxx] mo.

i=1 i=1

We choose mg to be a scalar and an estimate for the background model obtained from
the ratio between the second-order temporal derivative and second-order spatial derivative
averaged over all time and all points in space:

N, Ny -1 N,
1
_ N "WHWh, - "WIWE,
my = § 1d1ag{ZFiW sz} dlag{ZFiW WFZ} : (7)
J= J J

i=1 i=1

where j is the index over the elements of the diagonals, Ny is the total number of stations,
and X is the cardinality of the set in the masking matrix, W. Because my = my is a
constant over space, its spatial second-order derivative vanishes, and equation 6 reduces to:

Ni N N
S FIW!WF,; + D}, Dux | Am = Y FIWWb, - > FIW/WF; m. (8)
=1 i=1 i=1

Finally we retrieve the phase velocity, ¢(x), from the inverted model perturbation using
c(x) = y/mg+ Am(z). This method for imaging a chaotic wavefield does not employ

cross-correlations.

NUMERICAL DATA EXAMPLES

We test the method presented in the previous section on three synthetic models: The first
model is a homogeneous medium with velocity 2000 m/s. The second model is a Gaussian
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anomaly of 50 m/s on a homogeneous background medium with velocity 2000 m/s. The
third model is a two layer medium with 1950 m/s and 2050 m/s. We consider three source
distributions: The first distribution is one source in the center of the domain. The second
distribution consists of two sources at either side of the center of the domain. The third
distribution consists of a large number of sources acting randomly in time, and positioned
randomly on a boundary outside the domain. The matrices D¢y and Dxx contain second
order finite-difference approximations to the second order spatial and temporal derivatives.

For the first set of examples, I use a far-field analytic solution in a homogeneous medium.
I compute the wavefield radiating from a source located in the center of the medium. The
wavefield is computed at a spacing of 0.5 m and with a sampling of 0.25 ms for a Ricker
wavelet with central frequency of 75 Hz as the source. Because there is no noise or error,
we omit the spatial smoothness regularization. The recovered velocity models for the three
source distributions in a homogeneous medium are shown in Figure 1. Figure 2 shows
profiles through the true and recovered homogeneous velocity models. The dashed lines
in Figure 1 correspond to the locations of the profiles of Figure 2. Figures la-b and 2a-b
reveal that the recovered velocity is very wrong near the sources. This is because the Green’s
solution used to model the wavefield is only a far-field solution and not a full solution to
equation 2. When the sources are placed outside the domain to be imaged, we retrieve the
correct velocity profile (Figure 2¢). We computed the wavefield with very small temporal
and spatial sampling intervals, so the error in the finite-difference approximation of the
derivative operators is small. However, there is still a small discrepancy between the true
and recovered velocities. This is due to the small remaining error in the finite-difference
coefficients.
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Figure 1: Recovered velocity models using an analytic solution to the wave equation in a
homogeneous medium. a) Singe source at the center; b) Two sources on either side of the
center; ¢) Sources placed randomly at the boundaries. Dashed lines indicate the locations
of the profiles in Figure 2. [ER] ’sjoerdl /- anvels‘

The second set of examples is made using wavefields computed using finite differences
(4th order in time and 16th order in space). For the three models and the three source
distributions, the wavefields are computed at a spacing of 0.5 m and with a sampling
of 0.25 ms for a Ricker wavelet with central frequency of 75 Hz as the source. For all
three models and three source distributions the recovered models are shown in Figure 3.
Profiles through true and recovered velocity models are shown in Figure 4. The dashed
lines in Figure 3 correspond to the locations of the profiles of Figure 4. There is no large
discrepancy between true and recovered velocity model in the vicinity of the sources. This
is because the finite-difference modeling code includes both far-field and near-field terms
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of the solution to the wave equation. The distinct flower-like pattern centered around the
source is due to the anisotropic error of the finite difference stencils in both the modeling
step and the wavefield gradiometry step. One profile of recovered velocities in Figure 4
deviates significantly from the true velocity model (Figure 4h). This profile is taken exactly
at a point in space where the wavefields from both sources interfere in time and the effective
spatial wavelength becomes shorter. One explanation of the increased error may be that
the error of the finite-difference stencil becomes significant.

In principle the method has no difficulty retrieving smooth or sharp velocity contrasts.
However in practice, the resolution of the method cannot supersede the spatial sampling of
the wavefield by the array. Furthermore, the resolution of chaotic wavefield gradiometry will
depend on the length of the stencils used to evaluate the finite-difference approximations of
the operators.

CONCLUSIONS

We presented a new method to extract surface-wave phase velocities from ambient seis-
mic recordings: chaotic wavefield gradiometry. The method is based on evaluating the
second-order spatial and temporal derivatives in the two-dimensional scalar wave equation
to directly infer phase velocities. In contrast with conventional methods to image chaotic
ambient seismic noise, this method does not employ cross-correlations. Numerical data
examples show that the method would work well if the wavefield is recorded sufficiently in
space and time. The retrieved velocity is very sensitive to the error in the approximations
of the operators by the finite differences. The recovery of sharp velocity contrasts depends
on sampling the wavefield very densely.
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Improved depth imaging by constrained full-waveform
inversion

Musa Maharramov and Biondo Biondi

ABSTRACT

We propose a formulation of full-wavefield inversion (FWI) as a constrained optimiza-
tion problem, and describe a computationally efficient technique for solving constrained
full-wavefield inversion (CFWI). The technique is based on using a total-variation reg-
ularization method, with the regularization weighted in favor of constraining deeper
subsurface model sections. The method helps to promote “edge-preserving” blocky
model inversion where fitting the seismic data alone fails to adequately constrain the
model. The method is demonstrated on synthetic datasets with added noise, and is
shown to enhance the sharpness of the inverted model and correctly reposition mispo-
sitioned reflectors by better constraining the velocity model at depth.

INTRODUCTION

Full-waveform inversion can achieve high resolution of subsurface velocity reconstruction
where the target is shallow and well illuminated by refracted seismic energy from wide-offset
surveys (Sirgue et al., 2010). However, illumination of deeper targets with refracted energy
may require extra wide offset survey acquisitions, or otherwise suffer from poor constraining
of deeper model sections. Mathematically, this is a manifestation of the fact that the
full-waveform inversion is a mixed-determined problem, with shallow areas of the model
overdetermined by the abundance of data, and deeper areas affected by poor resolution and
spurious positioning errors. While geological priors such as well tie-ins may provide useful
additional constraints in areas of poor illumination, regularization of the nonlinear inversion
problems arising in full-waveform inversion is a well-established mathematical technique for
dealing with underdetermined problems and noisy data. In particular, it is recognized that
the total variation (TV) regularization promotes sparsity of model gradients, acting as an
“edge preserving” constraint complementing or outweighing data fitting in problematic areas
(Anagaw and Sacchi, 2011; Guitton, 2012). However, ¢; and TV regularized optimization
problems are difficult to solve, and the development of efficient numerical solution techniques
is a subject of active ongoing research, see e.g. Boyd et al. (2011).

In this work we proposed a formulation of the full-waveform inversion as a problem of
constrained optimization, and solve it using the iterative Bregman regularization technique,
see e.g. Osher et al. (2005). We demonstrate advantages of the proposed method over
unconstrained regularization. The paper concludes with an example of application to the
Marmousi synthetic with added noise.

17
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METHOD

We begin with the standard formulation of FWI as an unconstrained nonlinear least-squares
fitting problem (Virieux and Operto, 2009):

|IF(m) — d|j2 — min, (1)

where d is the observed data, m is the model (i.e., acoustic slowness) and F is the nonlinear
forward modeling operator. Problem (1) can be solved in either time or frequency domain,
with either approach having its advantages (Virieux and Operto, 2009). Formulation (1)
equally weights all data, resulting in better illuminated areas being better constrained.
Weighted least-squares and priors may help improve recovery of deeper sections, however,
the problem still remains underdetermined at greater depths or acquisition blind spots.

In this work we explore an alternative formulation of FWI as a constrained optimization

problem,
|Rm|; — min, @)
F(m) = d,

where
Rm = |Vym]|, (3)

is the length of spatial slowness gradient, and |Rml/||; is the total variation seminorm of
m (Triebel, 2006). Note that in (2) we use an equality constraint for data fitting, which
is neither desirable nor realistic in applications to field data. Indeed, formulation (2) is
suitable for strictly underdetermined problems, and the equality constraint can be enforced
only for noise-free data. Since the full-waveform inversion problem is mixed-determined
and field data are always noisy, we propose to solve the following constrained optimization
problem:
lw(x)Rm|; — min,

4
Pim) — al} < o W
where w(x) = w(z!, 22, 23) is a weighting function that is above zero only in areas of
poor resolution or illumination at depth. In a practical solution algorithm, solving (4) is
equivalent to solving (2) with suitable stopping criteria when the desired data misfit o2 is

achieved.

We solve (4) using the iterative Bregman regularization technique proposed by Osher
et al. (2005). Starting from
m = 0, po =0,

and given myg, we iteratively compute slowness my.; as the solution of the following un-
constrained TV-regularized problem

MlwE)Rml|y — (pg, m —my) +[[F(m) - d|| — min, (5)
where an element pg1q of the subgradient of A||w(x)Rml||; is computed as

Prst = Pr — Val[F(m) —d[3],_,. - (6)

Note that (5) describes a TV-regularized inversion (Rudin et al., 1992) that may yield an
edge-preserving or “blocky” approximation to the solution of the full-waveform inversion
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problem (1). The first two terms in (5) are known as the Bregman distance (Bregman, 1967),
that is equivalent to extracting an approximately quadratic function from the regularization
term. We use the regularization approach based on solving the single unconstrained prob-
lem similar to (5) with px = 0 in our work on TV-regularized time-lapse FWI (Maharramov
and Biondi, 2014). It is important to note, however, that in this work, solution of an uncon-
strained TV-regularized problem (5) is just a single iteration of an algorithm for solving the
constrained problem (4). We solve problem (5) using nonlinear conjugate gradients (NCG)
algorithm (Nocedal and Wright, 2006), with the smoothed TV regularization term

[Vim|? + €1, (7)
where € ~ 107 is chosen as a threshold for realistic values of the slowness.

Choice of the regularization parameter A in (5) can be based on achieving better con-
ditioning of problem (5), and unlike the traditional penalty function/continuation methods
for solving (2), A does not increase between iterations (Goldstein and Osher, 2009; Cai et al.,
2010). Furthermore, iterations (5,6) can be shown to converge to a solution of (2) (or a
solution of (4) for some o > 0 for noisy data) regardless of the value of A > 0, as can be
demonstrated by a trivial extension of the technique of Cai et al. (2010). However, the rate
of convergence does depend on the value of the regularization parameter A, making the ap-
plication of Bregman regularization to some nonlinear operators F problematic. However,
our experiments indicate that the value of the regularization parameter chosen to improve
the convergence of NCG for (5) results in good overall convergence of Bregman iterations.

Iterations are stopped when the data misfit reaches a desired value of o > 0 (Osher
et al., 2005; Cai et al., 2010). In practical applications where o may not be known a-priori,
iterations may continue until the effects of overfitting start exceeding the edge-preserving
effects of the regularization term (3). Note that instead of using the NCG to solve (5)
with the smoothed regularization term (3), problem (5) can be solved using split Bregman
method that only requires iterative solution of nonlinear least squares problems and soft
thresholding (Goldstein and Osher, 2009). However, our numerical experiments indicate
that the NCG applied to the smoothed (3) has equivalent performance and accuracy.

NUMERICAL EXAMPLES

We apply the method to the synthetic dataset used in (Maharramov and Biondi, 2014),
generated for the Marmousi velocity model over a 384x122 grid with a 24 m grid spacing.
The inversion is carried out in the frequency domain for 3.0, 3.6, 4.3, 5.1, 6.2, 7.5, 9.0, 10.8,
12.8, and 15.5 Hz with time-domain forward modeling (Sirgue et al., 2010). The frequencies
are chosen based on the estimated offset to depth range of the data (Sirgue and Pratt, 2004).
The acquisition has 192 shots at a depth of 16 m with a 48 m spacing, and 381 receivers
at a depth of 15 m with a 24 m spacing. The minimum offset is 48 m. The source function
is a Ricker wavelet centered at 10.1 Hz. Absorbing boundary conditions are applied along
the entire model boundary, including the surface (thus suppressing multiples). A smoothed
true model shown in (Maharramov and Biondi, 2014) is used as a starting model for the
inversion. The smoothing is performed using a triangular filter with a 20-sample half-
window in both vertical and horizontal directions. Random Gaussian noise is added to the
noise-free synthetic data to produce a noisy dataset with 7 dB signal-to-noise ratio. The
result of model inversion from the 7 dB SNR synthetic data is shown in Figure 1. Up to 10
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iterations of the nonlinear conjugate gradients algorithm (Nocedal and Wright, 2006) are
performed for each frequency. Neither regularization nor model priors are used. Figure 2
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Figure 1: Inversion of 7dB SnR synthetic using the unregularized FWI, 10 iterations per

frequency. [CR]

shows the results of solving the proposed constrained FWI (4). Only 5 NCG iterations
were used for solving each problem (5), with only two outer (Bregman) iterations, resulting
in roughly the same compute time as in our standard FWI experiment shown in Figure 1
(10 gradient evaluations using the adjoint state method). The weighting function w(x) was
set to 1 below 2100 m and zero above 2000 m, thus the regularization is applied to less
constrained areas. Our results in Figure 2 indicate that CFWI has improved the deepest
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Figure 2: Inversion of 7dB SnR synthetic by solving constrained TV-regularized FWI (4)
using Bregman iterative procedure, 10 iterations per frequency. Note that while the shallow
parts are similar to Figure 1, deeper sections below 2km are more focused, and the poorly
illuminated and mispositioned intervals in the left part of the model have been improved.

oR

section of the model while matching the standard FWI in more shallow well-constrained
areas. The result of Figure 2 is closer to the clean synthetic inversion shown in (Maharramov
and Biondi, 2014), and has better delineated interfaces.
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CONCLUSIONS

We have proposed a new formulation of FWT as a constrained optimization problem (CFWI),
and demonstrated the CEFWI to be a viable technique for improving depth resolution and ac-
curacy of FWI. Application of Bregman iterative regularization provides a computationally
efficient solution method for CFWI that can be easily built on top of the existing solvers.
Application of CEFWI to field data will be the subject of future work.
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Tutorial on two-way wave equation operators for acoustic,
isotropic, constant-density media

Guillaume Barnier and Ali Almomin

ABSTRACT

This paper is a tutorial on linearized two-way wave equation modeling and inversion
operators. We provide a detailed derivation for the special case of an acoustic, isotropic,
constant-density medium. We analyze the Born, tomographic, and WEMVA forward
modeling operators, their adjoints, and we extend the analysis to the subsurface offset
domain.

INTRODUCTION

We present a detailed derivation for the main two-way wave equation linearized operators
used in seismic imaging: Born, tomography, and Wave Equation Migration Velocity Anal-
ysis (WEMVA). This work adapts that of Almomin (2013) and is intended to serve as an
educational tool for new students coming to SEP. We will consider the specific case of an
acoustic, isotropic, constant-density medium.

Our goal is to obtain the best possible estimate of the seismic velocity model of the
Earth’s subsurface. The three operators that we derive are convenient to achieve this
goal. The Born operator and its adjoint capture the dynamic effects responsible for seismic
reflections (the high wavenumber content of the velocity model). The tomographic and
WEMVA operators and their adjoints capture the kinematic effects (e.g., transmitted and
diving waves), which are controlled by the low wavenumber content of the velocity model.

The first section is intended to remind the reader of some general background on wave
theory. We then derive the Born modeling operator and its adjoint, referred to as the
Reverse Time Migration (RTM) operator. In the last two sections, we will treat the tomo-
graphic and WEMVA operators and their respective adjoints.

Throughout this paper, we use roman fonts to refer to functions, italic fonts to refer to
functions evaluated at a given point, and bold fonts to refer to vectors (e.g., f, f(z), and f).
Moreover, we use lowercase to refer to functions in the time domain, and uppercase for their
Discrete Fourier Transform (DFT).

WAVE THEORY
Definitions

e m is a function representing the seismic velocity model of the subsurface. For each
point in the subsurface, it associates a velocity value:
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m:Q — R (1)

x = m(x),

where m(x) is expressed in m/s. Q2 C R? is the area of study, and is an open, bounded
and regular set. It is assumed that m does not vary with time.

p is the pressure field function. For a given location in the subsurface x, at a given
time ¢, and for a given velocity function m, it represents the pressure value

p:OAxRxF(EOQR) — R (2)

(x,t;m) — p(x,t;m),

where p(x,t;m) is expressed in Pa, and F(Q,R) is the set of functions mapping 2 to
R (assumed to be infinitely differentiable on €2).

s is a function representing a seismic source:

s:OxR — R (3)
(1) — s(xt),
where s(x,t) is expressed in Pa/m?.

p is a function representing the medium volume mass density and is defined by

p:Q — R (4)

x = p(x),

where p(x) is expressed in kg/m?. In the following, we assume p to be constant over
the study area.

Vx € Q,Vt € R, the acoustic, isotropic constant-density wave equation satisfied by the
causal function p is given by

1 9%p(x,t;m)

EG) e v pGetm) = 56 (5)

p(x,t;m) = 0, V¢t <0.
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Continuous solution of the wave equation
Green’s function

Given a source located at x’ and initiated at time t’, the causal Green’s function, g, for an
acoustic, isotropic constant-density medium is the solution to equation 5, where s is a point
source function, and an impulse in time. That is, Vx € Q, Vt € R,Vt’ € R, g satisfies

1 0%g(x,t,x',t";m)

m?2(x) or2 ~V2(x, %, t5m) = §(x —x)6(t —t') (6)

glx,t.x tim) = 0, vt <t/,
where

e §(x —x/) is in m™3 (for 3D),
e §(t—t)isins7!, and

e g(x,t,x',t’;m) is in m~'s™! (and not Pa).

Spatial reciprocity implies that

g(x,t,x',t";m) = g(x', t,x,t';m). (7)

Assuming the properties of the medium are invariant with time, we can write

g(X,t,X,, t/7m) = g(X, t— tlaxla 07 m) (8)

Vx € ,Vt € R, the solution of equation 5 can be written as

+o0

p(x,t;m) = / / g(x, t,x',t";m) s(x', ') dt’ dx’. 9)

x'eQ t'=—o0
Using equation 8, we may write
+oo

/ g(x, t, X/a t/;m) S(X/, t/) dt’ = g(x, t, le O;m) * S(X,v t)v (10)

t'=—o00

where * denotes convolution in time. Equation 9 thereby simplifies to
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p(x,t;m) = / g(x,t,x',0;m) * s(x', t) dx . (11)
x'e

If the seismic source function s is concentrated at one point in space Xz, and has a time

signature f(t), then s(x,t) = f(t) 6(x — x5), where f(¢) is expressed in Pam, and d(x — x;)
is expressed in m~3. In that case, equation 11 simplifies further to

p(x,t;m) = g(x, t,x5;m) * f(t), Vx € Q,Vt e R. (12)

Numerical solution of the wave equation
Discretization in time and frequency

We discretize all functions/signals in time. Hence ¥n € {1; N},

p(x,n;m) = p(xatn;m)7 (13)

where dt is the time sampling rate in s/samples, and ¢, = (n — 1)dt. Here, it is assumed
that 3N € N such that n € {1; N} = p(x,n;m) = 0.

By taking the Discrete Fourier Transform (DFT) of each side of equation 11, we obtain that
Vke {1;N},

P(x,wg;m) = / G(x,w, x;m) S(x/,wy) dx’, (14)

2
where w, = (k — 1)dw = (k — 1)% Note that P(x,w; m) € C. Moreover,

e P(x,wy;m) is expressed in Pas,
o [(wy) is expressed in Pams, and

o G(x,wy, Xs;m) is expressed in m™1.

Discretization in space

We discretize the area of study into a regularly sampled grid. Vn € {1; N}, Vj e {1; M},
equation 11 becomes
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M

p(x, n; m) ~ Z g(X7 n, Xj; I’Il) * S(Xja n) AX? (15)
j=1

where Ax is the constant finite difference grid cell volume, expressed in m®. Since Ax acts
as a constant scaling factor, we will not write it explicitly in the remaining of our derivation.
However, this coefficient is important to ensure consistency in the units. The bold font used
for the model function m indicates that we have spatially discretized the study area. M
is the number of grid points in the study area (discretized model size). Therefore, we can
define a model vector m € R™ | whose components are the values of function m (defined in
mapping 1), evaluated at each grid point x;

m(xy) my

m(x) ma
We can also express equation 15 in the frequency domain. Vi € {1; M}, Vk € {1; N},
M
P(xj,wi;m) =~ Z G(x4, wk, X5 m) S(x5, wg). (17)
j=1

If the seismic acquisition source is concentrated at a point xg in space, its DFT is expressed
by S(x;,wy) = F(wg) 0(x; —Xs), where F is the DFT of the source’s time signature. In that
case, equation 17 simplifies further to

P(xi, wp;m) = G(Xi, wp, Xg;m) Fwg). (18)

Seismic data
Seismic data are a set of discrete measurements in time and space received at some locations

x; (e.g., near the surface of the Earth). For one seismic source located at x4, we defined a
data vector D € CNeXN (N, is the number of receiver locations)

D1y

Dn,~N

Each component D;; of D can be expressed by

Dik:P(X:XZ’,XS,Wk;m), (20)

where i € {1; Ny}, ke {1;N}.
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Wave equation and Green’s function in the frequency domain

By discretizing in space and taking the DF'T of equation 6, the Green’s function G satisfies
the Helmholtz equation. Vi € {1; M},Vk € {1; N},

W2
[m()fl)Q + Vz] G(xi,wk, Xs;m) = —0(X; — Xs). (21)

The units of equation 21 are consistent, as each side is expressed in m™3.

LINEARIZATION WITH RESPECT TO REFLECTIVITY

Nonlinear mapping

One way to think about the wave equation is as a function f that maps the set of model
parameters (velocity value at each grid point) to the recorded seismic data

f:RY — RN (22)

m +— f(m),

where d = f(m) is the seismic data in the time domain. Equivalently, in the frequency
domain,

F:RM — (M (23)

m +— F(m),

where D = F(m) is the seismic data in the frequency domain. Clearly, f and F (to be
distinguished from the source signatures mentioned previously) are not linear functions
with respect to m. However, they are both linear operators with respect to the source
function, keeping the velocity model and all other variables unchanged. Let us represent
the wave equation operator by £ such that

L:FQR) — F(OQR) (24)

Here, s € F(,R) is a source function. One can easily verify from equation 5 that, Va €
R,V (Sivsj) € ( (QvR))Q

L(si+sj) = L(si)+ L(s)) (25)
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The next step is to linearize F with respect to m. In the following, we present our derivation
in the frequency domain. First, we assume that we can decompose the model vector m € RM
as the sum of two vectors

m=b>b+r, (26)
where
b(Xl) bl
b(XM) bM
and
r(xq) el
r= : = I (28)
r(xar) AL

b € RM is referred to as the background model, and contains the low wavenumber content
of the velocity model. r € RM is referred to as the reflectivity model, and contains the
high wavenumber content of the velocity model. We also assume that the magnitude of the
reflectivity is much smaller than the one of the background, ||r|| < ||b||, where ||.|| denotes
any norm on R . In the following, we will treat those parameters as two separate variables
with same units (ms~!).

Let us consider the function

F:RM — (M (29)
r — F(r),

which is the restriction of F to the high wavenumber part of the velocity model, while keeping
the background velocity model unchanged. We perform a multivariate Taylor expansion of
F around a reflectivity model ry (referred to as the background reflectivity) while keeping
the background model b unchanged

B(r) = Frg) + 220

Ar + O(||Ar|?). (30)

r=ro

The second term of the right side of equation 30 is the Jacobian matrix B of F evaluated
at r = rg, applied to the reflectivity perturbation vector Ar. It can be expressed by
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R, 8F1|
~ Ory 'To orpy '*o
OF(r)
O B T (31)
5FNd‘ 3FNd‘
Ory 'To Orpr 'To

where B(rg) € My, 1 (C) (Mp4(C) refers to the set of matrices with p rows, ¢ columns, and
complex coefficients).

Born operator

The Born operator is a linear operator that relates a perturbation in the model reflectivity
to a perturbation in the data (Almomin, 2013), while keeping the background unchanged.

Expressing the entries of the Jacobian
We consider a reflectivity perturbation Ar vector such that

e r =rp+ Ar, and

o [[Ar]] < roll.

Thus,

AD = D(r)— D(ro) (32)
~ B(rg) Ar.

The Born operator is a linear application B(r) : CM — CNda_ which can be represented in a

matrix form by B(rg). It is the Jacobian of F taken at rg, whose entries are all independent
of the perturbation Ar.

Let us define, Vi € {1; Ng},Vk € {1; N},

Dy(b,r) = P(x;,xs,wi; b, r) = F(wg) G(x;, wk, Xs; b, 1), (33)

where D;(b,r) € C. Therefore, we can rewrite equation 32 with the following form:

AD(Xi,XS,Wk,;b,r) — P(Xiaxsawk; b,I’) - P(Xiyxsvwk‘;bvr()) (34)

M
oP
7(Xi7 Xsy Wk ba I')

o Ar(x;)

r=ro

J=1

M
0G
~ F(Wk) Z %(Xla Wk, Xs;5 b7 I‘)
j=1""7
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The left side of equation 34 is the data perturbation caused by the perturbation of the
reflectivity model, for one fixed frequency, one fixed receiver location, one fixed source, and
a fixed background velocity model.

0G
To find an expression of o we write two versions of equation 21: one with the unperturbed
&

velocity model mg = b + ry, satisfied by G(x;,wk,xs;b,r9) (equation 35), and the other
with the perturbed velocity model m = my+ Ar, satisfied by G(x;,w, Xs; b,r). That gives
us, Vie {1; M},Vk € {1; N},

2

[(mo(xi) ikAT(Xi))z + V2| G(xi,wr, X5; b, r) = —5(x; — X5), (35)
and
_wR + V2| G(xi, wi, Xs3b,1g) = —8(x; — X,). (36)
mo(x;)?

Since Vi € {1; M}, |Ar(x;)| < |mo(x;)|, we can make the following approximation:

1 o1 _ 2Ar(x)
(mo(xi) + Ar(xi))Q CEDE <1 mo(x;) ) (37

By expanding equations 35, 36, and 37, we can show that the difference AG(x;, wg, Xs; b, r) =
G(xi,wk, Xs; b, r) — G(x;, wg, Xs; b, 1) satisfies a similar equation as in equation 21, but for
a different source function. Vi e {1; M },Vk € {1; N},

AG(xj, wi, Xs;b, 1) = (38)

mo (Xl)

5 w,% Ar(x;)

2
W 2
e

G(X’ia WE, X3 b, I'[)) + AG(XZ" Wi, Xs; bv I‘) .
mo(x;)? ( )

Under that form, this wave equation is not linear with respect to the source (mapping 24).
However, we can further simplify it by noticing in equation 38 that the term proportional
to Ar(x;)AG is a second order differential element, and can thus be neglected with respect
to the remaining terms (Born approximation). Hence,

|Ar(x;)AG| < |Ar(x;) Gol, (39)
and
MEAT(X)AG‘ < '[ Wi, vﬂ AG' (40)
mo(Xi)g ’ mO(Xi)2 ‘
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Therefore, equation 38 simplifies to

2
Wi 2 ~ .
[mo(xi)2 + V7 AG Ssec(xu Wk), (41)
with
Ar(x;)
. — 2 t . .
Ssec(xu Wk) 2 Wi mo (Xi>3 G(xu Wi, X3 b, I'()). (42)

AG satisfies the wave equation with a secondary source function Sg., independent of AG,
and proportional to the reflectivity perturbation at a given point in the subsurface. Using
equation 17, we can solve for AG. Vie {1; M}, Vke {1; N},

AG(x,wi; b,r) = G(xi, wk, Xj; b, 10) Ssec (X, wi) (43)

M=

<
Il
—-

2
2 wi

I
.Mi

3 2 ) abv iy ’ S;ba A 1)
1 0 (%) G(xi, wg, x5; b, ro) G(%, w, X ro) Ar(x;)

J

We check for the consistency of the units in equation 43, keeping in mind that we did not
explicitly write the grid cell volume term (expressed in m®) on the right side,

o AG(x;,wi; b, 1) is expressed in m™!,

1

o G(xj,wy,xj;b,rp) is in m™, and

o Seec(Xi,wy) is in m™3,

The Taylor expansion of AG, expressed by

AG(xi,wk,xs;b,r) = G(Xiuwkvxs;b7r) - G(X’iawk7x5;b7r0) (44)
M
8£(Xi, Wk X3 b, T) Ar(x;),
- Brj _
=1 r=ro
enables us to identify a—G, where
87"]‘
oG 2 w2
aTj(Xi,wk;Xs;bar) . = WXIE);J,G(XM%XJ; b, ro) G(xj, wk, Xs; b, 10). (45)
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Finally, we can express the perturbation of the data with respect to the perturbation of the
reflectivity. Vi € {1; Ng},Vk € {1; N},

ADjy, = AD(x,%s,wi; b,r) (46)

M
2
= Z F(wk)mi G(x4, wk, X5; b, ro) Ar(x;) G(xj, wk, Xs; b, 1).

Equation 46 can be written in a matrix form

AD = B(rg)Ar, (47)
and
AD(x1,Xs,w1; b, 1) by, - b
AD(XQ,XS,Wl;b,I') b%l e b%
: : : : Ar(xy)
. 1 . opM
AD = ADGeN, o br)| bN.dl Nar | | Arb) : (48)
AD(x1,%s,wn; b, r) bin - bl Ar(xar)
AD(xn,, Xs,wn; b, T) bjlde o b%iN

where B(rg) is the Born modeling operator, linearized around mgy = b + ry. Moreover,

o AD ¢ CNaxN,
] B(I’o) € MNd,M((C),
° bgk € C, and

e Ar € RM,

Each entry bgk of B(rp) is independent of the reflectivity perturbation Ar, and can be
expressed Vi € {1; Ny}, Vke {1; N},Vje {1; M} by

; 2 w2
bl = Flwy) —

mO(Xj)3 G(Xu Wi, Xj7 b7 I'O) G(X]7 Wy Xs3 b; I'()). (49)
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Extension to subsurface offset domain

We extend the reflectivity part of the model to the subsurface offset domain (Almomin,

2013), and define an extended reflectivity function T by

PQxH — R (50)
xxh — 7(x,h),

where both © and H are subsets of R3. We discretize the domain on which T is defined as
in equation 28, and we obtain the reflectivity vector ¥ € RM*Nt extended to the subsurface

offset domain, where Ny, = 2h + 1. Moreover, Vp € {—h; h}, h,, = —h,, and

7(x1,hp) 7(x1, —hy)
- 7(xa, hop) 7(xar, —hp)
= N — N 51
' F(x1,hpi1) 7(x1, —hp1) (51
f(XM, hh) f(XM, hh)

Equation 46 can then be modified to take into account the subsurface offset dimension

(Almomin, 2013). Vi e {1; Ng},Vk € {1; N}, we have

ADZk - AD(XH Xs, Wk b7 I') (52)
M h 9 wg
= Flwy) k 5 G(xi, wk, X + hy; b, To) AT (x5, hyy) G(x; — hy, wi, X3 b, To).
1 mo(x;)
Jj=1p=-h
We can display equation 52 in the matrix form
(53)

AD = B(Fy) AF,

and
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A bt B L GMER gACh) L
X1,Xs,W1;0,T ~1(-h sM(-h) 71(-h+1 7
AD(x9,Xs,w1; b, T) ng b b21( ) b2§ o by1"
) : : : A7(x1,hp)
) - 71(-h TM(-h) 71(-h+1 7 :
AD(xpn,,Xs,w1; b, T) b]\gdl) bNd(l )bN(d1+) b%dhl A ) h.,)
_ ‘b F _ | 51¢n TM(-h) 71(-h+1 = r(Xp, Dep
AD = AD(lexf’w2vb’r) = b1g . b12( )blg o W A7(x1,hop1)
AD s,WN; b, T “1(-h S M(h) 71(hs1 ‘ . . :
(xhx' WN I') b1§v) blN( ) blg\/ +1) b%‘ AT‘(XM,hh)
AD(xpn,,Xs,wn; b, T) 51('.;1) ) FMh) '51(4”1) ) EMh
NgN Ny4N YNgN NgN

where B(To) is the Born operator in the extended domain. Moreover,

e AD ¢ CNaxN
° B(f‘o) € MNde,MXNh((C)7
. l;f,f € C, and

o AF € RM*Nn,

We can explicitly write the expressions for the entries of B(to). Vie {1;Ng},Vk e {1;N},Vj e
{1; M},¥p € {—h; h}, each entry b7} is given by

2
~ 2"%

b 3]]; = F(wk) G(Xi, Wk, X5+ hp; b, f‘o) G(Xj — hp7 Wi, X4 b, f'o). (55)

mo(x;) ?

We have obtained the expression for the Born modeling operator in the extended subsurface
offset domain (equations 53, 54, and 55), which relates a perturbation in the reflectivity
model to a perturbation in the data, keeping all other parameters unchanged, and assuming
a known my.

Time domain expression of the Born operator

To get a better physical understanding of the Born operator, it is convenient to express our
previous results in the time domain. By taking the inverse DFT of equation 43, we can
express the data perturbation as the convolution in time between the Green’s function and
a secondary source (caused by the reflectivity perturbation). Vi € {1; Ng},Vn € {1; N},Vj e
{1; M},Vp € {—h;h}, we have

Ad(x;,n;b,r) = Z Z 9(x4,m, %5+ hy, 0;b, 1) * Ssec (x5, hy, ). (56)

p=-h j=1
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The secondary source can be further expressed by

Ssec(Xj, hp,m) = DFT! [Ssec(xj, hp,wk)] (57)

2F(wg) w% _
ra()? E0 ) Gl — By, wi x5 b, 7o)

= psrc(xj7 hp7 xs,n; b, I'0) Af(Xj, hp),

= DFT!

where,

,h ED 7b7 =——f ‘_ha y &5y 7b7 .
psrc(xjﬁ py Xgy TV I'o) TTL()(X )3 f(n) *g(X] ps 1, X5, 0 I'0) (58)

-2

J
Function f is the discrete second order time derivative of the original source time signature.
Function pgc, referred to as source wavefield, is a scaled version of the time convolution
between the second time derivative of the source signature and the Green’s function com-
puted with the known velocity model mg = b + rg. Vi € {1; Ng},Vn € {1; N}, the data
perturbation can therefore be expressed by

Ad(x;,n;b,r) = (59)

h M
Z Z 9(xi,m, %5+ hy, 0;b,10) * [pge (x5, hp, x5, 13 b, 10) AT(x5,hyp)].
p=h j=1

Physical interpretation of Born modeling operator

For simplicity, we focus our interpretation on the specific case of zero-subsurface offset. Let
us consider the scenario where we have

e a single seismic source located at a point x at the surface,
e a subsurface location x; such that Ar(x;) # 0, and

e a single recording location x; at the surface, where we would like to compute the data
perturbation Ad(x;,n;b,r).

The source wavefield pgc generated at location xg is propagated into the subsurface with a
known velocity model mg. The secondary source ss. generated at x;, is the product of the
source wavefield pg.c with the reflectivity perturbation Ar(x;) (equation 57). Seec is nonzero
if and only if the reflectivity perturbation is nonzero. In equation 59, the convolution
between the secondary source and the Green’s function indicates that a secondary wave-
field (referred to as the scattered wavefield pscat) is generated from the secondary source.
Therefore, the contribution of the reflectivity perturbation Ar(x;) to the data perturbation
Ad(x;,mn;b,r) is obtained by extracting the values of pscat at location x;. This process is
illustrated in Figure 1. Finally, in order to capture the contributions from all the reflectiv-
ity perturbations in the subsurface to an observation point x;, we sum over all subsurface
points x; (equation 59).
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Figure 1: Schematic diagram of the Born modeling operator for one scattering point, and
a known background velocity model mg. The source wavefield pg. (red) interacts with
the reflectivity perturbation Ar(x;) (pink), and creates a scattered wavefield pscat (green).

[NR| ’ gbarnierl/. born ‘

RTM

The RTM operator is defined as the adjoint of the Born modeling operator. From equa-
tion 54, we can obtain the adjoint R(¥o) of operator B(¥o) by taking its conjugate transpose
matrix, R(To) = B(To)*, which satisfies

and

Af(xl, h—h)

AF(XM, h_h)
AF(x1,hop.g)

A7 (xpr, hyp)

where

o AT € CM*Nn,

1(-h
7“1& )

_M(h
7“11( )

~1(-h+1)
LT

~Mh
11

AF = R(Fy) AD,

_1(-h)

~1(-h+1)

1(-h
7'15\7 )

NM' -h
7'1N( :
~1(-h+1)

"N

~Mh
"IN

~1(-h
oo

NM' -h
FAEn
~1(-h+1)

"NyN

~Mh
TN,N

AD(Xlawl)
AD(XNd, wl)
AD(x1,wp)

AD(XNd,wN)
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° 7~2(f'0) S MMxNh,NdXN((C)7
o 7l = (b € € and

e AD € RM*Nn,

Moreover, each entry 7 f,f of R(Fo) is given by

o= el (©2)
2w,%

= F*(wk) mO(Xj) 3

G*(Xia Wiy X4 + hp7 ba f‘O) G*(XJ - hp> Wk, Xs; ba f0)

Therefore, one row of equation 54 is given by

Af(xj, hp) = (63)

2F
g E p ka (%4, wk, X5+ hyp; b, To) AD (x4, wy) G* (x5 — hy, wy, Xs; b, Tp).
o(x
=1 k=1

We have obtained the expression for the RTM operator in the extended subsurface offset
domain (equations 61, 62, and 63). It is the adjoint of the Born modeling operator, and it

relates a perturbation in the data to a perturbation in the reflectivity model, while keeping
other parameters unchanged.

Time domain expression of RTM operator
In a similar fashion as for the Born operator, we express the results obtained for the RTM

operator in the time domain in order to get a better understanding of its physical meaning.
Vje {1; M},Vp € {—h;h}, equation 63 can be rewritten as

N
A'f' X]7 ZPSTC Xj7 hp,Xs,Wk;b,f'O) Prec(xj7 hp7wk;b71~‘0)7 (64)
k=1

where:
b PSI“C(Xja hp7 Xs, Wi b, f'O) = DFT [psrc(xja hp7 Xs, 75 b, f0)] , and

Ng
° PreC(Xj, hp, wi; b, f‘o) = Z G*(XZ‘, Wk, X5+ hp; b, f'o)AD(X,‘, wk).
=1

Py is the DFT of the source wavefield pg. previously defined. P is the DFT of the
receiver wavefield, defined as the time convolution between the data perturbation and the
anti-causal Green’s function g_:
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Ny
Prec(Xj, hp, mi b, Fo) = > g (X;+ hy, n, x4, 0; b, Fo) * Ad(x;,n; b, ). (65)

=1

Therefore the receiver wavefield is the progagation backward in time of the data perturba-
tion. Using equation 121 (appendix), we can show that

[psrc & prec} (Xj, hpu X, 0; b, i:0) (66)
N
= PS?C(X]‘, hp,Xs,wk;b,f‘o) Prec(xj; hp,wk; b,f‘o)
1

I
M=T

psrc(xja hpv Xsy 3 b7 f‘O) prec(xja hp7 n; ba f‘O)a
1

3
Il

where the left side of equation 66 is the zero-lag time cross-correlation of the source wavefield
Psre With the receiver wavefield prec at various subsurface locations. For any subsurface point
x; and for any subsurface offset h,, we can now express the reflectivity perturbation by

Af(xja hp) = [psrc & prec] (Xja hp7 X, 0; b, f'0)7 (67)

where Ar(x;,h,) € R.

Physical interpretation of RTM operator

For simplicity, let us physically interpret the specific case of zero-subsurface offset, and let
us consider

e a single source located at a point x; at the surface, and

e a single recording location x; at the surface where we have a data perturbation
AD(x;,xs,wg; b, r).

We apply the RTM operator in order to recover the location(s) of the reflectivity perturba-
tion(s) that caused the data perturbation observed at the surface. The source wavefield pge
generated at location x is propagated forward in time with the known velocity model my.
The receiver wavefield pye. generated by the data perturbation AD(x;,xs,wy; b, r) at x; is
propagated backward in time with the known velocity mg. For each point in the subsurface,
the reflectivity perturbation value is equal to the output of the cross-correlation of the two
wavefields at zero-time lag. If there are locations such that both wavefields coincide at the
same time, the cross-correlation output will be non-zero (assuming there is not only de-
structive interferences), and a reflectivity perturbation will be generated at these locations.
This process is illustrated in Figure 2. Finally, to account for all the contributions coming
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my=b+r,

Figure 2: Schematic diagram of the RTM operator for one source located at x5, and one
receiver located at x;. For all points in the subsurface, the source wavefield pg. (red) is
cross-correlated at zero-time lag with the receiver wavefield prec (green). The receiver wave-
field is propagated backward in time from the receiver location x;. A nonzero reflectivity
perturbation will be generated at the subsurface points where the two wavefields coincide
in time and space. [NR] ’gbarnierl /- rtm‘
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from other potential observation and source locations, the reflectivity perturbations com-
puted for each source/observation pair are summed, and a reflectivity perturbation map is
generated. It is referred to as an image.

It is common in RTM to linearize the wave equation around a background reflectivity rqg = 0,
which means that the model mg used to compute the source wavefield, scattered wavefield,
and receiver wavefield contains only low wavenumber components. In other words, a smooth
velocity model is used to obtain the RTM image. If that is the case,

AD(X’iaXS;wk; b,I‘) - D(Xi,Xs,Wk;b, AI’) - D(Xi,Xs,Wk;b, 0)7 (68)

where D(x;, X, wi; b,0) is the modeled data using a smooth background velocity model,
which contains only direct arrivals and diving waves (no reflections). Hence, the data
perturbation AD(x;, X5, wy; b, r) used to compute the receiver wavefield will consist of the
recorded data D(x;, X, wk; b, Ar) from which we have removed the direct arrivals and diving
waves. Though confusing, it is common to call AD(x;, X, w; b, r) the “data.”

LINEARIZATION WITH RESPECT TO THE BACKGROUND

In previous sections, we linearized the two-way wave equation with respect to the high
wavenumber part of the velocity model (reflectivity), while keeping the lower wavenumber
part (background) unchanged. In this section, we show how the tomographic and WEMVA
operators are obtained by linearizing the Born and RTM operators with respect to the
background velocity model.

Tomographic operator

The forward tomographic operator, as defined in Almomin (2013), is a linear operator that
relates a perturbation in the background velocity model Ab (such that b = by + Ab) to
a perturbation in the perturbation of the data A(AD), while keeping the other parameters
unchanged. We can symbolically write it as

A(AD) = T(by, T)Ab. (69)

During this linearization process, we will assume that the reflectivity model r = 19 + Ar
(i.e., the image) is unchanged, and part of the operator.

Linearization of the Born operator

In order to obtain the expression for the tomographic operator, we perturb the background
velocity model b, and we express the perturbation in the perturbation of the data. We first
define D(x;,wg, Xs; b, T) by
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D(x;,xs,wr; b, T) = AD(x;,Xs,wi; b, T) (70)
— D(Xiaxsvwk; b7i:) - D(Xiaxsvwk;bvf.O)'

We perform a multivariate first-order Taylor expansion of the data perturbation D(Xi, Xs,Wk; b, T)
around a known model by, such that b = bg+ Ab. by is referred to as the background back-
ground model, and Ab is the background perturbation. Moreover, throughout this process,

r = ro+ AT is assumed to be known and is kept unchanged. Assuming a small background
perturbation Ab, we can write

ADy, = AD(x;,Xswp, b, ) = D(xi,Xs,w,; b, ) — D(xi, Xs, wp; bo, F) (71)

Q

Ab(xg).

Using equation 52, we have

7(Xi7X87wk;b7f) = (ths’wk;bvr) (72)
8bq b=bg 8bq b=Dbg
M
15)

- Z Z %(Xi,xj,hp,wk;b,fo) ar(xj, hy, wy),

j=lp=-h 1 b=bo
where
2 w,% 5
o ar(x;,hy,wi) = F(wk)mAr(xj,hp), and

j

L ﬂT(Xia Xj, hp) W b) f'U) - G(Xi7 Wk, Xj + hpa b7 f'U) G(Xj - hp7 Wy X b7 fO)

Therefore

0 0G

ﬂ(xiaxjahpvwk;bv‘f‘o) = 7(Xiawkvxj +hp;b7f0) G(Xj_ hp,Wk,Xs;bo,f'())

abq b() abq bo

_ . 0G -
+ G(Xi,Wk,Xj +hp;b07r0)87b(xj_ hpvwkvxs;b7r0)
q bo
. 0G - -

We can obtain —— (x;, wg, Xj +hp;b,To)|  and —(x; —hy, wy, x4 b,Tp)| the same way

0
as in previous section (equation 45) by setting my = by + ro. Hence, Vi € {1; M},Vk €
{LN}Vie{l; M}, Vge {1; M}, Vp € {—h;h},
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and

Two-way wave equation operators

0G
7(Xi,Wk,X‘+h ,b,f‘o) =
ab, i+ .
2 w,% _ i
mo(xq)? G, wr, Xq3 Do, Fo) G(%q, wh, X + hyi bo, To),
q
0G
7(X_h 7wkgxs;b,f'0) =
Db, I T .
2 w% _ i
WG(X]' - hp,wk; Xq; bg, I‘O) G(xq,wbxs; bo, I'O)-
q

Vi€ {1; Ng},Vk € {1; N}, equation 71 now becomes

M
ADj, = AD(x4, Xs, wi; b, T) = ZTMZ Ab(x,),
q=1

with T} € C, and

where

Eq = LI(X’L7 Xq, (.Uk;) + L2(X27 Xqv wk)?

Ll(Xia an wk) =

>

h
Z PYj]'Cq GO(Xi7 Wi, Xq) GO (XQ7 Wy Xy + hP)Af(Xja hp) GO (Xj - hP? Wk, Xs)7

j=1p=-h

and

L2 (Xia an wk) =

>

h
Z FYJ]'CQGO(X“ Whks X5 + hP)Af(va hp) GO(Xj —hy, wy, Xq) GO(ti W, Xs),

j=1p=-h

with

43

(73)

(76)

(77)

(78)
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4
4wy

mo(x;)3 mo(x4)®

v 5 = Flwg) (79)

In order to simplify notation, we used Go (and gp) to denote the Green’s function in the
frequency domain (and time domain) computed with a velocity model mg = by + To.
Equation 75 can be rewritten into the matrix form

Al?ll T1% e lel\/l
ADy; T, - T
: : : : Ab(x1)
- AD T, .. TM Ab(x
AD — .Ndl _ ]\.fdl . ]\.fdl ( 2) (80)
ADiy TN - TA | \Abxw)
ADn,N Tz\}dN e TNA;[N

Adjoint of the tomographic operator

The adjoint of the tomographic operator, as defined in Almomin (2013) is a linear operator
that relates a perturbation in the perturbation of the data A(AD) to a perturbation in the
background velocity model Ab (such that b = bg+ Ab), while keeping the other parameters
unchanged. It can be represented by

Ab = T* (b, F) A(AD). (81)

From equation 80, we can easily find the adjoint of the tomographic operator. We have,
Vg € {1; M},

Ab(x,) = Z Z )* ADyy, (82)
=1 k=1
Ng N ~ B
= ZZLI*(Xiaxqawk)ADik‘ + LQ*(Xi,Xq,Wk)ADik,
=1 k=1

and where Ab(x,) € R. Moreover,

Ll*(x,-, xq, wk)AD;, = (83)

Z Z 7]!1 = hy, wi, x0) AT (x5, hy) Gy’ (%g, wi, X5 4 hy) Gg' (%, wi Xi)ADikv
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and

L (X, X g, wi) ADyy, = (84)

M h
SN (v E)T G (xq wi x4) G (%, wi Xj — Dy ) AF(x;, hy) G () + Dy, wi, i) ADy.
j=1p=-h

We have obtained an expression for the adjoint of the tomographic operator (equations 82,
83, and 84), which relates perturbation in the perturbation of the data to perturbation in
the background velocity model, while keeping the reflectivity perturbation unchanged.

Time domain expression of the adjoint of the tomographic operator

To get better insight into the adjoint of the tomographic operator, it is convenient to express
our previous results in the time domain. We start by rearranging the first term of the right
side of equation 82

ZZLl X, X g, ) ADy, = Z seaty (Xg» Xy Wh) Precy (X g, W) (85)
=1 k=1

where

M h
b Pscat1 (ch X, Wk) = Z Z Psrc1 (Xja hpa Xs, wk)Af(Xja hp) Go (ch Wk, X5+ hp)v

j=lp=-h
2w?
L4 Psrc1 (Xj7 hpa XS,Wk) = W}f)g (Wk)Go( hp,U)k, Xs) and
J
2w?
P ——k_ S Gy AD
® Irecy (anwk) mO(Xq) ; 0 (quwkaxz) ik-

We can express each wavefield in the time domain by taking the inverse DFT of Pgcat,,
Pgre,» and Prec,. Therefore, we have

Pscaty (Xq:Xs;n) = DFT ™[ Pacat, (g, X, i) (86)
M h
= Z Z Dsre (X5, Dy, X4, 1) AT(x, hp)] * g(xq, n, X+ hy, 0; bg, Tp),
j=1p=-h
Psre,q (va th Xs) ’fL) = DFT_l [PSl”Cl (Xja hp7 Xs) UJk)] (87)
2?2
= DFT'[—X _F(w)Gy(x; — h
[m()(xj)g (wk) O(Xj s Wy Xs)}

-9 .. _
= W f(n) * Q(Xj —hy, n,xs,0; by, Tp),
J
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Precy (an n) = DFT™! [Prem (Xq7wk)] (88)
Na 202
— DFT! 7kG*x,w,xi Abi
[;mo(xq)g O( ¢ w“k ) k:]
-9 Ny

= 3 g—(x y 1y Xiao;bOJi;O) * Ad(xiv n, X87b7f')
mo(xq)? ; !

Prec, is a scaled time convolution between the second time derivative of the anti-causal
Green’s function and the perturbation of the perturbation of the data. It is the perturbation
of the perturbation of the data propagated backward in time.

Finally, using the property derived in equation 121 (appendix), we can show that

Ng N

Z Z L (xi, Xq wk)Ale = [pscatl ® precl] (X(J’ X5, 05 bo, To). (89)
=1 k=1

Therefore, the first term of the right side of equation 82 is the zero-lag time cross-correlation
between pgcat; and prec,;. We perform a similar analysis for the second term of the right
side of equation 82

Ng N

Z Z LQ* (Xi7 Xq7 wk)A-DZk = [psrcz ® pscat’,g] (XQ7 XSJ 07 b07 f‘o) (90)
=1 k=1

Similarly, the second term of equation 82 is the zero-lag time cross-correlation between pgc,
and Pscat,, Which are expressed by

9 .
S = T3 5 10y Agy ab 7~ ) 1
pSTCQ(Xq7X n) mO(Xq)3 f(n) * Q(Xq n, Xs, 0; bg rO) (9 )
Pscats (xq,xs,n) = (92)
M h
Z Z [preCQ (Xja hp: Xy n)Af(va hp)] *g_ (an n,X; — hpa O; bo, FO))
j=1p=-h
and
Ng
(x;,h n):iZg (x; + hy, n,%x;,0; b, To) * Ad(x;, n, Xs; b, F) (93)
Precy (X4, p, ’ITZO(X])S —\&j py 14 &g, Uy, DO, 10 iy 10 Rgy Dy L),y

i=1
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where prec, corresponds to the perturbation of the perturbation of the data convolved with
a scaled second time derivative of the anti-causal Green’s function. Therefore, we can now
explicitly rewrite equation 82 in the time domain. The background perturbation at any
subsurface location x4, generated by a perturbation of the perturbation in the data is given
by

Ab(xq) = [pscat1 ® precl] (XlP Xs) 0; b07 fO) + [psrcz ® pscatz] (ti Xs) O; bO? f‘o) (94)

Physical interpretation of the adjoint of the tomographic operator

In order to get a physical understanding of the adjoint of the tomographic operator, we
limit the study to the zero-subsurface offset case, and we consider the scenario where we
have

e a single source located at a point x; at the surface,

e a single recording point x; (and its recorded data) at the surface,

a known background background model by,
e an unknown low wavenumber (i.e., smooth) background velocity anomaly Ab, and

e a known reflectivity model r (i.e., an image) obtained by applying (for instance) the
RTM operator using a smooth background model. That is, r = ro+ Ar, where rg = 0.

Throughout this example, we assume that the reflectivity model is given and is considered
a fixed part of the operator. We also assume that the background velocity anomaly is small
(in magnitude) relative to the background background. We wish to find the anomaly Ab
that needs to be added to the background background by to obtain the correct background
model b = by + Ab. The setup of our example is illustrated in Figure 3, where a smooth
background anomaly Ab is embedded into a known mgy = by + r.

In order to recover the background velocity anomaly, we first need to compute the input of
the adjoint of the tomographic operator. The perturbation in the perturbation of the data
AD(xi, Xs,wg; b, r) recorded at x;, and due to a seismic source located at x,, is defined in
equation 71 by

AD(x;,Xs,w; b,r) = D(
= D(
(D(Xiax&wk‘; b07r) - D(Xi,XS,Wk; b07 0))

Xy Xy Wi b7 I‘) - D(Xiv Xsy Wk bOa I‘) (95)
Xy X5y W3 b7 I') - D(Xiaxsawk; b7 O) -

As mentioned earlier, since we have chosen rog = 0, the difference D(x;,xs,wy;b,r) —
D(xi,xs,wk; b,0) corresponds to the field data recorded at the observation point from
which we have removed the direct arrivals and diving waves. Similarly, the difference
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A 4

background anomaly

Ar(x;)

z v bO

Figure 3: Schematic diagram of the true velocity model used for the experiment. A
smooth and relatively small (in magnitude) background anomaly Ab (orange) is embed-
ded into a background velocity model mg, such that mg = by + r. The goal is to recover
the unknown anomaly Ab by applying the adjoint of the tomographic operator. [NR|]

’ gbarnierl/. tomosetup ‘

D(x;,xs,wy; bo,r) — D(x;, Xs,wg; bg, 0) corresponds to the computed data with the back-
ground bg (which does not contain the anomaly) extracted at the observation point x;,
from which we have removed the direct arrivals and refracted waves. Assuming that we
have computed AD(xi,xs,wk; b,r), we can now interpret the physical meaning of equa-
tion 94, starting from the first term of the right side of the equation. The sequence of
schematic diagrams in Figure 4 illustrate the following process. The source wavefield pgc,
is propagated forward in time from location xg into the subsurface, with a known velocity
model my = bg + r. In a similar fashion as for the Born modeling operator, a secondary
source is created where the source wavefield interacts with a non zero reflectivity perturba-
tion in the subsurface location x;. This secondary source generates a scattered wavefield
Dscat1 (Figure 4(a)). Along with this process, the receiver wavefield pyec, generated by the
perturbation in the perturbation of the data AD(x;, Xs,ws; b,r) at location x;, is propa-
gated backward in time with the known velocity model my = by +r (Figure 4(b)). Finally,
Pscat; and Drec, are cross-correlated at zero-time lag at every location x4 in the subsurface
to obtain a background velocity perturbation value Ab(x,) (Figure 4(c)). We can clearly
see that the shape of the anomaly coming from the output of the adjoint of the tomographic
operator does not correspond to the one of the true anomaly. It is more elongated and less
compact.

An analogous interpretation can be done for the second term of the right side of equa-
tion 94. The source wavefield pg., is propagated forward in time from location x into the
subsurface, with a known velocity model mg = by + r. The receiver wavefield pyec, gener-
ated by the perturbation in the perturbation of the data AD(XZ‘, Xs,wp; b, r) at location x;,
is propagated backward in time with the known velocity model my = by + r. When pyec,
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reaches and interacts with a non zero reflectivity perturbation in the subsurface location x;,
a scattered wavefield pgcat, (also propagated backward in time with velocity model my) is
generated. Finally, psre, and pscat, are cross-correlated at zero-time lag at every location x,
in the subsurface to obtain a background velocity perturbation value Ab(x,). The physical
process associated with this second term is analogous to the one for the first term. For
clarity purposes, it is not illustrated in Figure 4.

Wave-Equation Migration Velocity Analysis (WEMVA) operator

As defined in Almomin (2013), the forward WEMVA operator is an operator that relates
a perturbation in the background velocity model Ab (such that b = by + Ab) to a pertur-
bation in the perturbation of the reflectivity model A(AT), while keeping other parameters
unchanged. It is symbolically expressed by

A(AF) = W(by, AD)ADb. (96)

Throughout this process, the data perturbation AD (expressed in equation 70) is un-
changed, and is considered part of the WEMVA operator. It is analogous to the tomographic
operator, but instead of performing the linearization on the Born modeling operator around
a background background by, it is done directly on the RTM operator itself.

Linearization of the RTM operator

In order to derive the WEMVA operator, we start with the expression of the reflectivity
perturbation obtained previously for the RTM operator. The reflectivity perturbation model
AT obtained at all points in the subsurface was computed using a fixed background b.
Therefore, the reflectivity perturbation model Ar can also be considered as a function of
the background. That is, Vj € {1; M},Vp € {—h; h},

Af(x;,hy) = Af(x;, hy;b). (97)

We can now perform a first-order Taylor expansion of the multivariate function Ar around
the background background by, which gives

A(AT)(xj,hp;b) = AF(xj,hy;b) — AF(x;,hy; bo) (98)
M _
OAT
R ZW(Xj’hp;b) Ab(xg).
q=1 q b=bg

We previously showed (equation 63) that for any given background model b,
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Figure 4: Sequence of schematic diagrams illustrating the adjoint of the tomographic op-
erator applied to our example (we only show the effect of the first term in equation 94).
(a) The source wavefield interacts with the reflectivity perturbation, acts as a secondary
source, and generates the scattered wavefield pgeat,- (b) The receiver wavefield pyec, is gen-
erated by the propagation backward in time of the perturbation of the perturbation in the
data. (c) The result of the zero-time lag cross-correlation between pgcat, and prec,. [INR]

’ gbarnierl/. pscatl,precl,deltatomo
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AN(XJ» hp; b) = (99)

2F( w -
E E mo(x k G ™ (x4, wp, Xj + hy; b, To) AD (x4, wi) G * (x5 — hy, w, X6, b, To).
=1 k=1

Now, the term AD(x;,wy) is assumed to be known, fixed, and part of the WEMVA operator.
Hence,

OAT 9AT
db,

M N
ZZ Xuxj’hpawk;baf'ﬂ) aW(vawk)’ (100)
b=bo =1 k=1 b=by

xj, h,; X6 b, T)

where

2
2 wi

mo(x)?’AD(Xi’wk)’ and
J

° Ozw(x]',wk) = F*(wk)

o Ow(xi,%xj,hy, wp; b, Fo) = G* (x4, wk, X; + hyp; b, To) G*(x; — hy, wi, Xs; b, o).

& X, Xi, h,, wr; b, Ty is almost identical to the one done for
ob Jp beb
q =bg

the tomographic operator, and equation 99 can be rewritten in the more compact form

The way to evaluate

A(AF) (x5, hyb) = Y W1 Ab(x (101)
Vje {1; M},Vp € {—h;h}. Moreover, I/ng € C and

W]p = L3(xj,hy, x¢) + La(x;, hyp, x4), (102)

where

LS(Xj7 hpvxq) = (103)

Ng N
Z Z quq * Gy (x4, wi, Xq) Gy (Xq, Wk, X5 + hp) AD (x4, wi) Gy (%5 — hyp, wi, Xs),
i=1 k=1

and
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L4(Xj7 hpaxq) = (104)
Ng N
Z Z ’yjq * Gy (xi, wk, X5 + hyp) AD (x4, wi) Gy (%5 — hy, wi, X4) Gy (X g, W, Xs),
i=1 k=1
with
4wt
2 = Pl (05

mo(x;)% mo(x¢)*

In order to simplify notations, we use Gg and gy to denote the Green’s functions (in
the frequency and in the time domain, respectively), computed using a velocity model

my = by + rg. Equation 96 can be rewritten into the matrix form
A(A7)(x1,h;b) Wﬁ T le.lw
A(AF)(x1, ha; b) Wy e Wt
: A Ab(x1)
A(A7)(x1,hy, ;b Wik WM Ab(x
A(AF)(xpr, hi;b) Wyt Wl Ab(xpr)
A(AT)(xp,hy, 3 b) W]\/l[Nh e WA%Vh

which gives us the expression for the forward WEMVA operator.

Adjoint of the WEMVA operator

The adjoint of the WEMVA operator is a linear operator that relates a perturbation in the
perturbation of the reflectivity model A(AFT) to a perturbation in the background velocity
model Ab, while keeping other parameters unchanged (Almomin, 2013). Symbolically, it is
expressed by

Ab = W*(bg, AD) A(AF). (107)

Equation 101 is easily adjointable, and we have Vq € {1; M },

M:

Ab(x,) = > (W,1)* A(AF)(x;, hy; b) (108)

p=-h

I\
—

J

I
Ms

h
Z (LS x;, hy, Xq) + L (va hy, Xq)) A(AT) (Xj’ hy; b),
1 p=-h

J
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where Ab(x,) € R, and

L3*(Xj7 hzhxq) = (109)

Ng N
Z Z ’)/j]-cq G(](Xj — hp, Wk, Xs) G()(Xq, Wk, X =+ hp) GQ(Xq, W, XZ)AD *(XZ‘, wk),
=1 k=1

and

Ly (x5, hp, %) = (110)
Ng N

D) g Golxgwi Xs) Go(%g, wi, X5 — hy) Go (% + hp, wi, Xi) AD *(x;, wg).
=1 k=1

We have derived the adjoint of the WEMVA operator (equations 108, 109, and 110), which

relates perturbation in the perturbation of the reflectivity A(AT) to perturbation in the
background velocity model Ab, while keeping the data perturbation AD unchanged.

Time domain expression of the adjoint of the WEMVA operator

By following a similar approach as the one done for the adjoint of the tomographic operator,
we obtain the time domain expression for the background model perturbation

Ab(Xq) = [pscatg ® pre03] (anX& O; bOvi:O) =+ [psrC4 ® pscat4] (tiXS?O; b071~‘0)7 (111)
where
pscat3 (XqﬂxS7n) = (112)
M h
Z Z [pSI‘Cg (Xj7 hp7 Xi: n)A(AF)(X]7 hP? b)] * g(XQ? TL, Xj + hp7 Oa bO? f‘o),
7j=1p=-h
(). 1y, ) 2 F() % ) — by .., 0: by, Fo) (113)
X n = — n X5 — n, X 5 I
Pgres \ X5, p, TTLQ(XJ')E} g\X; py 14y Ksy, Uy DO, 10 ),
—9 Na
preC3 (Xqv X, TL) = v \3 Z g',(Xq, n,X;, 0; b07 i:0) * Ad(Xi, Xsy 1 ba f)a (114)
mo(Xq) im1

and
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_9 .
S = T3 5 10y Agy 7b >~ 11
pSI‘C4(Xq7X ’/L) mO(Xq)3 f(’fl) * g(xq n, Xs, 05 bo I‘()) ( 5)
pscat4 (X(b Xs) ’I’L) = (116)
M h
Z Z [preC4 (Xj7 hp7 Xy n)A(Af) (Xj7 hp; b)] *g_ (Xq7 n,Xj — hp’ 0; b07 f‘o),
j=1p=-h
and
Prec, (Xj7 hp7 ’/L) =
-9 Na
W Z g* (XJ + hp7 n,Xs, 07 bOa f‘O) * Ad(xia Xs, T b’ f‘) (117)

=1

We have derived the time domain expression of the adjoint of the WEMVA operator (equa-
tion 111). It relates a perturbation of the perturbation of the reflectivity model A(Ar)
(which can also be interpreted as a perturbation of the image) to a perturbation of the
background velocity model Ab.

Physical interpretation of the adjoint of the WEMVA operator

In order to get a physical understanding of the mechanism of the adjoint of the WEMVA
operator, we consider a similar scenario as for the tomographic operator where we have

e a single source located at a point x; at the surface
e a single recording location x; (and its recorded data) at the surface
e a known background background model bg

e an unknown low wavenumber velocity anomaly Ab that we would like to recover

Throughout this example, we define the data perturbation AD(x;,Xs,wy; b,r) as the field
data recorded at observation point x;, from which we have removed the direct arrivals and
diving waves. We will assume AD(x;,Xs,wk; b,r) to be known and unchanged throughout
this example. We wish to find the perturbation Ab that needs to be added to the background
background bg in order to obtain the correct background model b = by + Ab. Except for
the reflectivity model, the setup of our experiment is identical to the previous example
(Figure 3).

In order to recover the background velocity anomaly, we first need to compute the input
of the adjoint of the WEMVA operator, which is the perturbation in the perturbation of
the reflectivity, A(AT). In this example, we assume that we have already computed a
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reflectivity perturbation model Ar, but using the incorrect background velocity model by.
Once AT has been obtained, there are many options to compute A(AT). We will not discuss
these methods in this analysis and we assume that we have already computed A(AF). As
equations 94 and 111 indicate, the mechanism to obtain the perturbation of the background
model is almost identical to the one for the adjoint of the tomographic operator. There are,
however, a few variations:

e AT used to be part of the tomographic operator (and kept unchanged throughout the
process), and is now replaced by A(A¥T),

e A(AF) is now the “input” of the adjoint of the WEMVA operator, and

e AD is replaced by AD, and is now part of the WEMVA operator, and kept unchanged

during the process.

After taking into account those variations, the rest of the process to compute the update
in the background velocity model is identical to the one for the adjoint of the tomographic
operator, and we refer the reader to the previous section (Figure 4).

SUMMARY

We presented a detailed derivation for the Born, RTM, tomographic, and WEMVA operators
by using a Born approximation and multivariate first-order Taylor expansions. We provided
an expression of their forward and adjoint (both in the time and in the frequency domain),
as well as a physical interpretation of their mechanism.

ACKNOWLEDGMENTS
We would like to thank the Stanford Exploration Project affiliate companies for financial
support. Guillaume Barnier would like to thank Ali Almomin, Carlo Fortini, and Gustavo
Alves for their unlimited patience, precious help and advice.

APPENDIX

Cross-correlation at zero time lag

We remind the reader a useful equation that relates the cross-correlation at zero-time lag
of two time signals to their DFT.

e Let f and g be two discrete real time signals. We assume IN € N such that n ¢
{0;N =1} = f(n) = g(n) = 0.

e Let h be the time cross-correlation function between f and g. That is, h=f® g.

e Let F, G, and H be their respective DFT.
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Therefore, Yn € {O; N — 1}, Vk € {O; N — 1}:

h(n) = [f ® g](n) = H(wg) = F(wk) " G(wg) = F(wr)G(wg)*. (118)

The definition of the time cross-correlation h between f and g in the time domain is

N—

i

flk+n)g
k=0

f(k)g(k+mn). (119)
0

i

It is also the inverse DFT of the cross-correlation H expressed in the frequency domain,

N-1
h(n) = DFT[Hwl(n) = —= 37 Hiewy) €7 % (120)
1 JI:[:_OI ior kn
= — Flwg)" Glw)e™ &
VI 2 (wi)™ Glwg)e
1 Nl o kn
= i Flwy) G(wg)*e™™ '~ .

B
Il
o

Therefore, taking the cross-correlation at zero time-lag corresponds to evaluating h at n = 0,
which gives us

1 N-1 1 N-1 N-1
[f ®4](0 Flwg) Glwg) = —= )  Flwr)Glwr)" = > f(k)g(k).  (121)
)= P>
REFERENCES

Almomin, A., 2013, Accurate implementation of two-way wave-equation operators: SEP-
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Bob is right (per usual)

Stewart A. Levin

ABSTRACT

Bob who? —— Bob Clapp. ............ About what? —— Table lookups.
When reusable calculations are expensive, it can be advantageous to precalculate results
over relevant parameter ranges and subsequently use table lookups to speed up pro-
grams that use such calculations repeatedly. Classically, sin/cos tables for fast Fourier
transforms have been used to good effect. During recent development of a 3D down-
ward continuation code, I found a range covering over an order of magnitude in the
speed of sin/cos computations, with only nearest neighbor table lookup approximation
outperforming Intel optimized vector routines.

INTRODUCTION

In October, 2013, I attended a ProMAX ™™ Users Group meeting in Denver. A presenter at
the meeting, Fritz Foss, now a coauthor of our upcoming SEG talk on downward continua-
tion of Mars orbiter radar data, handed out “Martian” glasses and fascinated the audience
with a description of how he was working on applying 3D poststack seismic imaging to a
collection of radar tracks that had been acquired over the Martian polar icecaps. At the
end of his talk, he plead for a way to avoid migrating the 90+% of zeros in his data that
corresponded to the 300 km gap between the surface of Mars and the satellite’s orbit. I
volunteered and a collaboration ensued.

Over the months that followed, I got a slow out-of-core version working properly, but we
needed it to be an order of magnitude faster to significantly outperform constant-velocity
Stolt migration with the full length traces that included all the zeros. This I did achieve
with resort to parallel I/O routines, but along the way I also looked at speeding up the com-
putational downward continuation kernel. The results surprised me and may well surprise
you too.

CHASING SPEEDUPS

The original downward continuation kernel was written in C, used the sin() and cos()
routines from the -Im math library, and was compiled with gcc version 4.1.2 using -O3
optimization. As the version of ProMAX we were using had been mostly compiled with
Intel’s icc and ifort compilers, I managed to rebuild my downward continuation executable
with icc version 11.1 using the -fast option. The executable did run faster, though runtime
was, as anticipated, still dominated by I/O, not computational speed.

As phase shift downward continuation relies on many evaluations of exp(2wig) for a
limited range of shifts ¢, it made sense to see if table lookup would provide a performance
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boost comparable to that seen in fast Fourier transform codes. (Wilcox et al. (2014))
Digging further, I found that ProMAX has a fastcos.h include file that provides macros for
sin, cos and a (cos, sin) pair using table lookups. Further digging uncovered the sincos()
routine in the GNU math library to produce (sin, cos) pairs.

To assess the various options, including the gcc versus the icc compiler, I wrote the test
harness shown in Appendix A. The test carefully excluded parallel loop execution but biased
my comparisons slightly in favor of table lookup by permitting the compiler to generate SSE
(short vector) instructions to retrieve two floating point table entries, i.e. a sin/cos pair, at
a go. The length of the table, that is, the number of pretabulated sin/cos pairs was set at
65536 which is 256 Kb.

Each option was timed for 2 billion random arguments resulting in the timings show in
Table 1. In all timings, the minimum elapsed time of 6 trials was used, sufficient to get a
reasonable estimate despite running on a computer shared with other users.

sin/cos timings
Experiment A time (seconds)
gee -0O3 table lookup 22.5
icc -fast table lookup 29.9
gee -03 -Im sinf() & cosf()! 136.9
gce -O3 -lm sincosf() 114.8
icc -fast sinf() & cosf() 65.4
icc -fast sincosf() 65.4

Table 1: Elapsed times for 2x10? evaluations of single precision sin() and cos() for arguments
randomly generated between —7 and .

In reality, arguments to sin() and cos() in F-K methods are not randomly distributed
but run fairly sequentially. So I retimed each option for 2 billion arguments in increasing
order resulting in the timings show in Table 2.

sin/cos timings
Experiment A time (seconds)
gcc -03 table lookup 22.1
icc -fast table lookup 22.0
gee -03 -lm sinf() & cosf() 118.6
gce -O3 -lm sincosf() 96.0
icc -fast sinf() & cosf() 63.6
icc -fast sincosf() 59.4

Table 2: Elapsed times for 2x10? evaluations of single precision sin() and cos() for arguments
linearly generated between —7 and 7.

In some ways, these comparisons are unfair. The table lookups are only approximate
with a maximum error equivalent to nearly 1/100th of a degree of arc. A fairer comparison

!These are the single precision versions.
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is to use slower linear interpolation to reduce the error by another order of magnitude.
Timings for this case are given in Tables 3 and 4.

sin/cos timings
Experiment A time (seconds)
gce -03 table lookup 35.2
icc -fast table lookup 314
gee -03 -lm sinf() & cosf() 137.1
gee -03 -lm sincosf() 114.3
icc -fast sinf() & cosf() 63.4
icc -fast sincosf() 63.3

Table 3: Elapsed times for 2x10? evaluations of single precision sin() and cos() for arguments
randomly generated between —7 and 7 using linear table interpolation.

sin/cos timings
Experiment A time (seconds)
gce -03 table lookup 30.9
icc -fast table lookup 17.8
gee -03 -lm sinf() & cosf() 109.7
gee -O3 -lm sincosf() 86.5
icc -fast sinf() & cosf() 57.6
icc -fast sincosf() 56.6

Table 4: Elapsed times for 2x10? evaluations of single precision sin() and cos() for arguments
linearly generated between —7 and 7 using linear table interpolation.

In practice, a well written F-K code will likely arrange for arrays of arguments to sin()
and cos(), not just scalars. In this setting, Intel’s Math Kernel Library (MKL) provides
optimized vector routines, e.g. vsSinCos(), to calculate the sin() and cos() of an array. Of
course timings for this option must be compared against array-valued lookups in the sin/cos
table. These results are summarized in Table 5. Timings are only shown for the sequential
access pattern as, like the scalar icc timings, the times were virtually the same for random
argument sequences.

sin/cos timings
Experiment A time (seconds)
icc -fast nearest neighbor table lookup 6.2
icc -fast linear interpolated table lookup 40.0
icc -fast sincosf() 16.9

Table 5: Elapsed times for 2 x 10° evaluations of single precision sin() and cos() using MKL
and table lookup for arguments evaluated 1000 at a time. Random and sequential argument
ordering yielded virtually identical table evaluation runtimes.
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MAKING SENSE OF IT ALL

With a factor of over 20 between the fastest and slowest of the options, some explanations
are in order. Certainly one observation is that the Intel icc compiler creates more optimized
code that the GNU gcc compiler.

Looking at the GNU math library source code (available for download from www.gnu.org/-
software/libc/download.html), the sin() and cos() calculations involve a careful reduc-
tion of the argument to a range between —m/4 and 7/4, followed by a 130 or 1488 order
polynomial evaluation involving six tabulated coefficients.

The Intel basic math library cosf() and sinf() routines call an internal library routine
__libm_sse2 _sincos() which, as its name implies, takes full advantage of the short vector SSE
instruction and processor instruction-level parallelism. I understand that it, too, evaluates
a similar polynomial.

sin() and cos() versus sincos()

The near equality in the Intel compiler and runtime results comparing sincos() with eval-
uating sin() and cos() separately is striking because the sincos() routine is passed memory
addresses for the outputs and so would store the outputs into memory. This tells me that
the Intel compiler -fast option has rolled sincos() inline into my test code, allowing the
compiler to keep results in registers.

The GNU compiler and math library yield a small improvement in runtime when using
the dual sincos() routine versus evaluating sin() and cos() separately. Since evaluating the
sin() and cos() separately takes 118.6, each separately takes 118.6/2=59.3. Assuming the
sincos() routine only evaluates one and uses sqrt() to get the other, we should expect a
timing of about 59.3[sin]+€[cos]+[memory stores| which says that the memory stores cost
about half as much as the trigonometric evaluations.

sin() and cos() versus table lookup

The GNU compiler generates table lookups that are about the same speed as those generated
by the Intel compiler. Still, this saves about a factor of 3 to 4 compared to separate or joint
evaluations of sin() and cos() with their -lm math library. The penalty is a loss of accuracy
with a maximum phase error of 0.0028 degrees. (For linear interpolation, the maximim
phase error is 0.0000051 degrees.)

With the Intel icc compiler, table lookup was also the winner, by a factor of 2 to 3, in
almost all cases. The one exception was, however, an important one: vectorized sincos()
versus vectorized table lookup with linear interpolation. The reason linear interpolation is
important to consider is twofold:

e The longer the trace, the more small errors in sin/cos approximation degrades the
result of phase rotation.

e The 65536 entry sin/cos table I used for these tests was much larger than the 32K fast
L1 cache on the machine and, indeed, was exactly the size of the slower 256K L2 cache.
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Pushing for higher accuracy by using an even more refined table incurs a significant
memory performance hit, whereas linear interpolation allows higher accuracy with

even shorter tables.

CONCLUSIONS

So what has Bob got to do with this study? When I presented early, albeit incorrect, timing
results, he added that processor speeds have continued to grow faster than memory access
speeds. Where once it made excellent sense to precompute and tabulate various mathemat-
ical functions, the computational load for such a function needed to benefit from tabulation
is now sufficiently high that simple trigonometric functions no longer automatically qualify.
Bob Clapp emphasized that this trend is accelerating and one will soon need thousands
of operations in any function to justify precomputation. In another recent seminar, Bob
further made the point that the tradeoffs are even worse, by orders of magnitude, when com-
paring precomputed migration-inversion operator tables with on-the-fly recomputation. So,

in conclusion, Bob is right (per usual).

APPENDIX A

Computer code for timing tests.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#ifdef DOTBLFAST
#define nolinux
#endif

#include "fastcos.h"

int main(int argc, char **xargv)
{
float x=0.5f;
float sx=0.2f, cx=-0.24f;
float ex, fx;
float xscale = 0.999f*M_PI;
size_t i;
size_t n=2000000000;

allocfastcos();
ex = rand()/(2000000.0f+RAND_MAX) ;
for(i=0; i<n; ++i) {
fx = 1.0f - ex;
#if defined (DORANDACCESS)
x=(float) (xscale* (fx*(rand () /((double) RAND_MAX))+
ex*(i/((double) n))));
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#endif
#if defined (DOSEQACCESS)
x=(float) (xscale*(ex*(rand()/((double) RAND_MAX))+

fx*x(i/((double) n))));

#endif
ex *= (0.25f*x);
#if defined (DOTBLFAST) || defined(DOTBLSLOW)
FASTCOSSIN(x,cx,sX);
ex *= (cx*sx);
#endif
#if defined(DOSINCOSF)
sincosf (x,&sx,&cx) ;
ex *= (cx*sx);
#endif
#if defined (DOSINFCOSF)
ex *= (cosf(x)*sinf(x));
#endif
+

/* force loop evaluation by printing out final values */

printf ("x=Y%g cos(x)=%g sin(x)=%g\n",x,cos(x),sin(x));
#if defined (DOTBLFAST) || defined (DOTBLSLOW)

printf ("x=Yg fastcos(x)=lg fastsin(x)=Yg\n",x,cx,sx);
#endif

printf ("ex=Y%g\n",ex);

return EXIT_SUCCESS;

REFERENCES
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Overview of the Moere Vest data set

Gustavo Alves

ABSTRACT

I present an overview of a 2D ocean bottom node survey acquired in the North Sea and
made available to the Stanford Exploration Project (SEP) by Seabed Geosolutions.
I describe the arrangement of the nodes, followed by the shot arrays and the data
sets. The main features of this data set are four component data with offsets up to
100 kilometer, trace lengths up to 40 seconds and three different node arrangements:
regular spread, long offset and microspread.

INTRODUCTION

Seismic acquisition is an ever-evolving field that is constantly being challenged by deeper and
more complex targets. Illumination, geological complexities and obstructions in the survey
area are only a few of the issues that have pushed the development of seismic acquisition.
In marine data, the technology evolved from 2D streamer acquisition to wide azimuth and
even coil-shaped sail lines. On the ocean bottom, the advent of ocean-bottom cables and
ocean-bottom nodes allowed for full azimuth acquisitions, improved the repeatability in 4D
surveys and introduced the recording of multi-component data in marine environments.
Meunier (2011) provides a nice review on the advances in seismic acquisition.

The data provided to SEP by Seabed Geosolutions were recorded using 179 4-component
ocean bottom nodes (4C OBNs) in a 2D array. The nodes were distributed in 3 different
configurations, which are described here as regular spread, long offset and microspread.
Three different shot-line configurations were used and the recording was sorted into 4 data
sets.

Figure 1 shows the bathymetry of the survey area and the locations of the receivers.
Depths vary between 1942 m (West) to 1640 m (East). The following section describes the
positioning and spacing of these nodes.

NODE GEOMETRY

Regular spread

The majority of the receivers was distributed in an array of 141 nodes arranged in an
Fast-West line, with a spacing of 250 m. The total length of this line is 35 km.
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Figure 1: Bathymetry of the survey area showing the position of the receiver array. Depths
vary between 1942 m (West) to 1640 m (East). Total length of the array is 85 kilometers.
[NR] | gcalvesl/. bathimetryl |
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Long offset nodes

In order to record even longer offsets, 12 nodes were added to the 2D regular spread. They
were placed at each end of the main array, 5 on each end and with a spacing of 5 km, plus
an extra node at each of the two westernmost positions. These wider spaced nodes added
25 km to the length of the main receiver line on each end, increasing the total length of the
array to 85 km.

Microspread

The remaining 26 nodes were placed in the middle of the array in 2 parallel lines along the
main receiver line, with only a 2 meters spacing between nodes in both the inline (East-
West) and crossline (North-South) directions. Figures 2(a) and 2(b) show the deployment
and recovery of the nodes in this arrangement.

23/08/2011 19:01:29 2001-1025-1587-1 03/08/2011 13:58:22 2001-1025-1587«
E1768654 .30 N7104018.23

HDG 168.5 RvD 1581 .1

E178857 .21 N7104018 . 31
HDG 168.9 RvD 1589.5

Figure 2: Images of the (a) deployment and (b) recovery of the ocean bottom nodes
in the microspread array. Note the regularity and proximity of their positions. [NR|]

’ gcalvesl /. nodel1587deployment,nodel587recovery ‘

DATA SETS
Main

The data described as Main were acquired with two overlapping sail lines, each with 50 m
between shots, but staggered by 25 m. The total number of shots for the Main line is 2181,
with a total length of 55 km. Trace length is 15 s with trace sampling of 2 ms. A common-
receiver gather of the pressure and vertical components of this data set are shown in Figures
3(a) and 3(b), respectively. The inline (radial) and crossline (transverse) components are
shown in Figures 4(a) and 4(b). The gathers show, for example, the presence of refracted
waves and also many orders of multiples. For the horizontal components, we can also notice
the amplitude differences between the radial and transverse components.
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Figure 3: Common receiver gather for the (a) pressure and (b) vertical component of a
node in the main data set. Distance between shots is 50 m, corresponding to a single sail
line. [ER] ’gcalvesl /- main—hydro,main—vert‘
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Figure 4: Common receiver gather for the (a) inline and (b) crossline horizontal components
of a node in the main data set. Distance between shots is 50 m, corresponding to a single

sail line. [ER|] ’gcalvesl /- main—y,main—x‘
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Long

These data were recorded with the goal of acquiring long offset refraction data. There are
1140 shots, spaced by 100 m. Traces are 40 s long with 2 ms sampling. The maximum
offset is 75 km for the regular spread and up to 100 km if the long offset nodes are included.
Figures 5 and 6 show the hydrophone and vertical components for a node in the long data
set.

Swath

This data set was acquired with 6 parallel sail lines in the East-West direction. Each sail
line had 2 sources in a flip-flop arrangement, resulting in a 50 m by 50 m shot carpet, that
is 600 m wide and 55 km long.

Continuous

Seabed also made available the continuous record of each node during the survey period.
This period corresponds to roughly 10 days of continuous data, providing an interesting
resource for passive seismic studies. Due to the different times for placement and removal
of each receiver, the start and end times for the recordings vary, with an overlap of about
7 days when all receivers were in position and recording.
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Figure 5: Common receiver gather for the pressure component of a node in the long data
set. Distance between shots is 100 m. [ER] ‘gcalvesl /. long-hydro
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Figure 6: Common receiver gather for the vertical component of a node in the long data
set. Distance between shots is 100 m. [ER] ’ gcalvesl/. long-vert
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Analysis of Moere Vest OBNs as continuous data

Sjoerd de Ridder

ABSTRACT

The Moere Vest Ocean Bottom Node Survey was acquired for the purpose of explo-
ration with controlled seismic source. However, the nodes recorded continuously. This
paper will explore the use of the ambient seismic field for the purpose of creating low
frequency virtual sources by seismic interferometry. I find that this OBN dataset con-
tains abundant energy at microseism frequencies that yield virtual seismic sources by
cross-correlations. The cross-correlation gathers contain dispersive interface waves and
events with a hyperbolic move out.

INTRODUCTION

Ocean Bottom Nodes (OBNs) are placed on the seafloor and record continuously for the
duration of the deployment. A vessel carrying a seismic source will sail over the nodes
and shoot a seismic survey. The data is downloaded after the nodes are retrieved. The
continuous recordings are typically cut into shorter records starting at the timestamp of
each shot.

However, here we study the data as continuous recordings because the nodes recordings
contain a wealth of seismic energy besides the controlled source shooting. Energy in the
frequency range from 0.1 to 2.0 Hz is referred to as microseisms (Longuet-Higgins, 1950).
The aim of this paper is to show that these data contains sufficient microseism energy to
be of interest for seismic interferometry.

Seismic interferometry is a technique that aims to create virtual seismic sources by cross-
correlations of ambient seismic energy (Aki, 1957; Claerbout, 1968; Lobkis and Weaver,
2001; Weaver and Lobkis, 2002; Wapenaar, 2003, 2004; Wapenaar and Fokkema, 2006).
Under certain requirements on the characteristics of the ambient seismic field, a cross-
correlation of recordings made at two stations results in a signal that is proportional to the
Green’s function of wave propagation between those two stations.

First, I briefly survey all the energy recorded by computing a spectragram that shows
how the spectrum of the recordings vary as a function of time. Second, I perform cross-
correlations of the microseism energy recorded in the hydrophones of all 179 stations.

MOERE VEST OBN RECORDINGS AS CONTINUOUS DATA

This dataset is comprised of 179 ocean bottom stations in a linear array spanning almost
70 km, see Alves (2014). However, the seismic shooting extended beyond the array to record
long offsets. Figure 1 contains a map with the location of the Moere Vest OBN survey in the
Norwegian Sea and a bathymetry map of the Moere Vest area with the station locations.
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The station spacing of the center part of the line with 141 stations is 250 m. An additional
5 stations on either side of the line with spacing 5000 m provide for recordings at long
offsets, each end had an extra station. At the center of the line there were 26 stations in a
microspread with spacing as short as 2 m.
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Figure 1: a) Map showing the location of the Moere Vest OBN survey. b) Bathymetry map
of the Moere Vest area showing the stations in black crosses. Contour lines are drawn at
100 m interval. [NR] ‘sjoerdZ/ . maps‘

The stations are not deployed simultaneously. The stations are turned on aboard the
vessel and an unmanned Remotely Operated underwater Vehicle (ROV) flies a few stations
at a time to the seabed for deployment. Figure 2 shows the deployment times for each node.
The node numbering is from west to east. Although the recording from one node ended
prematurely, all stations were recording simultaneously for a duration of about 7 days.

I investigate the frequency content of the recordings by computing a spectragram for
three stations; the first station to be deployed; last station to be deployed; and a station
from the microspread. The frequency spectrum of the hydrophone recordings is computed
in non-overlapping 2-minute long windows, and each spectrum is displayed side by side to
show how the spectrum varies as a function of time (Figures 3a-c).

The low frequencies of the Moere Vest OBN recording (between 0.1 and 2.0 Hz) contain
energy that is continuously present. This energy is referred to as microseism noise and is
weather generated. Generally, we expect two energy bands in this regime (the single- and
double-frequency microseism peaks). We observe these two energy bands during August 237¢
to 24" However for the majority of the recordings we observe only one broad energy band.
It remains to be investigated whether we can distinguish a single and double microseism
peak, or if the energy at the upper and lower ends of the microseism frequency range is
composed of waves from different propagation regimes or wave types.
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Figure 2: Deployment times of each node. All stations were recording simultaneously for a
duration of about 7 days. [ER] ‘sjoerdQ /. deploytimes

At the higher frequencies of the Moere Vest OBN recording (above 2 Hz), we observe
several controlled source seismic surveys. These are most easily identified by observing
that shooting happens in episodes. During August 26" to 28" a few long shot lines were
recorded for the whole line. Later, between August 31%¢ to September 2"¢ six shorter shot
lines were recorded along the microspread.

In order to cross-correlate the recordings made at different nodes, they need to be
synchronized in time. The best approach is to add zeros before and after each recording to
ensure that each trace is equally long. The first 2 hours and last 2 hours of each recording
are discarded, because the nodes were not yet positioned on the sea floor. With a Hann
window we taper an additional 2 hours at the beginning and end of the recordings. Figure 4
contains a gather of all hydrophone recordings bandpass filtered between 0.5 and 1.5 Hz,
with zeros added before and after each trace, to align them in time.

The nodes in the center of the gather in Figure 4 all appear similar. These nodes are part
of the microspread. Those nodes are so close together that the waveforms should appear
very similar between nearby nodes. While at early times the arrivals in the microspread
appear aligned, at a later times certain recordings in the microspread become misaligned
with their neighboring recordings. This indicates that the internal clocks of the nodes do
not stay synchronized, a phenomena referred to as clock drift. Hatchell and Mehta (2010)
used seismic interferometry to estimate clock drifts and positioning errors.
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Figure 3: Spectragrams showing how the frequency content of the hydrophone recordings
vary as a function of time. a) The first station to be deployed, b) a station from the
microspread, ¢) the last station to be deployed. [ER] |sjoerd2 /- spgram|
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Figure 4: A gather of all the recordings synchronized with their deployment times. The
gather is bandpass filtered for microseism energy between 0.5 and 1.5 Hz. The microspread
in the middle shows clock drift: the nodes were better synchronized in August and less in
September. [ER] ‘sjoerd?/ . moerevestHbp-1p5hz
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CROSS-CORRELATIONS OF MICROSEISM NOISE

Seismic interferometry is a theory that describes how interstation Green’s functions can be
retrieved from ambient seismic recordings by a cross-correlation. The hydrophone recordings
from all stations were aligned in time and padded with zeros (see previous section). For
the limited purposed of this paper I ignore the clock drift. However, a more in-depth study
using seismic interferometry on these data has to include a correction of the data for the
clock drift prior to cross-correlations.

I elect the trace from one station as a master trace and cross-correlate the aligned and
zero padded data for all 179 traces with this master trace. This effectively retrieves a gather
as if there was a source at the master station. I repeat this procedure for 12 stations along
the line. All cross-correlation gathers are shown in Figure 5.

The correlation gathers generally show more energy at negative correlation lags for
stations on the east side of the master station and at positive correlation lags for stations
on the west side of the master station. This indicates that the dominant direction of wave
propagation in the ambient field was towards the west (away from the shallower waters and
Norwegian coast line). Figure 6 contains a regularized offset gather of all the gathers from
Figure 5.

Studying Figures 5 and 6, it is apparent that they contain dispersive interface waves
traveling with a group velocity of about 1333 m/s. But there is also energy arriving with an
apparent hyperbolic move out as a function of offset. These events intersect with the time-
axis in the first 10 seconds. These hyporbolas are already visible in the cross-correlation
gathers of individual virtual seismic sources in Figure 5.

CONCLUSIONS

This paper revealed that during the Moere Vest OBN survey there is abundant energy
in the microseism frequency range 0.1 to 2.0 Hz. From cross correlations we find that
the microseism energy is propagating predominantly westward. In the cross-correlation
gathers we find dispersive interface waves with a group velocity of about 1333 m/s. But
more interestingly we find events with an apparent hyperbolic move out. A more extensive
analysis should reveal what kind of waves they are and where they originate from.
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APPENDIX: MICROSEISM ENERGY VERSUS
CONTROLLED-SOURCE SEISMIC ENERGY

In this appendix I show the dominance of the microseism energy in the low frequencies of
the recordings. I perform a series of bandpass filters on a common receiver gather of the
hydrophone recordings and the vertical component geophone recordings (Figures B-1 and B-
2). The bandpass is implemented in the frequency domain with Hann window with a flat
center.

500

Figure B-1: Hydrophone common receiver gather: the original (upper left) and a series of
bandpass filtered gathers showing the low frequency content. [ER] ‘sjoerd2 /. bandpassesH

Below 5 Hz there is little source energy left. However, the remaining low-frequency
seismic source energy may contain reflections and refractions of the dominant and high-
contrast geological formations in the subsurface. From the spectragrams in Figure 3 we see
that the energy of the controlled source shooting and the energy of the microseism noise
overlap in the frequency range 1 to 2 Hz. With two bandpass filters (flat center with Hann
window sides) tied at respectively 0.75-1.0-1.25-1.75 Hz and 1.75-2.0-2.25-2.75 Hz, we can
see that 1.75 is a good upper limit for a bandpass filter to separate the frequency ranges in
which the microseism noise or the controlled source seismic energy is dominant (Figure B-3).
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SEG 2014 benchmark data

Ali Almomin, Xukai Shen, Carlo Fortini, Guillaume Barnier and Biondo Biondi

ABSTRACT

A synthetic bunchmark test data was created by Chevron for the SEG 2014 workshop.
We first overview the data and the potential challenges that it presents for velocity
estimation methods. Then, we process the data by reducing the noise and the sea
bed surface-related multiples. Finally, we estimate the P-wave velocity model with a
sequence of full waveform inversion methods that first analyze the early arrivals then the
reflection data. The angle-domain common-image gathers of the final velocity model
show significant improvement compared to the initial velocity model and indicate that
most of the kinematics of the data were successfully estimated.

INTRODUCTION

Full waveform inversion (FWTI)(Tarantola, 1984; Pratt, 1999) has become an increasingly
popular technique to estimate the subsurface property from seismic data due to its high
resolution and very accurate results. This high resolution is due to utilizing the information
from both the forward-scattered and back-scattered wavefields in the data, i.e. both their
kinematics and their dynamics. Moreover, the data misfit is computed in the data spaces.
This direct computation of the errors results in a relatively simple relationship between
the data residuals and the model updates. However, FWI has the disadvantage that its
objective function is far from being smooth and convex which, in the absence of very low
frequency, requires the starting model to be very close to the true model to avoid converging
to a local minimum.

To test and compare different FWI algorithms, Chevron has recently released a bench-
mark synthetic dataset for a blind test as part of the SEG 2014 workshop. The data are
modeled based on real geology and present several challenges that can prevent a conven-
tional implementation of FWI from working properly.

We reduce the noise in the data by applying a bandpass filter followed by a multiples
reduction algorithm that targets sea bed surface related multiples. To estimate the P-wave
velocity model, we first run an early arrival full waveform inversion to estimate the shallow
part of the model. Then, we run a low frequency tomographic full waveform inversion
(TFWI) (Almomin and Biondi, 2014) on the reflection data to improve the background
velocity at the deeper part of the data. Finally, we run a kinematics based FWI on the
reflection data. The angle-domain common-image gathers of the final velocity model show
significant improvement compared to the initial velocity model and indicate that most of
the kinematics of the data were successfully estimated.
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DATA OVERVIEW

The dataset was modeled using a 2D isotropic, elastic wave-equation with a free-surface
at top and absorbing boundaries on the sides and the bottom. The source function used
was provided as a farfield wholespace wavelet without ghosts effects with a sampling rate
of 0.666666 ms. Figure 1 shows the wavelet provided and figure 2 shows the amplitude
spectrum of the wavelet, which shows a majority of the signal between 2 Hz and 40 Hz with
a dominant frequency of 10 Hz. A marine geometry was used with 1600 shots separated by
25 m and 321 hydrophone receivers separated by 25 m. The receivers start at the source
location and reach a maximum of 8000 m. Both sources and receivers are at a depth of 15
m. The recorded data had a duration of 8 s with a sampling of 4 ms.

Figure 3 shows the first shot gather and figure 4 shows the zero-offset gather of the
raw data, which show the source and receiver ghosts effects and the free-surface multiples.
Moreover, noise was added to the data that mostly affects the very low and very high ends
of the frequency spectrum. The noise can be seen in the amplitude spectrum of the first
shot gather in figure 5 as well as the average amplitude spectrum of all shot gathers in
figure 6, which was obtained by first computing the amplitude spectrum of each shot then
averaging those spectra.
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Figure 3: First shot gather of the raw data. [ER] |ali2/. 1shot
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Figure 4: Zero offset gather of the raw data. [ER] |ali2/. zostack
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MULTIPLES REDUCTION

The original data was modeled with an elastic FD algorithm with a free-surface boundary
condition in order to simulate the presence of surface-related multiples. The first layer of
the model is constituted by water. The surface-related multiple events that underwent to,
at least a bounce, at the depth of the seabed seem to be the most energetic ones.

In order to remove the multiples from the original data, we applied a model-based
prediction algorithm that generates a model of the seabed surface-related multiples (noise
model). We then adaptively subtracted the noise model from the original data with a 2D
Least Squares adaptive subtraction filter.

The model-based algorithm we used is called MRKE (Multiple Removal by Kirchhoff
Extrapolation). It needs as input an interpreted reflector and the velocity model between
the acquisition surface and that reflector. By using a Kirchhoff wavefield extrapolation
operator, the algorithm simulates the additional bounce of the primary events recorded in
the data that occurred at the depth of the reflector. This way, the primaries contained in the
data are transformed into multiples (and the multiples in higher order multiples). Since the
same operation is applied on all the events in the original data, also the receiver-side peg-
legs of the interpreted reflector are predicted. The source-side peg-legs can also be predicted
by applying the same algorithm after a re-ordering of the input data in common-receiver
gathers (CRGs).

Here are the steps we followed for the removal of the multiples from the original data:

1) Picking of the seabed interface from the given initial velocity model
2) MRKE on the original data

3) MRKE on the original data re-sorted in CRGs

4) Merge of the results of steps 2) and 3)

5) Adaptive subtraction of the predicted multiples from the original dataset

Figure 7 shows the first shot gather after removing the multiples. By comparing figure
7 to figure 3, we can see that several events, most notably around early time and far offset,
have been removed. Figure 8 shows the amplitude spectrum of the shot gather shown in
figure 7. Figure 9 shows the zero-offset gather with a t-power gain using an exponent value
of one. Finally, figure 10 shows the average amplitude spectrum of all shot gathers, which
was obtained by first computing the amplitude spectrum of each shot then averaging those
spectra.

VELOCITY ANALYSIS

Initial velocity

A 1-D initial velocity model was provided with the data that contains the sea bottom and
a water velocity of 1.51 km/s, as shown in figure 11. The left side of the model has a flat
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sea bottom whereas the right side has more complex topography. The first shot is located
at 1 km with the receivers extending towards the right.

For all subsequent steps, we reduce the computational cost by subsampling the source
function to a rate of 4 ms, matching the sampling of the recorded data, and the source
spacing to a rate of 100 m spacing by keeping every fourth shot gather. We also applied a
bandpass filter with parameters 2-4-35-40 Hz to reduce the low- and high-frequency noise.
Moreover, we symmetrize around common-midpoint (CMP) locations using reciprocity in
order to produce image and angle-gathers that are easier to interpret.

Figure 12 shows the migration image obtained using the initial velocity model and
the demultipled data after muting the early arrivals. The events are very incoherent and
defocused due to large velocity errors. Figure 13 shows the angle-domain common-image
gathers (ADCIGs) using the initial velocity model. The ADCIGs have 13 equally spaced
gathers starting at a location of 10 km and ending at 40 km with an opening angle range
between -50 to +50 degrees. The gathers show strong curvature as we go towards the right
side and the deep part of the model, indicating significant velocity errors in the model.
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Figure 11: Initial velocity model. [ER] |ali2/. vO

Early arrival FWI

The long-offset shot gathers provide an excellent opportunity for deriving the near-surface
velocity model using early-arrival waveform inversion. The recorded data have offset up to
8 km, which allow us to estimate velocity down to about 2 km. The near-surface velocity
estimation was performed using a workflow described in (Shen et al., 2012). Using first-
breaks only, wave-equation traveltime inversion (Woodward, 1989; Luo and Schuster, 1991)
was performed, using the preprocessed data with bandpass between 5 Hz and 10 Hz. After
that, using early-arrivals with the same bandpass parameters as observed data, Kinematic
Waveform Inversion (KWI)(Shen, 2014) was performed.
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Figure 12: Migration image using the initial velocity model. [NR] |ali2/. image0
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The final result of the workflow in figure 14 shows significant improvement of the near-
surface velocity model. Not only does the migrated image have much better lateral co-
herency (figure 15), but also does the angle gathers (figure 16) become much flatter
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Figure 14: Early-arrival FWI velocity model. [NR] |ali2/. v1

Low frequency TFWI

The next step is to extract the kinematic information from the reflection data. We follow
the strategy suggested by Biondi and Almomin (2014) by doing a two-stage inversion. First,
we ran TFWT on the low frequency part of the data (up to 10 Hz) with strong regularization.
Second, we run FWI starting from the low-frequency TFWI results. The regularization used
in TFWI can be equivalently applied as a preconditioning to the gradient. The precondi-
tioner strongly smooths in the horizontal direction and slightly in the vertical direction.
The preconditioning also helps avoiding overfitting the amplitude, which is undesirable in
this case due to the fact that we use an acoustic wave-equation on data modeled with an
elastic wave-equation.

The output of running low-frequency TFWI is shown in figure 17. There is a significant
decrease in velocity between 2.5 km and 3.5 km depths and an increase in velocity below
that. Also, a slow-velocity anomaly shows up around 28 km in the horizontal coordinate
and 2.8 km depth. The migration image using the low-frequency TFWTI is shown in figure
18, which shows a large improvement in reflectors continuity and amplitude compared to
figure 15, indicating better overall focusing of the events. The improvement in velocity is
also validated by flatness of reflectors as shown in figure 19.
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Figure 15: Migration image using the early-arrival FWI velocity model. [NR]|ali2/. imagel
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Figure 16: ADCIGs using the early-arrival FWI velocity model. [NR] |ali2/. adcigl
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Figure 19: ADCIGs using the low-frequency TFWI velocity model. [NR] |ali2/. adcig2

Reflection FWI

Next, waveform inversion was performed using the TFWI result as the starting model.
Since early arrivals had been used to derive the near-surface velocity model, and the near-
surface model almost did not change after TFWI, those early-arrivals were not used in
the waveform inversion here. In other words, only reflections were used as the observed
data. Consequently, the final result after waveform inversion (Figure 20) has a lot of details
of the reflectors, especially after 2.5 km depth, where the previous early-arrival waveform
inversion failed to update due to limited illumination. Thanks to the long-wavelength
components updated from TFWI, the reflection waveform inversion was able to update
the short wavelength components of the model. This is verified by better focusing of the
migrated image (Figure 21) and better flattened angle gathers (Figure 22).

CONCLUSIONS

Using the Chevron SEG 2014 synthetic dataset, we estimated the velocity model in a blind
FWI test. We first processed the data to enhance the signal-to-noise ratio by bandpassing
the useful part of the spectrum and reducing the surface related multiples using the MRKE
algorithm. Then, we estimated the velocity in three stages: early-arrival FWI, low-frequency
TFWI, and reflection FWI. The early-arrival FWI stage improved the shallow part, the low-
frequency TFWI improved the kinematics of the deep part, and the reflection FWI added the
reflection information to the model. The migration images as well as the ADCIGs indicate
that the final velocity model has successfully estimated the majority of the kinematics in the
data. However, we did not fully fit the amplitude due to the difference in physics between
the observed data and the modeling operator.
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Figure 20: Reflection FWI velocity model. [NR] |ali2/. v3
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Figure 21: Migration image using the reflection FWI velocity model. [NR] |ali2/. image3
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Figure 22: ADCIGs using the reflection FWI velocity model. [NR] |ali2/. adcig3
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Irregularly-spaced, non-stationary signals

Jon Claerbout

ABSTRACT

Of three methods to deal with nonstationary signals the most appealing is to interpolate
filters from a coarse mesh. While operators conveniently carry to a regular mesh
scattered data wvalues, scattered data signals invite techniques more akin to matrix
inversion.

INTRODUCTION

My new book, to be my final book, GIEE (Geophysical Image Estimation by Example)!
scarcely touched two important areas of application: (1) Dealing with nonstationarity by
interpolating filters from a coarse mesh, and (2) Carrying irregularly-spaced geophysical
data signals as opposed to values to a regular mesh. Here I provide some background for
these two areas. Ultimately, both problems should be handled simultaneously.

NONSTATIONARY OPERATORS

Nonstationary data are those with spectra changing in time or space. The most common
form of nonstationarity is waves changing their direction with time and space. Nonstation-
ary data usually calls for nonstationary operators. We need those to accelerate solutions,
to fill in data gaps, and to transform residuals to whiteness (IID).

Time-variable 1-D filter

My first go at nonstationarity was a time-variable PEF. Unfortunately, at the present
state of computer hardware, the method is not suitable for multidimensional data. This
method did work well in one dimension. Figure 1 shows synthetic data with time variable
deconvolution. (More details are in the document labeled “Unfinished” at my website.)

The method is simple. Every point on the signal has its own filter. Because each data
point has a multi-point filter, the PEF-design regression is severely underdetermined; but
a workable regularization is forcing filters to change slowly. I minimized the gradient with
time of the filter coefficients.

As we hope for deconvolution, events in Figure 1 are soon compressed to impulses. The
compression is remarkably good, even though each event has a different spectrum. What
is especially pleasing is that satisfactory results are obtained after truly small numbers of
iterations (roughly three). The example is for two free filter coefficients (1, a1, as) per output
point.

!Not yet available on the retail market. Available from the manufacturer at lulu.com.
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Figure 1: Time variable deconvolution with two free filter coefficients and a gap of 6. [ER]
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Dip spectra commonly vary in time and space. In multidimensional spaces, we primarily
struggle for machine memory. There, needing a filter array for each data point is abhorrent.

Patching

My second go at nonstationarity was patching. A big block of data is chopped into over-
lapping little blocks. The adjoint operation merges the little blocks back into a big block.
The inverse patching operator is easily found by passing a big plane full of ones through
the operator and back. What emerges will measure the overlap, i.e., find a bin count for
a divisor to convert the adjoint to an inverse. Weighting functions of space may also be
introduced and the inverse likewise calculated. Patching would appear to be well suited to
modern parallel computer architectures.

Patches need not be equal in size nor be rectangular. Reflection seismologists immedi-
ately recognize the need for wedge-shaped patches in the space of time and source-receiver
offset.

This method does work, but there are drawbacks. A big drawback is the many param-
eters required to specify patch sizes and overlaps. When PEF's are designed in blocks, then
care must be taken to use internal filtering and attend to the fact that output lengths are
shorter than input lengths. You live in fear that patch boundaries may be visible in your
output. The many parameters increase the likelihood of miscommunication between the
coder and the user. The many parameters also require effort and experience to tune.

Store the filter on a coarser mesh.

The first coarse-mesh filter idea is to keep the filter constant over a range of values in time
and space. Such a filter would be easily stored on a coarser mesh, so the memory devoted
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to filters could be significantly less than the data. But, this idea evokes fear the outputs
may show the blocky boundaries.

Bob Clapp (who has exercised nonstationary filtering in large-scale environments) sug-
gests we should linearly interpolate filters from the coarser mesh. It can become costly,
but economics are hard to figure in this age of rapidly changing computer architectures.
Whether or not and how the coarse-mesh-filter idea is integrated with the helix transform
is a topic that to my knowledge has not yet been attacked. The challenge for the analyst /-
coder is to produce filters interpolated from a grid in an environment that can be widely
shared among many applications and with many people.

MOVING IRREGULARLY-SPACED SIGNALS TO A REGULAR
MESH

Although we now have much experience taking data to a regular mesh bringing irregularly-
spaced scalars, for irregularly-spaced signals we must do the problem at each time point,
repeatedly solving it for each. There are, however, thousands of time points on a seismo-
gram. Yikes! We need some way of accumulating and reusing knowledge. It seems we need
something like an inverse matrix, but, that is exactly what GIEE has avoided, the reason
being to avoid hopelessly large memory requirements.

We have accomplished much by using operators (function pairs) instead of matrices
(data structures). We will soon see here that irregularly-spaced signals suggest a need for
switching from operators to sparse matrices. Often, we move irregularly-spaced data to a
regular mesh. We want the regular mesh for data viewing, filtering, correlation, and Fourier
transformation. When we have data signals instead of simply data values, it seems we must
repeatedly use the same iterative program at each point in time. But, sparse matrices might
be vastly faster. To see why, represent a large collection of least-squares regressions (N time
points), each with the same time-independent operator FTF.

FTF [mlmgmg---mN] = FT [dldgdg'--dN] = [b1b2b3'--bN] (1)

Instead of iterating the same operator at each time, efficiency might be gained by approxi-
mating (FTF)~!. How big is F? We often deal with seismogram numbers from a hundred
to a hundred thousand. Scalar data sets in GIEE range in size from a quarter to a half
million. Model spaces there are typically larger because of zero padding. Examples there
are solvable in a few minutes in desktop computers using operators. Industrial settings have
comparable numbers of signals as GIEE has values. Luckily, industrial and some academic
settings have clusters of computer cores, today numbering hundreds to tens of thousands.

Outside suggestions

I asked Michael Saunders for an approach using operators. He made two suggestions: First,
scan the research literature, and Second, consider instead sparse matrices, in particular a
technique known as sparse QR.?

2Michael Saunders recommends http://www.cise.ufl.edu/research/sparse/SPQR/ a sparse QR method
and code by Tim Davis.



100 Claerbout SEP-155

Think of a sparse matrix F; ; as a list of three columns and K rows. Each row contains
(matrix element, ¢ value, j value). Observe how to multiply a sparse matrix times a vector,
say d = Fm or d; = Zj F; jm;.

do k=1,K
data(i(k)) += matrix(k) * model(j(k))

A singular contribution of GIEE is multidimensional PEFs. Unlike gradient and Lapla-
cian, PEFs are easily invertible, offering solution via a preconditioner p in which m = A~ !p.
In the simplest case A~! would be leaky integration, trivially implemented with recursion.
Recursion allows an easy solution to these huge problems. In the QR algorithm, recursion
appears as the triangular matrix R, in the name QR.

My preliminary ideas for how to do it

In practice the model mesh may always be dense enough that linear interpolation is ade-
quate. We start from this assumption. As warm up, think about only one data signal in
2-D model space. On a first iteration, adjoint interpolation brings the data signal to its
neighboring four mesh locations. A small number of iterations brings it to the surrounding
neighborhood. When we need not fill a large region, not many iterations are required. In
practice we push all data signals to the mesh at the same time. However, each time level
requires us to solve an identical iterative problem. As there are typically thousands of time
points, those iterations get tiresome! Let us solve this problem at each of about 40 time
levels. Then let us see how we might use these results to more quickly obtain mesh values
at the remaining thousands of time levels.

Limiting calculation to the 40 time levels, consider each mesh signal separately. Cor-
relate the mesh signal with all the data signals. Select data signals with the strongest
correlation. Using only those data signals, find the coefficients defining the best linear com-
bination of data signals. Use these coefficients to define this mesh signal for all other times.
The idea of using only data strongly correlated to the mesh signal could be made more
sophisticated, and perhaps better. Limiting to 40 time points, using all data signals to fit
the mesh signal we could jettison data signals from the fitting by applying some ¢; penalty
to the fitting coefficients.

Alternate view

I would be more satisfied with this algorithm if instead of 40 time levels, it dealt with 40
time lags. But I don’t know how to put that together.

CONCLUSION

Well my friends, we have come a long way, and made much progress. I have grown old, so it
may be up to you to flesh out the theory, write the code, and produce the examples, thereby
uncovering the pitfalls. I'll try to interest some young person to take on these projects, but
don’t hold your breath.
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Iterative migration using sparseness constraints with the
hyperbolic penalty function: Application on two 2-D field
datasets

Mandy Wong and Antoine Guitton

ABSTRACT

Sparse reflectivities are obtained with iterative migration thanks to the hyperbolic
penalty function for both data fitting and model styling goals. Sparseness is achieved
by letting parts of the model treated in a ”/'-norm” sense. Comparing with a more
classical least-squares approach without regularization, the sparse-reflectivity images
have less artifacts and better defined reflectors. However, these reflectors are often
less continuous and the parameterization of the hyperbolic penalty function remains
cumbersome. The main advantages of the hyperbolic penalty function, as opposed
to other ”¢!-type” norms, is that it is convex, can behave like the ¢! or 2 norms as
needed, and can be minimized very efficiently with a fast non-linear conjugate direction
method.

INTRODUCTION

This manuscript presents the follow up of our previous work (Wong and Guitton, 2014)
on applying the hyperbolic penalty function to the iterative migration problem. Iterative
migration poses the imaging problem as an inversion problem. Instead of applying the
migration operator, which is regarded as the adjoint to the forward modeling operator,
iterative migration aims to apply the inverse of the forward modeling operator to recover
the reflectivity series of the subsurface. Due to the size of the problem, iterative migration
is usually performed iteratively using gradient based techniques. Many studies have shown
that the least-squares iterative migration image has fewer migration artifacts, better rela-
tive amplitude information, and higher resolution than the corresponding migration image
(Clapp, 2005; Valenciano, 2008; Wong et al., 2012). In Wong and Guitton (2014) and for
iterative migration, we used the hyperbolic penalty function (HPF) in the regularization
term to recover a sharp and sparse reflectivity model in a 1D synthetic example. In addi-
tion, we have shown that when data are contaminated with non-Gaussian noise (e.g, noise
bursts, spikes), the HPF for the data-fitting part is more robust in recovering the reflectivity
series. The HPF with the correct parameterization for measuring data and model misfits is
often a better choice than the standard ¢ norm because it varies smoothly between the ¢2
norm for small residuals and ¢! norm for high residuals. Therefore, the HPF can be made
robust to outliers present in the data and can help build sparse models. Being convex, a
fast solver based on a non-linear conjugate direction method can be used to minimize the
HPF efficiently (Claerbout, 2014).

We apply iterative imaging on two 2D field data examples using a HPF solver to get
sparse reflectivity series and a ¢2 solver for our more traditional least-squares migration
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results. Note that both solvers use the previous search direction and the current gradient
to find the optimal search path (Claerbout, 2014). The first dataset covers the region of
a layered earth. The second dataset is located in a region with a salt structure. Inversion
results with both datasets show that the iterative migration results with the HPF in the
regularization term are sparse, with less migration artifacts and better signal content than
their least-squares migration counterparts. These results rely heavily on our ability to
select a judicious set of parameters controlling the ¢2/¢! behavior of the HPF, as well as
the strength of the regularization term.

In this paper, we begin by introducing the HPF and the objective function we are
minimizing. Next, we discuss the objective functions used in this study. Then we show
with 2D field data examples how the iterative migration performs with the ¢? and HPF
solvers.

THEORY

We now present the hyperbolic penalty function and its main properties, as well as the
objective functions used in this study.

Hyperbolic Penalty Function

The HPF (Claerbout, 2014) is a convex penalty function that varies smoothly from ¢? to
¢*. Equation (1) below presents the HPF, H(r), and its derivatives:

) =TT R, )

where ¢ is a constant that scales the residual r. The first derivative, H'(r), behaves like the
first derivative of the #2 norm at small |51 At large |Z], it behaves as the first derivative
of the ¢! norm. In practice, the factor g is often taken to be the value of some percentile
of residual magnitudes. Its value determines what part of the residual is treated as ¢! and
what part is treated as 2. The HPF is minimized with a non-linear conjugate direction
solver and is described in details in Claerbout (2014), Chapter 6.

Objective Function

In iterative migration, we expect the reflectivity model to be made up of a series of sharp
and sparse signals. The basic objective function using the ¢ norm is:

Sa(m) = [W (Lm — d) |3, (2)

where L represents the Born modeling operator acting onto the reflectivity model m, and
d is the observed data. W is a data weighting function.

To promote the sparseness in the reflectivity model m, we include a model-styling goal
using the hyperbolic penalty function as measure of fitness. The desired objective function
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Sppr(m) becomes:

where Hy and H,, are HPF's for the data-fitting and model-styling goals, respectively. Three
constants need to be chosen in equation (3): two thresholds values g4 and g, that regulate
the transitioning behavior between ¢? and ¢! in the HPF, and e that tunes the relative
strength of the regularization with respect to the data-fitting goal.

After inspecting the two datasets, we concluded that no large spikes or bursts are present
in the data. Therefore, we selected a large value for g4 such that the data-fitting function in
equation 3 is effectively measured by the ¢? norm. For simplicity, we will refer the inversion
using equation 3 as the HPF iterative migration.

FIELD DATA EXAMPLES

The two 2-D datasets selected in this study were extracted from a 3-D survey carried out
in the Gulf of Mexico. The maximum offset is about 4 km with a shallow water bottom at
500 m. This region has significant anisotropy (Li et al., 2014). Since we are using isotropic
modeling, and considering that other physical processes are ignored (e.g., attenuation), we
don’t expect to fit all the information contained in the data.

We corrected for the 3D spherical spreading effects so that the data can better match the
amplitude of the 2D modeling and migration operators. We apply the iterative migration
in two regions: a sedimentary environment, and a region with a salt body. The inversion of
these traces with and without HPF regularization, are presented here.

Sediment velocity model

Figure la shows a shot gather from the ExxonMobil data in the sediment area. This
area contains mostly horizontally stratified layers with strong amplitudes recorded from
shallower reflections. As a result, we apply a diagonal data weighting (Figure 1b) in the
iterative migration to emphasize the reflection energy from the deeper part of the model.
Also, the data weighting excludes the direct arrival and head waves.

Figure 2a shows the migration velocity model. The velocity values increase from 1500
m/s to 4000 m/s in depth. There is a fault cutting diagonally across the model starting
from a depth of 2000 m. Figure 2b shows the reverse-time migration (RTM) image. Figure
3a shows the inverted image using least-squares reverse time migration (LSRTM) after 12
iterations of conjugate gradient algorithm. Equation 2 shows the objective function for
LSRTM. When compared to the RTM image, we clearly see the increased bandwidth of the
inverted image (deconvolution effect). Some of the weaker reflectors become more apparent
over iterations as shown in the annotation. However, the inversion tends to boost migration
artifacts as well, thus increasing the overall noise level in the image.

Figure 3b shows the inverted image at iteration 20 using the hyperbolic penalty function
(Equation 3) for e = 0.00125 and g¢,,, = 12.5. The model-styling term in the objective
function has enforced sparsity in the reflectivity solution. The addition of the sparseness
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constraints helps attenuate the artifacts in the shallow region that we could see in the least-
squares migration result. However, the sparseness constraint tends to make some reflectors
less continuous.

Figure 4a shows one shot gather from the input data. After 1 iteration, the data residual
from LSRTM (Figure 4b) and HPF iterative migration (Figure 4b) drops significantly. At
iteration 12, the least-squares migration data residual (Figure 4c) drops slightly with the
stronger reflection energy being less coherent. Figure 4f shows the data residual from HPF
iterative migration at iteration 20. Due to the presence of the model styling goal, the data
fitting is a little bit less than the one in Figure 4c.

Figure 6 shows the normalized power spectra in the z-direction for the RTM, LSRTM,
and HPF iterative migration images. Since the amplitude scale between migration and
inversion images are different. We normalized the amplitude of the power spectra by scal-
ing the maximum value to 1. We then converted the normalized amplitude into decibels.
Notice that, with iterative inversion, the LSRTM and HPF spectrum becomes more white,
especially in the higher and lower frequency range. The LSRTM spectrum shows a higher
frequency content than the HPF one probably due to the increased noise content. In the
HPF inversion, the high frequency noise is suppressed. The relative amplitude in the range
of kz = 0.004 — 0.012 is higher than that from LSRTM.

Choosing epsilon and threshold values

Figure 5 shows 9 inverted images from the HPF iterative migration using different ¢ and
gm values for the sediment case. As expected, by increasing g., for a constant € the images
become less sparse because more parts of the images are treated in a ”¢? norm” sense and
less in a ”¢' norm” sense. Similarly, increasing € for a constant g,,, the images get more
sparse due to the increased influence of the regularization term in the objective function
(equation 3). Our selection of both parameters as our best result is based on two criteria:
data fit comparable to the LSRTM result and sparseness content. The later can be quite
subjective and left to the interpreter’s opinion. A more systematic procedure would be
preferable with larger 3-D datasets.

Sediment velocity model with salt

Now, we study a 2D line that cuts across a salt body. Figure 7a shows a shot gather. There
are strong and fast refraction events that come from the top of salt layer. Similar to the
sediment case, a diagonal data weighting (Figure 7b) is used in the iterative migration.
Figure 8a shows the migration velocity model. The velocity value in the sediment layer
increases gradually with depth. The salt body is shown in red with a velocity value close
to 5000 m/s. Figure 8b shows the RTM image in this region. There are low-frequency
artifacts above the salt body due to the application of the imaging condition to waves, in
the receiver and shot wavefields, traveling in the same directions. The shallower reflectors
are not well imaged due to the lack of illumination. In addition, there is a large amount
of noise (coherent or spurious) within the salt body. These artifacts are better suppressed
in the LSRTM image (Figure 9a) after 20 iterations. However, the shallow region remains
noisy. With HPF iterative migration (Figure 9b), the above mentioned artifacts are better



SEP-155 Iterative migration with HPF 105
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Figure 1: Input data for iterative migration in the sedimentary region. (a) is a shot
gather. Notice the amplitude of the earlier reflection is much stronger than the deeper
reflection. Therefore, (b) shows the data-weighting function used in the inversion to boost
up the energy from the deeper part of the subsurface. The weighting function is also de-
signed to exclude the direct arrival and head waves from the data-fitting part. [ER|]
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suppressed. The annotation highlight regions where the HPF image has fewer noise as
compared to the LSRTM image. The HPF iterative migration image was generated using
20 iterations, a weighting value of ¢ = 0.005 and a model-styling threshold of g,, = 25.

Figure 10a shows one shot gather from the input data. After 1 iteration, Figure 10b and
10c show the data residual from LSRTM and HPF iterative migration, respectively. Figure
10e and 10f show the corresponding data residual at iteration 20.

Figure 11 shows the normalized power spectrum in the z-direction between the RTM,
the LSRTM, and the HPF iterative migration images. Notice that, with iterative inversion,
the LSRTM and HPF spectrum becomes more white, especially in the higher and lower
frequency range. There are higher frequency noise in the LSRTM, which are better sup-
pressed with HPF iterative migration. We can see that the HPF image has an overall flatter
spectrum as compared to the LSRTM image. The relative amplitude of the HPF image in
the range of kz = 0.004 — 0.012m ™! is higher than that from LSRTM.

DISCUSSION

Overall, we oberve that the HPF iterative migration can suppress migration artifacts in the
image. However, the spareness constraint tends to make some reflectors less continuous. One
way to improve on the current result is to add a geophysical regularization term that enforces
the continuity of amplitude along the reflectors. This require an estimation of the reflector’s
dip everywhere in the image and additional tuning parameters for the regularization term.
A companion paper by Ma et al. (2014) has investigated the affects of including geophysical
regularization in the iterative migration problem.

CONCLUSION

We compare inversion results of iterative migration using the classical least-squares norm
and the hyperbolic penalty function. Reults from 2D field data examples show that using
hyperbolic penalty function with model-styling can enforce sparsness in the image model.
The sparse-reflectivity images obtained from hyperbolic penalty function iterative migration
have less artifacts and better defined reflectors as compared to the LSRTM image. However,
reflectors from the hyperbolic penalty function image are often less continuous and the
parameterization of the hyperbolic penalty function remains cumbersome.
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Figure 2: (a) The migration velocity model and (b) the RTM image. [CR]
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(a) L2 data—fitting
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Figure 3: (a) LSRTM image using the ¢? data-fitting objective function (equation 2) after
12 iterations of conjugate gradient algorithm. (b) The HPF iterative migration image using
the 2 data-fitting with HPF model-styling objective function (3) after 20 iterations. [CR]
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Figure 4: (a) and (d) shows one shot gather from the input data. The data residual from
the same shot gather after (b) 1 iteration and (c) 12 iterations from LSRTM. The data
residual from the same shot gather after (e) 1 iteration and (f) 20 iterations from the HPF

iterative migration. All figures are clipped at the same level. [CR] |mandy1 /. figd-resid
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Figure 5: Inverted images from the HPF iterative migration using different ¢ and model-
styling threshold values (g.,). Images from a common column use the same e while images
from a common row uses the same g,,,. Panel A was selected as the HPF iterative migration
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Figure 6: The normalized power spectrum in the z-direction for the RTM image, LSRTM
image, and HPF iterative migration image from the first dataset. Iteration inversion
raise the higher and lower end of the spectrum as compared to migration. [CR]
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Figure 7: Input data for iterative migration in the salt region. (a) is a shot gather. The
amplitude of the earlier reflection is much stronger than the deeper reflection. Therefore,
(b) shows the data-weighting function used in the inversion to boost up the energy from
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Figure 8: (a) The migration velocity model and (b) the RTM image. [CR]
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(a) L2 data—fitting
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Figure 9: (a) The LSRTM image using the ¢2 data-fitting objective function (equation
2) and (b) the HPF iterative migration image using the ¢? data-fitting with HPF model-
styling objective function (3). Both inversions uses 20 iterations of the conjugate gradient
algorithm. [CR] |mandy1/. figd-inv-salt
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Figure 10: (a) and (d) shows one shot gather from the input data. The data residual from the
same shot gather after (b) 1 iteration and (c) 20 iterations from LSRTM.The data residual
from the same shot gather after (e) 1 iteration and (f) 20 iterations from the HPF iterative
migration. All figures are clipped at the same level. [CR] |mandy1 /. figl0-resid-salt
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Figure 11: The normalized power spectrum in the z-direction for the RTM image,
LSRTM image, and HPF iterative migration image from the second dataset. [CR]
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Application of the up-down separation using PZ calibration
filter based on critically refracted waves

FEttore Biondi and Stewart A. Levin

ABSTRACT

On marine multicomponent data we may apply PZ summation to separate the up-going
and down-going wavefields. We show an example of this procedure for an ocean bottom
nodal (OBN) dataset, where we perform an acoustic decomposition that gives the up-
and down-going pressure fields in the water. To design the necessary calibration filters,
we target long-offset refracted waves that contain purely up-going energy. After the
acoustic separation, we adaptively subtract the down-going wavefield from the original
pressure component. The quality of the separation achieved demonstrates that the
calibration filters obtained from the long-offset waveforms were effective in decomposing
almost all the events present in each gather.

INTRODUCTION

When dealing with multicomponent ocean bottom acquisition (OBN), where both the parti-
cle velocity vector and pressure are measured, a fundamental preprocessing step is wavefield
up-down separation. In the context of wavefield separation of ocean bottom data, there are
two possibilities (Schalkwijk et al., 1999). If we perform an acoustic decomposition, we
obtain the down-going pressure just above the ocean bottom, and the up-going pressure
just beneath the ocean bottom surface. Alternatively, with an elastic decomposition, we
separate the up-going and down-going P- and S-waves just beneath the ocean bottom.

After such wavefield decomposition of the OBN data, the result can be used in further
processing. For instance, source signatures can be estimated from the down-going wavefield
after source static corrections are applied (Wong and Ronen, 2009). It is also possible
to apply up-over-down deconvolution to attenuate all free-surface multiple (Grion, 2010).
Furthermore, having a decomposed pressure wavefield leads to a better mirror imaging or a
joint least-square inversion of up- and down-going signals (Grion et al., 2007; Wong et al.,
2010). These examples are only few applications where we need the decomposition of the
wavefield, underscoring the importance of doing this processing step when dealing with
ocean bottom acquisition.

There are many different published methods for performing PZ summation (Sonneland
et al., 1986; Barr and Sanders, 1989; Amundsen, 1993). In our application, we proceed with
an acoustic decomposition of the pressure field performed in the physical (t-x) domain of an
OBN acquisition. Usually, there are differences in coupling and instrument response of the
measuring devices. Therefore, the data must be properly calibrated before the pressure (P)
and the vertical velocity (Z) components can be combined. We follow the PZ summation
algorithm developed by Melbg et al. (2002) where the necessary calibration filter is computed
by minimizing the energy of the resulting down-going wavefield within a manually picked
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window tracking critically refracted waves. We start showing the result of the elimination
of the instrument response of both the pressure and vertical velocity components. Then,
we explain how the PZ summation algorithm works, and show the results. Finally, we
present the result of the adaptive subtraction procedure developed by Alvarez and Guitton
(2007) subtracting the down-going pressure obtained from the PZ summation method to
the original P component. We applied the acoustic decomposition to all the receivers of the
line. Here, we report the result of a representative common-receiver gather belonging to
the inner portion of the recording line. Our result demonstrates that the calibration filter
based on the long-offset refracted arrivals can be used to separate the energy for all the
offset range.

RECEIVER IMPULSE RESPONSE DESIGNATURE

The OBN dataset was recorded in the North Sea and appears in our data library under the
name Moere Vest. We worked with a 2D survey composed of 179 multicomponent receivers
with a minimum receiver interval of approximately 250 meters (m) and a maximum of 10
kilometers (km). The source interval was approximately 100 m. The inner portion of the
line has the fine receiver interval; only at the two ends does the increase to approximately
10 km (see Alves (2014) for all the dataset details).

Figure 1 shows the P and Z components of the representative common-receiver gather,
bandpassed to the frequencies contained in the sources. In this figure, you can clearly see the
direct arrival and its free-surface multiples, indicated by the green arrows, with periodicity of
approximately 2 seconds (s). On this dataset, a debubbling procedure has not been applied
and source reverberations are evident. Thanks to the available long offsets, it is possible to
observe refracted waves starting at approximately 8 km offset. It is interesting to note the
sea-surface multiple of the first refracted arrival centered around 7.5 s on the right side of
both components. In addition to these events, a clear primary reflection appears at 2.5 s
(pointed by the red arrow). All these events help us understand the result of the wavefield
decomposition because they can be easily divided between up- or down-going arrivals. Both
components contain the same events except for some water reverberations and shear-wave
induced events present in the recorded vertical velocity. However, the different instrument
responses cause the equivalent arrivals in the two components to have amplitude and phase
differences (compare the direct arrival and its first multiple or the primary reflection at 2.5
s). To compensate for these differences, it is necessary to correct for the different impulse
responses of the measuring devices.

Fortunately, we were provided with impulse responses of the deployed hydrophone and
geophone. Figure 2a displays the time impulse responses for the hydrophone and the geo-
phone, on the right and left respectively. One curious feature of these responses is their
noncausality, which is caused by the correction for the linear phase shift introduced by the
the antialiasing filter during the recording of the data. Looking at the amplitude spectra
responses (Figure 2b), we see that the effect of the receiver impulse response designature
boosts the low frequencies for both components. Regarding the phase instrument spectra,
shown in Figure 2c, it is possible to see that the phase correction for the geophone affects
wavelet shapes more then the correction for the hydrophone. Figure 3 shows the comparison
of the amplitude spectra before and after the receiver impulse response correction for both
components. In the case of the hydrophone, the frequencies up to 4 Hertz (Hz) have been
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Figure 1: Portion of a common-receiver gather of the Moere Vest OBN dataset. (a) Pressure
component of the data. (b) Recorded vertical velocity. In both components there are visible
free-surface multiples of the direct arrival with a periodicity of approximately 2 s (indicated
by the green arrows). Focusing attention on the near-offset events, it is possible to see one
primary reflections centered around 2.5 s (indicated by the red arrow). As expected, the
vertical component contains the same events as the recorded pressure, except for a very
low energy water reverberations and shear-wave induced noise. However, looking at the
gathers carefully, it is possible to see amplitude and phase differences between equivalent
arrivals in the two components. This effect is caused by the different instrument response
and coupling of the measuring devices. [ER] |ettore1 /. orighy Ant,origzAnt
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Figure 2: Comparison of the instrument responses of the hydrophone (right panels) and of
the geophone (left panels). (a) Instrument responses in the time domain. (b) Amplitude
spectra of the responses of the measuring devices. (c) Phase spectra of the instrument
responses. It is interesting to point out the noncausality of both instrument responses.
This nonphysical feature is present because the data has been previously corrected for the
linear phase shift of the antialiasing filter (approximately 60 ms), and it has been taken into

account in the computed instrument responses. [ER] ’ettorel /. time,amp,phase
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Figure 3: Comparison between the amplitude spectra of the pressure (a) and vertical
(b) components before and after the instrument impulse response designature. The re-
ceiver designature boosts the low frequencies in both the components of the data. [ER|]
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noticeably boosted; while for the geophone, the correction has enhanced frequencies up to
approximately 9 Hz.

Comparing equivalent events present in both the components of the representative
common-receiver gather after the receiver response designature, affirms that indeed, this
preprocessing procedure eliminated most of the amplitude and phase differences between
the recorded P and Z (Figure 4). Now, the P and Z components behave according to what
theory predicts: the direct arrival and free-surface multiples in the pressure have opposite
polarity respect the same events in the Z component. Instead, the refracted first breaks
and primary reflections have the same polarity on the two components (e.g., the reflection
centered at 2.5 s).

UP-DOWN SEPARATION THROUGH PZ SUMMATION

Having compensated for the different instrumental impulse responses, we now have to cor-
rect the data for the coupling effect that still affects our data. This correction is conducted
by means of a calibration filter a(f) applied to one of the two recorded components, which in
our case, is the vertical velocity. Using this filter for performing the acoustic decomposition,
the up- and down-going pressure wavefields can be expressed as follows:

Pupld.) = 5PUK) + ) g Z1.8), (1)
and
Paon(f.1) = 5 P8 = al£) 5 s Z(1.8), &)
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Figure 4: Close-ups the common-receiver of Figure 1 after the the receiver response desig-
nature. The correction for the different responses of the instruments makes the up-going
events (e.g., refracted and diving waves) in the pressure (a) and the vertical (b) components
more similar, and down-going events (e.g., the direct arrival and free-surface multiples) to

have the opposite polarity. [ER] ‘ettorel /- desighy,desigz‘
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respectively, where P is the pressure, f is the frequency, k is the horizontal wave-number,
Z is the vertical velocity component, p is the density of the water, and ¢ is the vertical
slowness in the water layer. This last factor is related to the ray parameter p with the
following relation:

Q(fa k) =/c? _p2(f’ k)v (3)

where ¢ is the velocity of the water at the receiver position. These equations hold for
common-shot gathers, but it is possible to use them for decomposing wavefields in common-
receiver gathers (Schalkwijk et al., 1999). The calibration filter a(f) is found by minimizing
the energy of the down-going pressure (Eq. [2]), in a least-squares sense, in a window
containing only up-going events.

In our application, we manually picked a window tracking refracted waves before the
first refracted multiple events. In particular, we picked a window of approximately 1 s of
the long-offset refracted waves between 11 km and 15 km. To find the calibration filter, we
computed a Wiener shaping filter that shapes the Z component wavelets to the wavelets of
the pressure wavefield within the picked window. As a result, such a filter also incorporates
the density and slowness factors of Equations (1) and (2). The density factor does not vary
for all the receiver gather. Instead, the vertical slowness varies both in frequency and wave-
number (or time and offset in the physical domain). Inside the window, we can assume that
the slowness factor to be constant, and we can easily compute it using the slope of the first
break refracted arrivals. To simplify the computation of the varying vertical slowness in the
rest of the gather, we calculated the local slowness of the events inside the gather using a
constant water velocity model with the vertex of the first hyperbola centered at the apex
time of the direct arrival. Above the direct arrival, we use the slope of the refracted waves
for all the other events. In addition, the vertical slowness is considered to be local, and such
assumption allows us to use it as a multiplicative factor in the physical domain. Without
this assumption, it would be a bidimensional convolution in the offset-time domain.
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Figure 5: Frequency response of the calibration filter with 41 coefficients obtained from the
long-offset refracted waves. (a) Amplitude spectra of the filter. (b) Phase spectra of the
filter. [ER|] ’ettorel /. filteramp filterphase
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Figure 5 shows a plot of the amplitude and phase frequency response of the calibration
filter with 41 coefficients. The plot clearly shows that the filter varies with frequency.
Therefore, the coupling differences between the two components are not related to a simple
scalar amplitude factor. In fact, the result obtained only with a constant calibration factor
in Melbg et al. (2002) demonstrated the limitations of such white spectra filter.

In Figure 6, we display the result of the PZ algorithm after calibrating the Z component
of the reported receiver with the filter of Figure 5. In the down-going wavefield, most of
the up-going energy has been attenuated; indeed, the primary reflection at 2.5 s has almost
completely vanished. Furthermore, the primary refracted events are separated and present
in the up-going pressure wavefield; whereas, the free-surface multiples of the critically re-
fracted waves are present only in the down-going component. In the up-going pressure, it
is now possible to identify two distinct primary reflections, one at 1.9 s and the other at
2.5 s. The leftover down-going energy still present in the up-going wavefield is cause by the
fact that we performed an acoustic separation where we are obtaining the up-going pressure
just beneath the sea bottom (Grion, 2010).

To improve the result for the up-going wavefield, and, therefore decrease the leakage
of down-going energy into it, we adaptively subtract the down-going pressure of Figure 6b
from the original P component of Figure 1a. The adaptive subtraction was conducted with
the algorithm developed by Alvarez and Guitton (2007) using a five-coefficient temporal
matching filter applied to all the data in the gather. Comparing the up-going pressure
obtained with the PZ algorithm with the same wavefield conducted using the adaptive
subtraction (Figure 7), after performing the hyperbolic moveout (HMO) correction with
water velocity, it is clearly visible that the adaptive subtraction routine further attenuated
the direct arrival and its bubble pulses.

It is interesting to see the down-going pressure wavefield after applying the HMO cor-
rection with water velocity (Figure 8). The direct arrival and its bubble become flat and
easily detectable. Although some energy of the primary events leaks into this wavefield,
because of the simple slowness model and the local approximation used, it is possible to
distinguish up to 12 pulses of the source. This wavefield is indeed a point of departure for
the source estimation and further processing, such as the debubbling of the data.

To evaluate the quality of the wavefield separation for the other receivers, in Figure 9
we show the costant-offset section at approximately 0 km offset. In the up-going pressure
field section, obtained with the adaptive subtraction algorithm, the direct arrival and its
reverberations are attenuated for all the shown receivers. The two primary reflections
previously highlighted are evident and it is possible to follow their trend along the acquisition
line. In addition, in the down-going wavefield section the free-surface multiples of the two
reflections are visible, albeit they have a lower amplitude.

CONCLUSIONS

We performed an acoustic decomposition of the wavefield of OBN data using a PZ summa-
tion algorithm based on calibration filters computed from the critically refracted waves. To
compensate for the different impulse responses and coupling of the recording devices, we
first proceeded with an instrument response designature for both the components. After
that, we picked a window containing only up-going refracted waves and design a shaping
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Figure 6: Output of the PZ summation having applied the calibration filter of Figure 5 to
the vertical component. (a) Up-going pressure wavefield just beneath the ocean bottom. (b)
Down-going just above the ocean bottom. Most of the energy is well separated, especially
for the down-going wavefield where most of up-going refracted arrivals are attenuated. Note
that the multiple of these events are present only in the down-going pressure. Because we
are performing an acoustic decomposition, some of the energy of the down-going waves is
still present in the up-going wavefield. Despite that, the two primary reflections centered
about 1.9 s and 2.5 s are only present in the up-going pressure. [ER|] ‘ettorel /. up,down
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Figure 7: Result of the adaptive subtraction of the down-going wavefield of Figure 6b
from the pressure component of Figure 4a after the hyperbolic moveout (HMO) correction
with a water velocity of 1,475 m/s. (a) Close-up of Figure 6a after the HMO correction.
(b) Resulting up-going pressure using the adaptive subtraction developed by Alvarez and
Guitton (2007). In the up-going wavefield obtained with the adaptive subtraction routine,
the direct arrival and its bubble is clearly attenuated. [ER] ‘ettorel /. hmo,hmol‘
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Figure 8: Close-up of the down-going pressure of Figure 6b after the application of the
HMO correction. Looking at the direct arrival, it is possible to see 12 pulses of the source
on the near offsets. The leakeage of up-going energy (e.g. refractions at about 4 km offset)
it is caused by the simple slowness model and the local approximation considered in the PZ
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Figure 9: Comparison between constant-offset sections for the up- and down-going wave-
fields at approximately zero offset. (a) Constant-offset section of the down-going pressure
field. (b) Constant-offset section of the up-going wavefield obtained with the adaptive
subtraction. In the top panel, the two events around 1.9 and 2.5 are primary reflections.
It is possible to see their trend along the acquisition line. Instead, in the bottom panel
the direct arrival and its first free-surface multiple are clearly visible. In addition, in this
section are present the two first multiples of the mentioned primary reflections. [CR|]
‘ ettorel/. const-off1,const-off
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filters necessary for the calibration of the recorded vertical velocity. After performing the
PZ summation step, having separated the pressure into up- and down-going energy, we im-
proved the result of the up-going wavefield by employing an adaptive subtraction scheme.
Our result demonstrates that the designed calibration filters were effective in decompos-
ing almost all the events for all the offsets. In addition, the up-going wavefield obtained
through the adaptive subtraction is less contaminated by the leakage of the down-going en-
ergy respect the same wavefield conducted using only the PZ summation algorithm. These
two decomposed pressure fields enabled us to performing further processing, such as source
signature estimation and debubbling.
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Geophysical application of hyperbolic and hybrid L1/L2
optimization

Yinbin Ma, Musa Maharramov and Biondo Biondi

ABSTRACT

Hyperbolic penalty function method and hybrid L1/L2 methods, often generate better
results than conventional least-squares solutions for inverse problem in geophysics. We
apply a few hyperbolic and hybrid L1/L2 methods to 2-D Kirchhoff migration inversion
and target-oriented linearized waveform inversion. The results demonstrate that we
can recover a sparse/blocky model using hyperbolic and hybrid L1/L2 methods with
acceptable computational cost.

INTRODUCTION

Ll-norm optimization often yields more robost results compared with conventional least-
squares optimization (Claerbout and Muir, 1973; Darche, 1989; Nichols, 1994; Guitton,
2005). Different algorithms for hyperbolic penalty function (HPF) optimization or L1/L2
hybrid optimization problems exist. All such algorithms require fine tuning of extra compu-
tational parameters. The computational cost and quality of results depends on the quality
of parameter tuning. One concern is the physical interpretation of these parameters. An-
other concern is the cost of the solvers, as the extra computational cost associated with
these techniques may not be justified by the improvement in the results. In this paper, we
evaluate several hyperbolic and hybrid L1/L2 solvers.

We use several different solvers in our paper: least-squares with conjugate gradient
(CGLS), iterative reweighted least squares (IRLS), Split-Bregman (Goldstein and Osher,
2009), Hyperbolic penalty function (HPF) with conjugate directions (Claerbout, 2009; Li
et al., 2010; Zhang and Claerbout, 2010). We use IRLS and Split-Bregman methods when
the objective function contain both L2-norm and L1l-norm, and we call them L1/L2 hybrid
methods. To characterize the performance, we first run a few iterations of least-squares
methods, obtain the data residual and set it as threshold. Then we run L1 based techniques
(HPF, IRLS and Split-Bregman) until the data residuals are below the threshold. The
quality of inversion results and computational costs are then analyzed.

We test the solvers on several geophysical examples. First, we apply them to 2-D
regularized Kirchhoff migration-inversion. The results show that hyperbolic and hybrid
L1/L2 methods can recover the original model within acceptable amount of computation
cost. Next, we apply the solvers to target-oriented linearized waveform inversion. We solve
the problem described in Zhang and Claerbout (2010). Along with replicating the hyperbolic
penalty function method result, we implement several other hybrid methods. While it is
shown that hyperbolic and L1/L2 hybrid methods deliver significant improvement, we can
not get pleasing results. We add a new Lj-based regularization term and produce better
results.
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METHOD

The general form of objective function we try to minimize has the following form:

Tm) = [Fm —dJ2 + 5 |Am2,,,,. 1)
The first term in the objective function is the data fitting term, and the second term is
model regularization. Operator A can be an identity matrix if the model is sparse, and
can be a total variation operator if the model is blocky. The second term is necessary
in geophysical inverse problems, because we may have insufficient data. Even if we have
sufficient data, we still want to keep the regularization term, because real data contains
high amplitute burst noise, and overfitting the data may lead to inaccurate results in this
case.

We use CGLS, IRLS, the Split-Bregman and Hyperbolic penalty function (HPF) with
conjugate direction methods to solve the optimization problem with different norm (or
penalty function).

We first use conventional least-squares solver CGLS. The regularization term is in Lo-
norm, which means the objective takes the form,

1 €
J(m) = 2 |Fm —d|}} + 5 [ Am]. @)

Next, we implement a solver using hyperbolic penalty function (HPF), developed by Li
et al. (2010) and Zhang and Claerbout (2010) . The solver solves

1 €
J(m) = §||Fm—dH§+§IIAmHHB, 3)

where the second term is replaced by a nonlinear HPF ||r|| ;5 = Vr? + R?—R, where R is the
threshold parameter. The penalty function approaches L1-norm as r > R, and approaches
L2-norm as r <« R. While using the HPF, the problem becomes nonlinear. Claerbout
(2009) generalized the idea of the Conjugate Direction method for HPF optimization. At
each step, we search the new direction in the plane spanned by the current gradient and
the previous step. In this case, we need to solve the new direction by iterative methods. In
the case of linear optimization, we can obtain the new direction directly. The detail of the
method has been explained previously (Li et al., 2010; Zhang and Claerbout, 2010).

We also explore the behavior of solvers when the model styling term is L; norm as in
equation (4). We use two different solvers, IRLS and the Split-Bregman method. Both
methods are designed to solve the minimization problem of equation (4),

1
J(m) = gHFm—d!@JrE\\Am\\l- (4)

IRLS is an iterative method and at each step we solve a weighted least-squares. For the
second term, the residual is now expressed as r = W,Am. Where diag(W;); = |rj]~%5.
It can be found that |r||, = ||[Aml]|,. Numerically, we minimize the following objective
function using CGLS:
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1
Jm) = 5 [Fm — |} + = [ WeAm]3. 5)

After a few number of CG steps, we recalculate the weight function Wy, and continued
minimizing the new objective funcion. It is easy to see that, upon convergence, the m we
obtained from equation (5) approaches the solution to equation (4).

We also implement an algorithm named the Split-Bregman method. The Split-Bregman
method tries to minimize equation (4) by minimizing the following objective function:

1 P
J(m,z) = 5I\Fm—d\|§+§HAm—ZII§+€IIZII1- (6)

With traditional optimization methods, we need to solve the problem with increasing p,
and as p — oo the solution converges to the original problem equation (4). Goldstein and
Osher (2009) have designed the Split-Bregman method that could solve equation (6) with
fixed p. They proved upon convergence we obtain the solution to equation (4). The Split-
Bregman method is similar to alternating direction method of multipliers (ADMM) (Boyd
et al., 2011).

To minimize equation (6) numerically, they introduce an additional parameter b, and
solve the following steps iteratively:

.1 p
(m.2) = min{ ] [Fm — [} + Azl + 2 2~ Am B3], ™

b+ b+ (Am — z). (8)

Where equation (7) are solved iteratively via:

1
Step 1 :m:min{iﬂFm—ng—FgHz—Am—b||§}, 9)
Step 2 :z:min{)\HzHl—i—%Hz—Am—bH%}. (10)

When the algorithm converges, from equation (8) we will have Am — z — 0. The solution
for the objective function in equation (6) converges to the solution for equation(4).

KIRCHHOFF MIGRATION INVERSION RESULTS

Kirchhoff migration involves the summation or spreading along travel time surfaces. It is
well known that when we have insufficient data, the Kirchhoff migration does not yield good
results because of data aliasing. To overcome this problem, we add geophysical constraints
to our objective function and reduce the effect of aliasing. For simplicity, we use the
Kirchhoff time migration as an example in this section, to test different solvers. The HPF
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Figure 1: Kirchhoff migration data. (a): with sufficient sampling; (b): with insufficient
sampling. [ER] ‘yinbinl /. kirchForward, kirchFSample

method has been tested on Kirchhoff migration in the previous work (Li et al., 2010). To
be consistent, we use the same operator and same model. We formulate our problem as

Fm ~ d (11)
Am =~ 0, (12)
to be consistent with the notation in the previous section. F = SK, where K is the

Kirchhoff modeling operator, and S is the subsampling operator. m is reflectivity, and d
is data recorded at the surface. A is regularization operator, and in the current example,
A =1 as the model is reflectivity and it is sparse.

We choose the model space sampling to be 128 x 128, and subsampling data space to
be 128 x 16, exactly the same as previous work (Li et al., 2010). As seen in Figure 1, the
foward modeling operator maps the spikes in the model space to a series of hyperbolas in
the data space if we have enough sampling points (Figure 1(a)), and it is aliased in our
setting because we have insufficient data sampling (Figure 1(b)).

We solve the optimization problem with the four different methods mentioned in the
previous section. First, we use the CGLS method for equation (2) with parameter € = 0.1.
We run the algorithm for 50 CG steps, and reduced the data residual from 60.93 to 0.33 (~
0.54%). Next, we run HPF with equation (3), and successful reduce the data residual to the
same level using 408 CG steps. Then, we run IRLS and Split-Bregman method for equation
(4). We are able to match the data residual using 330 CG steps for IRLS and 417 CG steps
for Split-Bregman. We can see the inversion results from different schemes in Figure 2,
and the reconstructed data (Figure 3). The quality of inversion is greatly improved using
hyperbolic and hybrid solvers. The additional computational cost is acceptable considering
the improvement of inversion results.

We want to emphasis that we do not find optimized parameters for each solver. Thus, we
cannot make a conclusion about comparison between different hyperbolic or hybrid solvers
based on our numerical results.
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LINEARIZED WAVEFORM INVERSION RESULTS, PART 1

The target-oriented linearized waveform inversion has been explored in several previous
works (M. Clapp and Biondi, 2005; Valenciano, 2006; Tang, 2008). The idea is from full
waveform inversion(FWI) problem,

Lm ~ ddata- (13)

We multiply L’ on both side and obtain the normal equation as follows:

Hm ~ my,;, (14)

where H = L'L is the Hessian operator, and Mpig = L'dgata is called migrated data.
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Figure 4: (a) Reflectivity model;  (b) input migrated image. [ER]

| yinbinl/. refl-imaging,data-imaging-mig |

The Hessian operator map vectors from the same model space, and we can view it as
a convolution operator. It has been shown (Tang, 2008) that the Hessian operator is very
sparse and we can afford to save the matrix. The advantage of equation (10) is that we can
compute target-oriented inversion. However, under the salt body because of the complexity
of wave propogation, the Hessian may be inaccurate or rank-deficient. It is challenging
to obtain sparse and clear inversion results in the existence of salt body. As we can see
in Figure 4(b), the migrated data has gaps that break the continuity of reflectors and the
signal-to-noise ratio under the salt is small.

The previous work (Zhang and Claerbout, 2010) tried to solve the inversion problem
with HPF as regularization. The results showd improvement comparing with least square
method. In this part, we use ||m||norm as regularization, to be consistent with the previous
results.

Similar to previous section, we solve the optimization problem with four different meth-
ods. The forward modeling operator is now Hessian F = H. And we choose the regulariza-
tion operator to be identity A = I. The input data is d = myy;g.
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First, we use the CGLS method as the benchmark and run 50 CG steps. We reduce
the data residual from 3.99 to 0.190( ~ 3.5%). Notice that for this problem, focusing
on reducing the data residual is not a good choice. The data contains large error due
to insufficient illumination under the salt, and the operator is not accurate. We search
reasonable parameters for each method and ran less than 300 CG steps(3000 for HPF, 200
for IRLS, and 200 for Split-Bregman). The data residual is 0.199 for the HPF method,
0.311 for IRLS, and 0.254 for the Split-Bregman method.

All the hyperbolic and hybrid solvers improve the quality of the inversion results. How-
ever, none of them could yield satisfying results under the salt body. Figure 6 shows the
data residual, suggesting the inversion results are not ideal.

LINEARIZED WAVEFORM INVERSION RESULTS PART 2

We obtain consistent results comparing with previous work. All of the solvers show similar
behavior. We believe the poor quality of inversion results are not caused by the inappro-
priate use of the solvers. We need to check our objective function and make improvement
in our model to obtain better results.

We use exactly the same regularization for Kirchhoff migration and linearized waveform
inverion in the previous sections. It is obvious that in the Kirchhoff migration case, all we
know is that the reflectors are a series of spikes and they are sparse. We used the correct
regularization and obtained high-quality inversion results, as expected.

However, in the linearized waveform inversion problem, we know that the reflectors are
spiky, and they are continuous along the x direction. Under the salt body, the continuity
is more important than sparsity because of the small signal-to-noise ratio. In the previous
section, we neglect part of the geophysical property, and should not expect to obtain high-
quality results.

To make better use of our geophysical knowledge, we first use derivative operator on
the x-axis as regularization,

1
J(m) = §\|Hm—mmig\|§+fllvmm|h- (15)

We can see significant improvement of the quality of inversion results from Figure 7(a). The
reflectors under the salt body are cleaner. The gaps where we do not have enough data are
filled. However,the reflectors are not smooth along x-direction near 17000 ft. It is not clear
if they are improvements or artifacts.

Next, we put both sparsity and continuity information into the objective function as
follows:

1
J(m) = 5 |/Hm — muig|[3 + £1//ml]1 + £2||Vom]]s. (16)

As the wave propogation is complicated because of the existence of salt body, the data
under the salt is diminished and twisted. It makes sense to choose 9 >> £1 to recover the
feature under the salt. Figure 8 shows the inversion result with the new objective function.
We can see the reflectors under the salt body are recovered.
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CONCLUSIONS

Hyperbolic and hybrid L1/L2 solvers generate more sparse and blocky models, they are
also more expensive than traditional least-squares methods. We check a couple of solvers
on simple geophysical problems. We demonstrate that great improvement of inversion
quality is possible, with acceptable computational cost. However, it is still challenging to
find a good L1 (L1-type) solver for generic geophysical problems. In the future, we need to
explore the linearized waveform inversion model in detail to get a better understanding. We
also need to test a more sophisticated model to get a better understanding of the solvers.
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Synthetic model building using a simplified basin modeling
approach

Robert G. Clapp

ABSTRACT

Generating a realistic synthetic model is a challenging problem in a geophysical research
environment. Achieving the right balance between being complex enough to be realistic
while still simple enough that a new algorithm can be debugged is hard to achieve. I
propose a different way to generate synthetic models, by allowing the user to specify
a series of geologic events. The result of each event is approximated on the current
model. This approach has the benefit of allowing complex models to be built is easily
extendable to multiple model parameters, and allows the user to “turn off” events,
allowing the construction of simpler models by stages. A geologic event-based modeling
strategy proves to be useful to build simple to quite complex models.

INTRODUCTION

Synthetic models play an important role in geophysical research. Over the last 25 years,
SEG and company generated synthetics (Versteeg, 1993) have been used extensively by
researchers throughout the world. These synthetics have found such wide use for two
reasons. First, generating realistic synthetic models is difficult, particularly 3-D models.
Tools such as Gocad (Cain et al., 1998) allow the user to specify layers, faults, and other
geologic features before creating a 3-D grid to ease the process, but still require significant
experience to use effectively. Second, industry wide synthetics provide a common benchmark
to compare results from different companies. These models are useful for final testing of a
finished algorithm, but often are too complex to be used in algorithmic development.

Another approach to generating synthetic models is following the methodology of basin
modelers. Basin modeling takes a more geologic approach to describing models than the
more computer science-based approach followed by GoCad and its competitors. Basin
modeling attempts to model the geologic history of a given piece of the earth to explain its
current properties.

In this paper I build on the tool introduced in Clapp (2013) for generating more realistic
synthetic models. Specifically I improve the fault, emplacement, and river erosion models
while adding unconformities and compressional folding. In this paper I describe these new
modules, introduce a python script that simplifies the model building process, and provide
a complete list of all of the parameters for each model building module.

FAULTS

The simplified view of faulting that you see in introductory geology textbooks where you
a see bulk shift of all the layers on one side of the fault move up, or down, or side to side,
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does not accurately reflect how faulting actually occurs at the large scale. Movement away
from the fault location decays away from fault surface in all directions. In addition fault
planes are not the planar surfaces that one often sees depicted in illustrations.

In ModelCreate faults are created on a cylndrical coordinate system. The user de-
scribes the beginning and ending of the fault plane in terms of a rectangular coordinate
system. These are then mapped into a polar coordinate system by defining the angular
range represented by the beginning and ending points of the fault surface. Using this
methodology, a user can make a fault virtually planar by defining a small angular range
and curved using a larger angular range. The user defines the amount of movement in terms
of angular shift. Figure 1 graphically illustrates how the fault is described.

Figure 1: Fault movement is defined
by an initial point ‘A’ and a point
‘b’ defined by distance away from ‘a’
in z and x. In addition the user de-
fines the arc length separating points
a and b (the red line). Using the
arc length along with points ‘a’ and
‘b’ a circle is implied with center ‘c’.
Fault movement is then described in
terms of this circle. The user spec-
ifies the die out of fault movement
‘d’ in terms of arc length along with
the shift in radians along the circle.

bobl/. circle

The decline in movement along the fault is also defined in terms of the cylindrical
coordinate system in terms of radial distance, angular range, and perpindicular distance.
This coordinate system can then be rotated to an arbitrary azimuth. Figure 2 shows two
faults. The fault on the left shows a nearly linear fault, using a small angular range. The
fault on the right shows a more curved fault surface using a large angular range.

RIVER CHANELS

The previous version of ModelCreate (Clapp, 2013) was capable of producing river chan-
nels but required significant parameterization by the user to get reasonable shapes. As a
result I overhauled the module and added additional complexity. The user now specifies
a general direction for the river in terms of azimuth. The user also specifies a wavelength
and wave amplitude which gives the river its sinusoidal like appearance In addition the user
specifies a randomness factor. This factor is used to add semi-random other wavelengths to
the river’s path, creating a more realistic pattern. In addition the user can specify a number
of levels in the river’s paths. This parameter takes into account the slope of the river’s path
to create deeper river bed sediments that are consistent with the river’s curvature. Figure 3
shows an example of using these features. The left panel shows several different rivers. The
right panel shows a smaller region of the model where deeper river channels can easily be
seen.
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EMPLACEMENT

Describing salt flow, which would follows the spirit of ModelCreate |, is quite challenging
and is not something I have undertaken at this time. Instead I allow bodies to be emplaced
into the geologic scenario. Just replacing one earth property with another does not produce
a pleasing model in all cases, because sediments are affected by the flowing in of salt. As a
result the emplacement module offers the ability to warp the surrounding structure. To do
this I first smooth the emplaced body. This creates a field that is at its maximum inside
the body and dies out away from the body. This field is used the shift sediments up. Shifts
are greatest close to the salt body and die off as you get further from body. Note how the
sediments are drawn up to the sides along the salt and the structure of the salt top and
bottom can be seen around the salt in Figure 4. In addition I allow the user to change the
earth’s properties under the salt (e.g. underpressure). Again this is a smooth field that dies
off away from the salt.
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Figure 4: An example of emplacing a salt body into a model. In this case the sediments
around the salt have been modified so that they are affected by the emplacement. In
addition a low velocity region has been added below the salt. ’bobl /. implace‘

FOLDING AND EROSION

In the original version of ModelCreate I allowed the user to create hills. Geologically,
hills alone are usually associated with some compressional event that also leads to valleys,
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and there is often some level of spatial consistency because the entire region is under the
same compessional regime. As a result I added a module that allows the user to describe
a compressional stress direction and the amount of uplift associated with it. These two
values, along with the average wavelength of the hill/valley pattern and a description of
randomness inline and crossline are used to calculate a spatial field of vertical shifts up
and down. Figure 5 shows an example of using this geomodule. Note how the hill/valley
pattern, while showing a dominant wavelength, also has spatial variation.
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Figure 5: An example of introducing compressionalforces and folding the layers. Note how
the folding pattern is somewhat repeatable but still varies significantly. In addition, but

harder to see, the thickness of the various beds change spatially. |bobl/. squish

I also added a third erosion option (to go along with a river channel and bowls), a
planar erosion event. With the unconformity option, all of the model down to a certain
depth is scraped off, to be replaced with later sediment deposits. Figure 6 shows the result
of eroding the hill /valley pattern off to certain depth (note how some of anticlines are cut)
and then adding additional layering over it.
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Figure 6: An example of a horizontal unconformity event. Note how the top of some of the
anticlinal structures has been eroded off. ’bobl /. unconformity
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GEOMODEL.PY

Creating a realistic geologic model using ModelCreate can involve hundreds of different
geologic events. Given that each event has up to 12 parameters it can quickly become a
daunting task. To make it a more reasonable task, Geomodel is a python library to ease
the model building process.

The basic idea of the library is that specifying every parameter to every module at
every step is too time consuming. A better idea is to specify a reasonable range of possible
parameters for each geologic event (controlled by a geomodule). When the user asks for
an event to be added to the geologic history, the parameters are randomly chosen from the
acceptable range the user specified. The user at anytime has the option of changing the
possible parameters range.

For example, to create the fault model shown in Figure 2 I began by importing the
Geomodel library and making a copy of the library default parameter set.

import Geomodel
myDefaults=Geomodel.defaults()

I then changed some of the default parameters for the deposit and fault modules.

myDefaults.change_param_ranges("deposit",
["thick:500:500","dev_pos:.2:.4","dev_layer:.2:.29","layer:11:39"])

myDefaults.change_param_ranges("fault", ["begz:.1:.3","begy:.1:.9",
"perp_die:.5:.9","dist_die:1.2:16","theta_shift:1.:1.2"])

I specified that I wanted to create a new model using my default parameter set, the sampling
in z, the axes in x and y, and the parameter file I wanted to write out to.

mod=Geomodel .model (myDefaults,6.25,800,0,12.5,800,0,12.5,3000,20,"temp.P")
I then changed the velocity range I wanted for my first layer and added it to the model.

mod.change_param_ranges("deposit", ["prop:2200:2600"])
mod.add_event ("deposit")

I created a new layer, changed the velocity range, and deposited another layer.

mod.new_layer ()
mod.change_param_ranges ("deposit", ["prop:2300:2300"])
mod.add_event ("deposit")

I next change some of the parameters for the fault model, created a fault event, changed
the parameters again, and created another fault event.

mod.change_param_ranges("fault", ["begx:.1:.4","dz:1000:2000","daz:500:502",
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"azimuth:1:3","deltaTheta:4:5","theta_die:2:4"])
mod.add_event ("fault")
mod.change_param_ranges("fault", ["begx:.55:.9","dz:2000:4000","daz:500:502",
"azimuth:1:3","deltaTheta:32:36","theta_die:20:23"])
mod.add_event ("fault")

Finally, I finished my geologic model and wrote its description to the parameter file.
mod.finish()
Using this scheme, complex models can be created. Figure 7 shows three slices through a

3-D model containing six layers, eighteen faults, two compressional events, fifteen gaussian
anomalies, and five river channels.
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Figure 7: Three views of a complex synthetic containing deposition, river channels, faults,
compressional folding, and gaussian anomalies. |bobl/. big

CONCLUSIONS

Complex synthetic models are useful not only for benchmarking but in the code development
process. Complex models can be built up by simulating a series of geologic events such as
deposition, erosion, compressional events, and faulting. ModelCreate and Geomodel used
together allow for relatively easy construction of complex models.
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Elastic modeling of surface waves

Gustavo Alves

ABSTRACT

I implement a free surface boundary condition for the generation of surface waves using
a 10" order in space and 2"¢ order in time finite-difference staggered-grid scheme. I
show an example of a field seismic section and recreate its main features using the
proposed scheme. The synthetic data created show Rayleigh waves, backscattered
waves and mode conversions, and fit the kinematics of the field data.

INTRODUCTION

Surface waves appear whenever the interface between two elastic media can be described
as a free surface, i.e., a boundary that exhibits null stress components acting on the plane
of the interface (Takeuchi and Saito, 1972). In seismology, this condition is observed in
ground-to-air and sea floor interfaces. Therefore, surface waves are ubiquitous in seismic
land data and increasingly more common in marine data with the advent of sea bottom
receivers like ocean bottom cables (OBCs) and ocean bottom nodes (OBNs) (Boiero et al.,
2013).

In seismic data, surface waves are observed as slow, dispersive linear high wavenumber
events and are usually considered coherent noise that needs to be either filtered or muted
out (Boustani et al., 2013). However, they contain important information about the elastic
properties of the shallow layers of the subsurface and could give hints into their under-
standing. This makes surface wave modeling an interesting and yet understudied subject
in seismic.

In Alves and Biondi (2014), I focused in the implementation of a finite-difference staggered-
grid method for modeling elastic waves. That work was based on the work of Virieux (1986)
and followed the algorithm later proposed by Ikelle and Amundsen (2005). Here, I extend
the previous work, adding a free-surface boundary condition that allows the generation of
surface waves. The methodology still follows that presented in Ikelle and Amundsen (2005),
but the spatial derivative stencils used are 10" order. In the next section, I present the
changes to the implementation adopted to achieve this higher order boundary condition.

Finally, I compare a field seismic section and an equivalent synthetic data set generated
using the proposed algorithm.
METHOD

The introduction of a free surface in the elastic finite-difference code imposes a non-slipping
contact and null stresses at the boundary, thus satisfying the continuity relations for strain
and stress. Iimplement these boundary conditions in a 10" order stencil using the method of
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mirror images, similarly to the 4" order implementation described in Ikelle and Amundsen

(2005). However, due to the longer stencil, the method of mirror images must be applied
gradually as the differential equation is evaluated at different distances from the free surface.
Equations 1 through 4 describe the normal stress calculated at the grid points close to the
boundary at a fixed time step. For the solution shown here, the free surface is located at
z = 1 and the indeces correspond to the grid positions where the properties are evaluated:

Tez(2,1) = %((A(w, 1) +2p(z, 1)) x (1)
( aa (Vo(x,6)+ V.(x,4))
+ co (Vi(x,5) + V.(z,3))
+ 5 (Vi(z,4) + V,(x,2))
+ e (Vi(z,3)+ Vy(z,1))
+ o (Va(z,2) = Vi(z,1)))
+ Az, 1) x
(aa (Va(x+5,1)—=Vy(z—4,1))
+ ¢ (Va(x+4,1)—Vi(x—3,1))
+ cg (Va(x+3,1) = Vy(z—2,1))
+ o (Valz+2,1) = Va(z - 1,1))
+ o (Valz+1,1) = Va(z,1))));
re(,2) = So((A@2) + (e, 2) x )
(a (Va(z,7) + Va(z,3))
+ c2 (Vi(z,6) + V.(z,2))
+ 3 (Vo(z,5) + Vi(z,1))
+ 1 (Vi(z,4) = Vy(z,1))
+ o5 (Vi(z,3) = Vi(z,2)))
+ Az, 2) x
(a1 (Va(x4+5,1)=Vy(x—4,1))
+ o (Va(zr+4,1) = Vi(x—3,1))
+ 3 (Ve(z+3,1) = Vi(x —2,1))
+ ¢ (Va(z+2,1) = Ve(z—1,1))
+ o (Vale+1,1) = Vo(z,1))));
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where 7,,(z, z) is the normal stress component in the z direction; V,, and V. are the particle
displacements in the x and z directions, respectively; and A(z, z) and p(z, z) are the Lamé
parameters. Equation 5 shows the values of ¢; to ¢5, which correspond to the 10" order
finite-difference coefficients, according to Liu and Sen (2009).
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The equations for the horizontal stress can be obtained by swapping the (A(z,z) +
2u(x, z)) and A(z, z) terms in Equations 1 through 4. For the shear stress 7., the deriva-
tives of the displacement field are shown on Equations 6 through 10. Continuity of the
physical parameters requires the shear stress be null exactly at the boundary at z = 1. The

coefficients for the 10" order stencil are the same as in the previous set of equations.
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(Va(2,5) = Va(z — 1,5))))
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It is important to note that the spatial derivatives calculated from the displacements are
not centered at the same indices as the stress components. That is due to the staggered grid
method, which prescribes different postions in the modeling domain for the displacements,

stresses and elastic parameters, according to Virieux (1986).

The equations for the displacements in the x and z directions for the grid points near

the free surface can be calculated in a similar fashion and will not be shown here.

RESULTS

The method was used to create a 2D synthetic common shot gather that simulated a field
shot gather. The example was taken from Claerbout (2011) and contains surface related
events such as ground roll and backscattered waves from what appears to be a near-surface

anomaly.

Figures 1(a) and 1(b) show the field data and synthetic data, respectively. The field data
common-shot gather shows (A) hyperbolic events due to reflections within a thin shallow
layer, (B) high amplitude dispersive surface waves (ground roll) and (C) backscattered
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waves created by a near surface discontinuity. It is also possible to see forward scattered
converted waves from the same discontinuity. In the synthetic example, the same events
are observed and with the same kinematics. The hyperbolas at the top are much weaker
in the synthetic example, due to a very strong contrast inside the low velocity layer. The
dynamics of the example could be improved by manually adjusting the model properties.

The elastic parameters used to create the synthetic data emulate a free surface over a
low velocity layer with steeply increasing shear velocities in the vertical direction and a near
surface scatterer at x = 250m. Figures 2(a), 2(b) and 2(c) show the models for V},, Vi and
p, respectively. The modeling parameters are Az = Az = 0.5m and At = 3.27 x 1075, 1
used an explosive source with a peak frequency of 25 Hz. Although these grid parameters
are finer than those usually employed in finite difference modeling at this frequency, they
are required to avoid numerical dispersion of the slower surface modes.
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Figure 1: (a) 2D field data and (b) synthetic data. The events marked as A, B and C
correspond to primaries, ground roll and backscattered waves, respectively. Kinematically,
there is a good match between the events observed in each gather, including the mode
conversions from P to S waves at z = 250m. [NR] [ER] ’gcalves2 /. shell,seisp-bei

1ml:uu

|||1||M
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DISCUSSION

A free-surface boundary condition was successfully implemented for a 10*" order in space
and 2" order in time finite-difference stencil. The results show that the algorithm correctly
recreates surface waves and that they are kinematically similar to those observed in a field
data gather. The dynamics of the field data appear to have been reproduced, although a
better correspondence might be achieved if an elastic model for the field data was available.

Due to the slower speeds of propagation for surface waves, the spatial sampling of the
model was refined to avoid numerical dispersion. Consequently, the time sampling of the
modeling must also be refined to maintain numerical stability.
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Derived rotational and pressure-gradient seismic
ocean-bottom data

Ohad Barak, Robert Brune, Paul Milligan and Shuki Ronen

ABSTRACT

In the Moere Vest acquisition a group of ocean-bottom nodes were deployed with a
nominal spacing of two meters. We preprocessed the data of one shot line that traverses
directly above these nodes. We then generated rotational and pressure-gradient data
by differencing the geophone and hydrophone data of the adjacent nodes. We discuss
the possibility of reverse-time propagation of such multicomponent seismic data.

INTRODUCTION

Rigid bodies in a three dimensional world have six degrees of freedom: three components
of linear motion and three components of rotation. In the subsurface, the linear motions
are the particle velocities and the rotations are the pitch, roll and yaw, as shown in the
following table:

Axis | Displacement Rotation
Z Vertical Uy Yaw Ty
X Radial Vg Roll Ty
Y Transverse Uy Pitch Ty

where v; are particle velocities along the axis, and r; are rotation rates around the axis.

In ocean-bottom node acquisition, multicomponent geophones that are coupled to the
seafloor record the vertical and the two horizontal components of particle velocity. Addi-
tionally, a hydrophone records the divergence of the wavefield P = k (V - @), where 4 are
particle displacements and x is the bulk modulus of the water to which the hydrophones are
coupled. Rotations are a measurement of the curl of the wavefield 7= %(V x U). However,
as of yet there are no industry-grade solutions for recording rotational motion on the ocean
bottom, though a few such recording stations have been deployed previously by Pillet et al.
(2009).

The Moere Vest data includes a group of 26 ocean-bottom nodes, a “microspread,”
which have a unique geometry in that they are spaced at 2 m intervals. We estimated the
three-component rotational motion by differencing adjacent geophones of these microspread
nodes. Geophone differencing as a method of estimating the rotational motion signal has
been shown previously in Barak et al. (2014a) and Edme et al. (2014). In the case of
the microspread, the short 2 m interval between receivers ensures that most of the data is
sampled well enough to prevent spatial aliasing, therefore, we assume that a differencing of
the data recorded by adjacent nodes pertains to differences of displacements within half a
wavelength.

161
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Vassallo et al. (2012) use hydrophones together with pressure gradient sensors in marine
streamer acquisition to interpolate the pressure wavefield in the crossline direction, between
streamer cables. By differencing the hydrophone components of the adjacent nodes of the
microspread, we similarly generated pressure gradient data. We can only obtain the two
horizontal pressure gradients, since the nodes are all spread on the ocean-bottom, with no
vertical separation.

Any differencing of data coming from physically separate sensors must be done with the
caveat that we are in effect decreasing the signal to noise ratio in the resulting data. Each
sensor may have a different coupling to the medium, reducing the reliability of the difference
signal. Also, the data and the data difference are not collocated in space. Therefore, the data
resulting from sensor differencing must be treated with a measure of suspicion. Barak et al.
(2014b) discuss some of the problems associated with geophone differencing. Eventually,
the only way to obtain a reliable recording of any physical quantity is to design a sensor
that can measure that particular quantity at one point in space. The resulting rotational
and pressure-gradient data can only be considered as an estimate of these data which would
have been recorded with the adequate instrumentation. We would prefer not to use closely
spaced receivers to measure rotations or pressure gradients in the field, but we do so here as
a result of the special geometry of the microspread and the lack of the appropriate sensors.

Estimating rotational motion from geophone data

The stress-displacement relation for tangential stresses reads:
oij = p (0ju; + Oyuy), (1)

where o;; are the tangential stresses, u; are particle displacements and p is the shear mod-
ulus.

At a free surface, or when going from a medium with shear strength to one without
shear strength (such as the ocean-bottom interface), the tangential stresses o;; are zero.
Therefore, assuming we have receivers laid out on a flat, horizontal sea bottom, we have

O uy = —0yus,
Oy = —Ogus, (2)

meaning that the vertical derivative of the horizontal displacement component is equal to
the horizontal derivative of the vertical displacement component.

Rotation is defined as the curl of the wavefield. Since our geophones record the time
derivative of displacement (particle velocity), we use the time derivative of rotation, or
rotation rate:

T = %(V X U) = <X (Oyv. — Ozvy) + Y (0:v5 — Byvz) + Z (Ory = 8yvx)> ' )

1
2
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Substituting equation 2 into 3, we see that on the sea bottom

ry = Oyvs,
Ty = _afvvz,
1
T, = 5 (8m'Uy - ayvx) ) (4)

i.e., the horizontal rotation-rate components can be derived from the vertical geophones,
and the vertical rotation-rate component can be derived from the horizontal geophones.

First-order in space elastic wave equation

The elastic wave equation for a homogeneous isotropic medium reads

A+ p)V (V- @) + pV3i = pi, (5)

where @ are particle displacements, A and p are the Lamé parameters, and p is density.
Using the vector identity V2 = V (V- @) — V x (V x @), we get

A +2u)V (V- @) — puV x (V X @) = pil. (6)

Since pressure P = kV - @, we may now write the elastic wave equation using only first
derivatives in space:

a2 .
A;VP—WVXF:m (7)

where o and 3 are P and S wave velocities respectively, P is pressure and 7 are the rotations.
Using the notation p for the pressure gradient vector VP, we have

012

—- B3PV x 7= . (8)

We have effectively modified the elastic wave equation to a system with first order
derivatives in space, with three different measurable vector physical variables: pressure
gradients, rotations and acceleration of displacements.

MICROSPREAD GEOMETRY

There were two sets of fields in the SEGY files that indicated receiver positions. One of
them was the “as-laid” positions, which are the coordinates of the underwater Remotely
Operated Vehicle (ROV) that deployed the nodes on the sea bottom. The other set of
receiver positions were calculated using the first-break arrival time at each node from all
shots in the survey. Figure 1(a) shows these two sets of receiver positions.

Despite the fact that the first-break positions appear to have been manually manipu-
lated, we opted to use these node positions for the microspread for two reasons:
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1. The ROV positioning system becomes less accurate as the depth of deployment in-
creases. In this case, the water depth was 1.6km.

2. We have video footage of the deployment taken by the ROV, which shows that the
ROV operator placed the nodes on a regular grid, with little deviations.
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Figure 1: (a) Microspread receiver “as-laid” positions vs. first-break positions. The length
of the receiver line is 26 m, and the nominal receiver spacing is 2 m. (b) Microspread
receiver positions (center of the figure, in red circles) with a subset of the shot positions
from the two sail lines that are near the receivers. Note the exaggeration in the Y direction.
The total shot line’s length is 55 km. The largest crossline offset for these shot lines is 9 m,
but over 90% of the shots have less than 5 m of crossline offset. Since the receivers are at
a depth of 1.6 km, the acquisition is effectively 2D. ’ohadl /. gxgy-all,sre-rec

Figure 1(b) shows the microspread array in relation to the shot positions of the near-
offset shots. As can be seen from this figure there were two shot lines, passing almost
directly above the nodes. The shot interval of each shot line is 50m, and they are interlaced
so that the effective shot spacing is 25m. However, in the following data figures in this
paper, we used only one of the shot lines, since tidal variations between the times the shot
lines were acquired cause static shifts to appear on receiver gathers. The total shot line
length was 55km, with the microspread nodes positioned more or less in the center of the
line. The water depth was nearly 1.6km, and the crossline offset was at most 9m, therefore
the survey is effectively 2D.

INSTRUMENT DESIGNATURE

Figure 2(a) shows the instrument response functions for the geophones and the hydrophone.
In Figure 2(b) the spectra of the responses are shown. Note that the hydrophone’s response
is flat from around 4Hz, while that of the geophone is flat from around 8Hz. Consequently,
we would expect the geophone data to exhibit more of a phase shift before and after the
designature process.

Figure 3(a) shows a near-offset section of the hydrophone component of a receiver gather,
after hyperbolic moveout was applied with water velocity. Blue wiggles indicate data before
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Figure 2: Instrument signatures and their spectra. (a) Hydrophone (blue) and geophone
(red) instrument response function vs. time. (b) Hydrophone (blue) and geophone (red) in-
strument amplitude response vs. frequency. Note how the hydrophone’s frequency response
is flat starting from around 4Hz, while the geophone response flattens around 8Hz. Both
instrument responses remain flat until 204Hz, where a high-cut filter was applied. [ER|]
’ ohadl/. CA-sig,CA-sigf

designature and red wiggles are after designature. Note how the designature caused the
first break’s energy to increase on the first negative lobe of the wavelet. There is also a
slight phase shift concentrated on the first break. Figure 3(b) is vertical geophone gather
before and after designature. The designature causes a much more marked change in this
section. Much of the low frequency energy at ¢ = 1.1s has been pushed up into the first
break. Also, the low frequency bubble signal at ¢ = 1.19s has shifted about 90°, and is now
aligned with the bubble on the hydrophone section.

Figures 3(c) and 3(d) show the frequency spectrum of the stack of the moved out receiver
gathers. The hydrophone’s energy has been increased from about 4Hz and lower, while the
vertical geophone’s energy increased from 8Hz and lower. This is in accordance with the
instrument frequency response in Figure 2(b).

A similar effect can be seen for the two horizontal geophones in Figures 4(c) and 4(d).

HORIZONTAL COMPONENT ALIGNMENT TO SURVEY
COORDINATES

The horizontal components of the receivers of the microspread were not aligned with the
survey’s shot geometry. As each node is placed on the seafloor by the ROV, their alignment
is not identical. For further processing, we required that the coordinates of the horizontal
data components match those of the survey, and that they be consistent for all nodes.
Consequently, a rotation of the horizontal components around the vertical axis was required.
To gauge the amount of rotation, we first applied hyperbolic moveout to the data, then took
a window of 100 milliseconds around the first break. We rotated the horizontal components
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Figure 3: Data components of a receiver gather after hyperbolic moveout with water
velocity, before and after instrument designature. (a) Hydrophone before (blue) and after
(red) designature. (b) Vertical geophone before (blue) and after (red) designature. (c)
and (d) are the log of the amplitude spectrum of the hydrophone and vertical geophone,
respectively. Observe the increase in the lower amplitudes, particularly for the 8Hz
geophone. The spike at 0.4Hz on the hydrophone is sea-swell ambient noise. Observe also
how after designature, the low frequency bubble at ¢ = 1.19s on the vertical geophone
has an opposite polarity to the bubble on the hydrophone. Similarly, the direct arrival at
t = 1.08s has an opposite polarity on the hydrophone vs. the vertical geophone. [CR]
’ ohadl/. comp-nodel300-hyd,comp-nodel300-vz,comp-nodel1300-hyd-f1,comp-nodel300-vz-f1 ‘
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Figure 4: Data components of a receiver gather after hyperbolic moveout with wa-
ter velocity, before and after instrument designature. (a) Horizontal inline geophone
before (blue) and after (red) designature. (b) Horizontal crossline geophone before
(blue) and after (red) designature. (c) and (d) are the log of the amplitude spec-
trum of these two component. Note that the horizontal geophones in this figure
are not yet rotated to the true radial and transverse directions, however the geo-
phone inline (‘X’) component is only about 20° away from the radial direction. [CR|]
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of each node, and then stacked the result and saw at what degree of rotation did we get a
minimal amount of energy on the v, component. The logic is that since the shot line has
very little crossline offset with the microspread array, the first break should contain minimal
energy in the crossline direction.

Figures 5(a) and 5(b) show the average amplitude of the first break on the two horizontal
components of each node, as a function of rotation angle. We see that all the nodes appear
to require a rotation of approximately 20° to align them with the survey.

Vx component amplitude vs rotation Vy component amplitude vs rotation
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Figure 5: Average amplitude of a 100 millisecond window around the first break, as a
function of the rotation of the horizontal components around the vertical axis. (a) vy
component. (b) v, component. Each line in the graph is one of the 26 nodes of the
microspread. It appears that in order to minimize the energy on the v, component and
thus have v, perpendicular to the 2D shot line and v, parallel to it, the nodes need to be

rotated by about 20°. [CR|] ’ohadl /. hrot—allnode—sail1—Vx7hrot—allnode—sail1—Vy‘

Figure 6(a) is the v, component before the rotation to survey coordinates, and Fig-
ure 6(b) is the same gather after rotation. Note how the first break’s energy has been
significantly weakened, along with much of the energy of the bubble.

GENERATION OF 9C DATA

To generate the three-component rotation-rate data, we used a finite-difference approxima-
tion to equations 4:

b oa A (yiheidy _ (i+1)AzjAy
y Ax z z )
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Figure 6: The v, component of the receiver gather at node 1300 after hyperbolic moveout
with water velocity, (a) before alignment to crossline direction, and (b) after alignment
to crossline direction. Since the survey geometry for these data was effectively 2D, the
rotation should minimize the first break’s (¢ = 1.08s) energy on the v, component. [CR]
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Az is the inline spacing between neighbouring nodes, and Ay is the crossline spacing.
The order of subtraction operations in the differencing equations 9 were done so that the
direction of the rotational axes would be the same as the linear geophone components,
according to right-hand rule.

Figures 7(a),7(c) and 7(e) are the vertical (v;), inline (v;) and crossline (v,) geophone
components of the receiver gather of node 1730. Figures 7(b),7(d) and 7(f) are the yaw
(rz), roll (rz) and pitch (ry) rotational components. Notice that adjacent to each one of
the geophone components is the rotational component around that geophone’s axis.

We are not displaying the direct arrival and some of the associated bubbles that are
between ¢t = 1.08s and ¢t = 1.75s. The water-bottom multiple appears at ¢t = 3.25s, and can
be seen well on the v, and v, sections.

The v, component seems to contain mostly high-frequency reflections with a moveout
consistent with P-wave velocity, but there are some lower frequency events apearing after
every P reflection that have a much slower moveout. These events are commonly called
“VZ noise”, and may be caused by shear-wave scattering off the node body itself as a result
of the incident P-wave. The v, component contains mostly those shear-wave events, but
some of the P-wave reflections apparent on v, are also visible. The v, component is much
weaker than the other two geophone components, but a shear-wave event similar to the one
on the v, component at ¢t = 3.3s is visible.

Observing the rotational components, we see that the one with the greatest energy is
ry. This fits with our expectation. Since the survey geometry is practically 2D, most of the
linear motion should occur in the vertical and inline directions, which means that most of
the rotational motion should occur around the crossline direction. Note also the generally
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increased noise level on the rotational components.

Compare the v, and ry, components, and observe how the P-waves are almost not visible
on 1y, even though this section was obtained using two vertical geophones. This indicates
that the P-waves generate a similar response on adjacent vertical geophones, and are re-
moved by the differencing. Another way of saying the same thing is that the P-waves do
not generate a rotational deformation of the surface. Instead, we see a section that is more
similar to v, with events that have shear-wave moveouts (though slightly delayed compared
to v,). Shear waves, as their name suggests, generate a shear deformation of the surface,
which expresses itself as rotational motion. Therefore, rotational data should preferentially
record shear waves, and indeed the P events on the r, component are much weaker than
those visible on the v, and v, components.

The r, rotational component seems to also contain some shear wave events related to
the P-waves that hit the node. They are weaker than the events on ry, indicating that if
these are indeed the result of scattered shear waves, then these waves are causing mainly
rotation around the crossline axis. The r, section is the weakest of the rotations. This
component should record events that cause a horizontal deformation around the vertical
axis, i.e. Love or SH waves, neither of which seem particularly likely in this environment.
What energy is on the r, component seems to also be related to the incident P-waves.

We note that the nodes were not corrected for tilt. Each node is tilted approximately 2
to 4 degrees away from the vertical according to tiltmeters on the node bodies. Therefore,
there may be leakage of the vertical motion into the horizontal geophones, and consequently
into the r, component.

To generate pressure-gradient data, we differenced the hydrophone component of the
nodes:

1 . ) o
Py A E (P('L+1)Ax,jAy - PzAx,]Ay) ’ (10)
by ~ Aly (PiAx,(j+1)Ay _ PiAw,jAy) _

Figure 8(a) and 8(b) are the inline (p,) and crossline (p,) pressure gradients. Figure 8(c)
is the hydrophone component. Note how the pressure gradients are much noisier than the
hydrophone. This may be due to the P-waves having very low wavenumbers, so that there
is not much of a difference between the hydrophone signal on adjacent nodes, and therefore
differencing them increases the noise at the expense of the signal. This is especially true for
the P, component. If we consider the propagation path of the P-waves and the 2D survey
geometry, we see that indeed there should not be a great difference in the pressure recorded
by two nodes that are separated by 2 m in the crossline direction.

It is interesting that on the pressure-gradient sections we can see events with shear-wave
moveouts at ¢ = 2.7s that are not apparent on the hydrophone. This indicates that the
shear events (whether they be caused by an actual shear reflection or a shear-wave scattering
off the node body), are generating a pressure gradient without appearing on the pressure
sensor as prominently as P-waves. This, in turn, indicates that some shear-wave energy is
being recorded by the hydrophone.
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Figure 7: Six-component receiver gather of node 1730. (a) Vertical particle ve-
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DISCUSSION

In current seismic acquisition, geophones record only the displacements but not rotations,
while hydrophones record the pressure but not its gradient. However, with the advent of a
new generation of seismic sensors, these physical values will be measurable at each receiver
position, giving us ten-component seismic data (1 pressure, 3 displacements, 3 rotations
and 3 pressure gradients). Prototype pressure-gradient sensors are being developed, and
rotation sensors exist and have seen some very limited use in seismic test surveys. Water
accelerometers that effectively measure the pressure gradient in water have already been
used widely in the exploration industry.

Consider an algorithm that propagates an elastic wavefield comprising the measured
physical variables of displacements, pressure, pressure gradient and rotations (equation
8). Since both displacements and their spatial derivatives are recorded (pressure, pressure
gradient and rotations), injecting them into an elastic wavefield propagator will generate
waves that propagate not only in reverse time, but also in the opposite direction to their
arrival at the receivers. This characteristic is used for deghosting acoustic marine streamer
data by Vassallo et al. (2012). In the case of ocean-bottom seismic, this has the added
advantage of separating the upgoing from the downgoing wavefield during elastic reverse-
time propagation of the receiver data. This dismisses the need to separate the ocean-bottom
data into upgoing and downgoing wavefields, using such methods as PZ summation (Barr
and Sanders, 1989), which are commonly applied before imaging with ocean-bottom data
(Wong et al., 2011).

Furthermore, injection of the displacement data and its derivatives will prevent mode
conversion at the injection point, where P waves in the data are converted to S waves (and
vice versa) immediately upon injection into the modeled wavefield. Such spurious modes
can generate additional artifacts in the resulting image.

SUMMARY

We preprocessed seismic ocean-bottom node data so as to remove the receiver instrument
signature and align the horizontal geophone components to the 2D survey coordinates.
We used the fact that the receivers were deployed with small spacings to difference their
data and estimate the rotational-motion and pressure-gradient data that would have been
recorded had we instruments that were able to measure these physical variables directly
on the ocean-bottom, thereby generating nine-component data. We anticipate that ten-
component data comprising displacements, pressure, pressure gradient and rotations will
improve seismic imaging with ocean-bottom data.
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Pseudo-acoustic vertical transverse isotropic migration
velocity analysis using two-way wavefield propagation

Carlo Fortini

ABSTRACT

Wave-Equation Migration Velocity Analysis (WEMVA) is widely used as a tool to re-
construct a model of the subsurface, such that some features of the migrated image
are met. I show an anisotropic WEMVA workflow based on the Vertical Transverse
Isotropic (VTI) approximation for the velocity model and a pseudo-acoustic anisotropic
two-way wave-equation modeling engine. I derive the theory of WEMVA starting from
the gradients of the anisotropic Full Waveform Inversion (FWI) that provides the in-
put images for the velocity analysis. In doing so, I introduce the concept of generalized
1mages that defines the FWI gradients computed with respect to the anisotropic pa-
rameters as different images of the subsurface. The results of some preliminary tests
on the use of the generalized images as input for WEMVA suggest that this approach
could help improving the accuracy and rate of convergence of WEMVA.

INTRODUCTION

Velocity model building is a key element in the context of seismic processing and is still one
of the most challenging problems in the exploration industry. Currently, velocity building
is conducted with techniques that work either in the data-space or image-space. To the
first class belong all those algorithms that go under the name of Full Waveform Inversion
(FWI); whereas, to the second class belong the so-called Wave Equation Migration Veloc-
ity Analysis (WEMVA) processes. There are various advantages that drive to the use of
image-space techniques as opposed to data-space techniques: First, the migrated images
are usually cleaner than recorded data. Moreover, the requirements for the initial model
are less strict for WEMVA rather than FWI techniques.

Most of the time, WEMVA is conducted under an isotropic approximation of the sub-
surface model, neglecting its anisotropic characteristics. However, the increasing offset
and azimuth in recent seismic data acquisition has heightened the need for an anisotropic
parametrization of the velocity model. Neglecting the anisotropy can, in fact, lead to a
wrong interpretation of the subsurface structures. In many cases, a Vertical Transverse
Isotropic (VTI) approximation can be used to more accurately describe the subsurface. Li
and Biondi (2011) showed that WEMVA can be successfully used to retrieve an anisotropic
model using a one-way VTI wave-equation as propagation engine. Many authors (Duve-
neck et al. (2008); Fletcher et al. (2009); Zhang and Zhang (2009)) proposed migration
and modeling algorithms schemes for VTI media, primarily based on the pseudo-acoustic
approximation first proposed by Alkhalifah (1998). Because the anisotropic parameters are
sensitive to events that propagate with large angles, the use of two-way wave-equation mod-
eling algorithm can provide significant improvement to the results of anisotropic WEMVA

175
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(Li et al., 2012).

In this paper, I show an anisotropic WEMVA workflow based on two-way wave-equation
propagation engine. I first introduce briefly the wave-equation I use; and then, I derive the
computation of the WEMVA gradients. In doing so, I start from the gradients of FWI that
provide the input image for WEMVA. T also show some preliminary results on the use of
the anisotropic generalized images as input for the image-space velocity model inversion.

ACOUSTIC VERTICAL TRANSVERSE ISOTROPIC WAVE-FIELD
MODELING

To avoid complications coming from the presence of shear waves and for computational effi-
ciency, wave propagation modeling with two-way wave-equation is usually conducted under
the pseudo-acoustic VTT approximation (Alkhalifah, 1998). This approximation consists of
setting the shear-wave velocity to zero in the exact elastic wave equations and leads to the
following system of partial differential equations (Duveneck et al., 2008):

1 a2ph 82ph /7821%
1 62p, pn | 0*p,

5 =v1 2 V)
1112, ot? + 58302 + 0z2 +f

where €(z,y, z), 0(z,y, z) and vy(x,y, 2) are, respectively, the anisotropic Thomsen param-
eters (Thomsen, 1986) and the vertical P-wave velocity. pp(z,y,z,t) and p,(x,y, z,t) are
the horizontal and vertical normal stresses. Similarly, f,(z,y,2,t) and f,(z,y, z,t) are the
horizontal and vertical source terms. The system 1 can be re-written in a matrix-vector
notation as follows:

L(vp,&,0)p = f, (2)

where p = [ph,pv]T, f=[fn, fU}T is the source term and

%g;—u+2@%;-ﬂﬂ+2%§

L(vp,e,0) = 2 2 2
: ST

3)

When both e and § are set to zero, system 1 is equivalent to the isotropic acoustic
second-order wave-equation.
Because the equations previously presented have been derived with the acoustic VTT approx-
imation, they are kinematically equivalent to acoustic VTI equations previously described
in the literature (e.g., Fletcher et al. (2009); Zhang and Zhang (2009)) and share both the
benefits and drawbacks of all the equations based on an acoustic approximation. They have
the well-known problem of source-generated shear waves (Grechka et al., 2004), which for
the purposes of P-wave modeling are regarded as artifacts. In my work, I always consider
the case of an acquisition surface placed in an isotropic layer; and thus, the source-generated
shear waves does not constitute a problem. Another consequence of the acoustic VTI ap-
proximation is the condition € > ¢ to ensure stability.
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The system of equation in 1 is a special case of the one presented in Li et al. (2012)
for the specific case of a constant density medium. I used these equations as the basis
for an anisotropic two-way modeling and reverse-time migration implementation for all the
examples in this paper.

IMAGING PRINCIPLE FOR VERTICAL TRANSVERSE ISOTROPIC
MIGRATION

What is usually referred to as the subsurface image in the context of seismic migration
can be computed as the first gradient of a Full Waveform Inversion (FWI) inverse prob-
lem (Tarantola, 1984), when the initial model does not contain any sharp contrasts. The
objective function that is usually minimized for solving the FWI problem is defined in the
data-space as follows:

JFWI = % <dobs - destv dobs - dest> ) (4)
where dps is the recorded data and deg; is the data estimated using the wave-equation in 1
and the current models (e, d,vp). dest is simply obtained by the sampling of the wavefield
p at the location of the original acquisition surface where d was recorded. At the very first
iteration, we usually have only a smooth estimate for the subsurface models. If we only
account for the reflection events (neglecting the diving waves, the refractions and the direct
arrivals), then desy = 0 because no reflection events can be generated when using a smooth
model. The FWI gradient would try to introduce exactly those interfaces needed to explain
the reflection events recorded and observed in the data giving as output what we usually
call “migrated image.”

Li et al. (2012) show that the gradient of the FWI objective function can be computed
using the adjoint-state method. The final result is the following;:

OL
VimJrwi = — <q, 8mp> ; (5)

where (,) indicates the scalar product in time and q = [qn(z,y, 2,1), qu(x,y, 2,t)] is the
wavefield computed by back-propagating the data residual dgps — dest- m indicates the
vector of the model parameters that describe the subsurface. Depending on the case un-
der analysis, m can be either 1D or multidimensional. For the isotropic case, m = [vp];
while for the anisotropic scenario described in the previous section, m is the vector of the
three components of the anisotropic subsurface model (m = [vp, €, 5]T). Equation 5 can be
expanded as

VsJrwi = — B 5P )
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where

De 0 0 (8)
oL 0 — L&
vu_ V1426 022 (9)
06 |- 12 0 '
V125 927

The explicit expressions for the computation of the three gradients are

2 0* 9*p,
Vo, Jrwt = Iy, = — < Ph gndt + pqut> ;

B \J o ot
2
Vedewi = 1 =2 [ P ar, (10)
81’2 2 2
1 0 Dh 0 Dv
Vsdrwr = I = T </ 022 gndt + qudt :

In analogy with the isotropic acoustic case in which the first FWI gradient is referred
as “the image”, I refer to the three components of the gradient of the VIT FWI objective
function (I,,,Ic and Is) as generalized images. In fact, the expressions in equation 10 can
be seen as generalized imaging principles for the VTI migration. From a kinematic point
of view, they all contain the same events: They all give an image of the same subsurface
interfaces. However, they are not equivalent in term of amplitudes and illumination of the
subsurface reflectors. Figure 1 shows two angle gathers extracted from, respectively, I,,, and
I, for a simple synthetic example. The models used to both generate and compute the FWI
gradients are all constant (vp, e and §) with a single, sharp discontinuity that simulates a
flat reflector positioned at z = 1,800 m.

The main difference between the two images is the lack of illumination at zero-incidence
angle for the case of I.. This behavior is in accordance with the theory: Events traveling
almost vertically have no sensitivity to the anisotropy parameter e.

ANISOTROPIC WAVE EQUATION MIGRATION VELOCITY
ANALYSIS

Wave Equation Migration Velocity Analysis (WEMVA) is a nonlinear inversion process
that aims at estimating a background (anisotropic) velocity model, such that a pre-selected
objective function is minimized. Unlike FWI, the objective function for WEMVA is defined
in the image-space. The generic objective function for WEMVA is

1
JWEMVA:§<PLPI>a (11)



SEP-155 VTI WEMVA 179

(@) (@)
O a
(@) (@)
o o
— —
@) @)
N O N O
) )
) )
— —
@) a
@) @]
(@) (@)
[AV] [AV]
@) @)
@) @]
o o

(a) (b)

Figure 1: Angle gathers extracted from (a) I,, and (b) Ic. Notice the differences in the

illumination. [NR|] ‘carlol /- test1—angveltrue,testl—angepstrue‘

where [ is a seismic image and P is a penalty operator. P is usually chosen, such that the
minimization of the objective function leads to a seismic image with some desired features.
The most commonly used objective functions are

Jpso = = (hI(x,h), hI(x,h)):
(12)

Jess = 5 (I(xh=0),1(x.h=0)).

I is expressed as a function of the position x = (z,y, 2z) and the subsurface offset shift
(lag) h = [hg, hy] (Sava and Fomel, 2006). The former is the so-called Differential Semblance
Optimization (DSO), while the latter is the Power of Stack Migration (PSM) (Symes and
Kern (1994); Toldi (1989); Shen (2004)). The images used as input for WEMVA can be
computed as shown in the previous section, solving the first step of the FWI. In particular,
the image as a function of the Subsurface Offset Domain Common Image Gathers (SOCIG)
can be computed as (for the case of I,,)

2 2
I,,(x,h) (/a g;hph (S_nqn) dt+/w(5‘_ Qv)dt> (13)

where S, is a shifting operator that shifts the wavefield by +h in the x direction. Similarly,
the operator S_j, shifts the wavefield in the opposite direction. Note that (Sin)* = S_p.
I.(x,h) and I5(x,h) can be computed similarly. When the correct model is used for the
construction of the seismic images, all the energy is focused at zero-lag (h = 0). Moreover,
the image extracted at h = 0 corresponds to the one that can be obtained by stacking
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(along the angles dimension) the seismic image decomposed in angle gathers. The DSO ob-
jective function measures the nonfocused energy in the subsurface-offset-gathers and is thus
minimized when performing WEMVA. On the other hand, the PSM measures the energy
of the stack along the angles of the seismic image and has thus to be maximized.

I now show the computation of the gradients of the WEMVA inverse problem when the
objective function is the DSO and using I,, as input. The same derivation can be used
also to compute the gradients for the case of the PSM objective function. I follow a sym-
bolic derivation based on the adjoint-state method (Plessix, 2006) that can be found in Li
et al. (2012). For the sake of the notation, I indicate with Iy, the generalized image I,,, (x, h).

The first step is the definition of the Lagrangian augmented functional as

1
L£(P, 9, I, A, .o m) = D 5 (hln, hl) (14)
h
+ (\,f — Lp)
+(p, £’ = L >

T Z < L (5+hp) (5_nq) — Ih>.

The adjoint-state equations can then be computed as

3E

op —L*A+ E S+h (S—hq)7n = 0; (15)
oL

fZ—LMJr E )*(S+nP)7n = 0;

6£
= = h?I, = 0.
Bl Yh +h"l, =0

The solution of the adjoint-state equations allows the retrieval of the the adjoint-state
variables (A\(x,t), u(x,t),v(x,h)). The gradients of the objective function in equation 12
with respect to the three anisotropy parameters then can be computed as follows:

OL oL*
v — P~ y ; 1
Vo, JWEMVA <)\ 8vpp> + <M oo, Q> (16)
OL oL*
VeJweEMva = (A, ——P ) + { i, — q);
Oe Oe

OL oL*
VsJWEMVA = <)\, —&Sp> + </~L, 55 Q> :
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Generalized images

As previously discussed, I consider herein the model for the subsurface to be characterized
by the three Thomsen parameters v, €, . Equation 10 shows that in this case, the seismic
images at our disposal are three as well. Regardless the choice of the specific cost function
(either DSO or PSM), it is possible to minimize/maximize the objective function computed
with any of the three images by computing the gradients with respect to the three parame-
ters. In the derivation followed in the previous section, for instance, I derived the gradients
of WEMVA for vy, € and ¢ by using I,, as input. This input would correspond to find
the anisotropic model, such that the image I,, has the desired characteristics. As a matter
of fact, anisotropic WEMVA is often performed using only I,, and inverting for all the
anisotropic parameters (Weibull and Arntsen (2014); Li et al. (2012)).

However, it is also possible to use the correspondent image when trying to invert for a
specific parameter. This would mean, for instance, to minimize/maximize the DSO/PSM
computed using I, when inverting for vy, I. for € and Is for 6. The choice of the image to
be used as input affects the computation of the WEMVA gradient. As a matter of fact, the
seismic image chosen as input for WEMVA plays a role in the computation of the adjoint-
state variables (equation 16). It is reasonable to expect the associated image to have a
greater sensitivity to the correspondent image rather than the image computed for another
parameter. All the parameters affect all the three images but each parameter produces a
first-order effect to the correspondent image, and a second-order effect to the other two. If,
for instance, I,, is used as input to invert for all the parameters, the inaccuracies in the €
and § model would produce second-order effects on the image and they would thus be less
significant than the effects caused by inaccuracies in the velocity model.

In the next section, I show the result of two preliminary tests I performed to validate
the previous assumptions.

NUMERICAL TESTS

To validate my assumptions, I performed two tests. I computed the images I, and I, using
the correct v, and 4 models but varying the e model. With the computed images, I evaluated
the associated DSO and PSM objective functions values obtained with the different epsilon
models.

Test 1

The velocity and epsilon models for the first test are shown in Figure 2. The first layer
is isotropic with a vertical velocity of 2,000 meters per second (m/s). The second layer is
characterized by a gradient (increasing with depth) in both the velocity and epsilon model
starting at a depth of 800 meters (m). The initial values for the gradients in velocity and
epsilon are, respectively, 2,000 m/s and 0. The final values (at z = 1,800 m) are 2,400 m/s
for the velocity gradient and 0.3 for the parameter epsilon. A sharp contrast is inserted
in the velocity model at a depth of 1,800 m while the epsilon model is constant below
that depth. Using these models, I generated a synthetic dataset with a finite difference
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code based on the two-way wave-equation presented in the first section. The acquisition
geometry is constituted of 61 sources that go from z = 2,000 m to x = 14,000 m at depth
zero and receivers everywhere on the same surface as the sources. Receiver spacing is 20 m.
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Figure 2: Test 1. Vertical velocity (a) and epsilon (b) models used for the generation of the
synthetic dataset. The initial values for the gradients in velocity and epsilon are, respec-
tively, 2,000 m/s and 0. The final values (at z = 1,800 m) are 2,400 m/s for the velocity

gradient and 0.3 for the parameter epsilon. [ER] ’carlol /. test1l-velocity,test1-epsilon

I generated different epsilon models by rescaling the gradient in the second layer: The
initial value is always 0, while the final one (at z = 1,800 m) goes from 0.2 to 0.6. I used
the different epsilon models to compute I,, and I..

_35.2 0.3 0.4 05 0.6 0.7 6.2 0.3 0.4 0.5 0.6 0.7
epsilon epsilon
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Figure 3: Test 1. PSM (a) and DSO (b) curves computed using I,,, (red) and I (blue) with
different epsilon models. The DSO curve associated to I, seems to indicate a greater sensi-
tivity to the variations in the epsilon model. [NR] ’carlol /- testl—psmleps,testl—dsoleps‘

The red curves in the graphs of Figure 3 show the values of the PSM (a) and DSO (b)
objective function with respect to the epsilon model computed with I,,,. The blue curves are
the ones computed using I.. The curves obtained using the two different images are almost
equivalent for the case of the PSM objective function. For the case of the DSO, though, the
one associated to I, seems to indicate a greater sensitivity to the variations in the epsilon
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model. Indeed, especially around the minimum location, the DSO curve associated with I,
is steeper than the one associated with I,,,, meaning that the same variation in the ¢ model
produces a bigger change in I rather than in I,,.

Test 2

The velocity and epsilon models for the second test are shown in Figure 4. The first layer is
characterized by a constant vertical velocity of 2,000 m/s. The epsilon model is composed
of a constant background (¢ = 0) with a Gaussian anomaly centered at z = 1,200 m and
x = 8,000 m. The anomaly has a maximum value of 0.3. A sharp contrast that simulates a
tilted reflector is inserted in both the velocity and epsilon models. The dip of the reflector is
5 degrees. These models were used to generate a synthetic dataset with the same acquisition
geometry of Test 1.
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Figure 4: Test 2. Vertical velocity (a) and epsilon (b) models used for the generation of the

synthetic dataset. [ER] ’carlol /. test2—velocity,test2—epsilon‘

I generated the different epsilon models by rescaling the epsilon anomaly in the first
layer. The shape of the anomaly is always the same, but the maximum value (at = 8,000
m, z = 1,200 m) varies between 0 and 0.7. As for Test 1, I used the different epsilon models
to compute I, and I.

The red curves in the graphs of Figure 5 show the values of the PSM (a) and DSO (b)
objective function with respect to the epsilon model computed with I,,,. The blue curves
are the ones relative to I.. The curves computed with the two different images (1,, and
I.) show more significant differences with respect to those of Test 1, probably because the
fact that the dipping reflector enhance the contribution of the events associated with large
reflection angles. These events are indeed the ones that carries most of the information
about the parameter €. Also in this case, the variations in the epsilon model seem to affect
I more than I,,.

The minimum /maximum of the curves in both tests do not coincide with the model used to
generate the data (the minimum should be at e = 0.3). I attribute this to finite-difference
acquisition artifacts. Moreover, the location of the minimum is different for the curves



184 Fortini SEP-155

-0.5 i i i 25
-0.6
ol
-0.7
-0.8
1.5p
- \ /
-1 : ‘ : 1 :
0 0.2 04 0.6 0.8 0 0.2 0.4 0.6 0.8
epsilon epsilon

(a) (b)

Figure 5: Test 2. PSM (a) and DSO (b) curves computed using I, (red) and I, (blue) with
different epsilon models. Notice that the curves do not have their minimum at the same
locations. The DSO curve associated to I. seems to indicate a greater sensitivity to the
variations in the epsilon model. [NR] ’carlol /- test2—psmleps,test2—dsoleps‘

computed using I, and I. and seems to be closer to the correct position when using the
latter. More studies are needed to correctly analyze the problem.

CONCLUSIONS

In this paper, I presented a workflow for WEMVA derived using the VTI approximation. I
used a pseudo-acoustic two-way wave-equation as the modeling engine. I also presented some
preliminary results on the use of the generalized images as input for WEMVA. Although the
preliminary tests seem to suggest that the proposed procedure could improve the accuracy
and convergence rate of the velocity analysis, it is still unclear if the use of generalized
images as input for WEMVA produces significant benefits with respect to the conventional
approach.

FUTURE WORK

Additional work is needed to both evaluate the proposed WEMVA workflow based on the
pseudo-acoustic two-way wave-equation and to further investigate the suggested approach
of using the generalized images. For the first task, a code for the complete tomographic
loop is needed. For the evaluation of the new proposed approach, on the other hand, further
theoretical studies are needed for both gaining a better understanding of the problem and
designing additional tests.
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Multi-model full-waveform inversion

Musa Maharramov and Biondo Biondi

ABSTRACT

We propose a multi-model formulation of full-waveform inversion that is similar to im-
age decomposition into a “cartoon” and “texture” used in image processing. Inversion
problem is formulated as unconstrained multi-norm optimization that can be solved
using conventional iterative solvers. We demonstrate the proposed model decompo-
sition approach by recovering a blocky subsurface seismic model from noisy data in
time-lapse and single-model full-waveform inversion problems.

INTRODUCTION

Maharramov and Biondi (2014b) proposed a total-variation (TV) regularization technique
for robust recovery of production-induced changes in the subsurface velocity model. Mahar-
ramov and Biondi (2014a) proposed a TV-regularized constrained full-waveform inversion
(CFWI) technique that achieves better constraining of the subsurface model in zones of poor
illumination. In both cases the recovered model was assumed to be “blocky”—i.e., contain
areas of small (and predominantly monotone) velocity variation, as well as a few sharp
contrasts along geologic interfaces. While sensible in many applications, “blocky” models
represent an oversimplification of true physical properties. Even when the assumption of
blocky behavior is justified, fitting noisy data may still result in an oscillatory model.

In this work we investigate splitting of a subsurface model into the sum of a “blocky” and
“wiggly” components, and formulate a full-waveform inversion problem for recovering both
components. Conceptually, our approach is similar to image decomposition into a “cartoon”
and “texture” (Meyer, 2001), where “texture” is defined as a highly oscillatory pattern. We
describe an implementation of multi-model full-waveform inversion of time-lapse and single-
acquisition datasets, and demonstrate the method on two synthetic examples.

METHOD

A multi-model full-waveform inversion can be posed as an unconstrained regularized multiple-
norm optimization problem:

min [|F(m) —d|3 + afl[Vmy||1 + B8] Amy|f3,
» 11y (1)
m = my + My,

where my, ,, are two uncorrelated “blocky” and “wiggly” components of the model m, with
|ma|ls < ||my|l2. The ¢; norm of the gradient, or the total variation seminorm (Triebel,
2006), favors sharp contrasts over oscillations in my, while the ¢5 norm favors small oscil-
lations over large contrasts. Solving (1) produces a model split into two components, with
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one component exhibiting mostly blocky, and the other—oscillatory behavior. However,
clean separation cannot be realistically achieved. Even in the simplest case of image TV
denoising with the trivial modeling operator F(m) = m, the two recovered components
remain correlated (Meyer, 2001; Osher et al., 2005).

A problem analogous to (1) can be formulated for time-lapse FWI,

min ¥ (my) —di|3 + [[F(mg) — dof|3 +

mj,msy,m
a[[Vmy|[ly + 5| Am, |3, (2)

mo —1m; = My + My,
where my 5 and dy 2 are the baseline and monitor subsurface models and recorded data.

We solve problems (1) and (2) by applying the nonlinear conjugate gradients algorithm
(Nocedal and Wright, 2006) after smoothing the TV term,

[[Vallly ~ [VIVxm|* + €], (3)

where € ~ 107° is chosen as a threshold for realistic values of the slowness. Regularization
parameters o and 3 are chosen as follows. The value of « is chosen as in the standard
TV-regularization problem with m = m; (mz — m; = m; for time-lapse FWI) used in
(Maharramov and Biondi, 2014b). Then £ is chosen sufficiently large to make oscillatory
component close to zero, and gradually reduced until the models become correlated.

Alternative constrained optimization problems can be formulated instead of (1) and (2),
and solved using the approach described by Maharramov and Biondi (2014a). Alternatively,
split-Bregman of Goldstein and Osher (2009) can be applied directly to (1) and (2).

456
—1.51e+02

-1,20e+02
696 -8.81e+01
-5,66e+01

-2.52e+01

938 6.29e+00
3.78e+01

l 6.92e+01
1176 1,01e+02

depth (m)
-
=
ar
&

1416 1416

4296 5496 6696 X

inline {(m)

Figure 1: True model difference showing two blocky anomalies (-150 m/s and 100 m/s) and
a smooth velocity change peaking at -50 m/s in the overburden above the right anomaly.
[CR] |musa3 /. truediff |

NUMERICAL EXAMPLES

We demonstrate multi-model inversion on the 7dB SNR Marmousi synthetic that we used
in (Maharramov and Biondi, 2014b,a). See these papers for the details of numerical imple-
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mentation.
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Figure 2: Model difference reconstructed using parallel difference algorithm (Asnaashari
et al., 2012) for the 7dB SNR synthetic. Both amplitudes and locations of the anomalies
are poorly resolved. [CR] |musa3 /. pardiff |

For the time lapse example, a true model was generated consisting of “blocky” anomalies
of -150 m/s and 100 m/s and a smooth velocity variation peaking at -50 m/s above the
right anomaly (see Fig 4).
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Figure 3: Blocky component of the model difference recovered by solving (2). The anomalies
are resolved better, with amplitudes close to true values. The decomposition reveals partial
recovery of the negative smooth velocity change over the right anomaly, however, most of
the smooth velocity change ended up in the oscillatory component in Figure 4. [CR|]
|musa3/ . blocky|

Note that the position of the smooth gradient and the small magnitude of velocity
perturbations (< 5% of baseline), in combination with noisy data, make resolution of the
model difference very challenging in this case.

This is confirmed by the result of parallel difference algorithm (Asnaashari et al., 2012)
in Figure 2. The anomalies are hard to identify, and their amplitudes are overestimated.
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Figure 4: Oscillatory component of the model difference recovered by solving (2). Note that
the two components appear to be mostly uncorrelated. [CR] |musa3 /- Wiggly|
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Figure 5: Blocky component of the baseline model recovered by solving (2) for the 7dB
SNR synthetic. [CR] |musa3 /. ndblocky
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The blocky component in Figure 3 was recovered by solving (2) with a = 107% and
B = 1074 It appears to be a better approximation of the true model difference, both
qualitatively and quantitatively. Note the partial recovery of the smooth velocity change in
the overburden.
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Figure 6: Oscillatory component of the baseline model recovered by solving (2) for the 7dB
SNR synthetic. The model is largely uncorrelated with the blocky model of Figure 3, how-
ever, some of the sharp contrasts lave leaked into the wiggly model. [CR] | musa3/. ndwiggly

The oscillatory component shown in Figure 4 is weakly correlated with the blocky model,
and mostly represents noise removed from the model difference by he multiscale inversion
(2). Note, however, that the oscillatory component may contain some of the smooth over-
burden velocity change—see the negative velocity zone above the location of right anomaly
in Figure 4. A hierarchical multiscale decomposition approach similar to (Tadmor et al.,
2004) may be applied to further decompose the model into blocky, smoothly varying and
oscillatory components.

Figures 5 and 6 show the result of solving (1) with the 7dB SNR synthetic. The two
components demonstrate the typical pattern with multiscale multinorm decompositions:
while the two blocky and oscillatory models are largely uncorrelated, some of the sharp
contrasts have leaked into the wiggly model in Figure 6.

CONCLUSIONS

Multi-model regularization of full-waveform inversion can be used for automated multiscale
model decomposition. This can be exploited for isolating the effects of different physical
processes acting on different scales, or separating useful information from the effects of
fitting noisy data. The multi-model FWI can be implemented using the existing nonlinear
unconstrained iterative solver frameworks with modest computational overhead, however,
comparison with alternative methods (Goldstein and Osher, 2009; Osher et al., 2005; Cai
et al., 2010; Boyd et al., 2011) is necessary. Hierarchical model decompositions (Tadmor
et al., 2004) and application to field data will be the subject of future work.
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Reformulating TFWI

Ali Almomin

ABSTRACT

Tomographic full waveform inversion (TFWI) provides a robust but expensive method
to invert the seismic data. Scale separation of the model greatly reduces the cost but
adds complexity to theory and the implementation of the inversion. In this paper, 1
provide two approaches that reduce the complexity of TFWI. First, I rederive TFWI
with one model only in an abstract formulation that is applicable to any form of wave-
equation. Then, I provide a new approximation to the inversion that can potentially
provide more accurate results.

INTRODUCTION

Previously, we reduced the cost of TFWI by separating the extended model into two com-
ponents: a non-extended smooth background and an extended rough perturbation (Biondi
and Almomin, 2012; Almomin and Biondi, 2013). This might have caused some confusion
on the resulting relationship and balance between these two parameters and their relation-
ship to the original model. Furthermore, the interpretation of these two parameters limited
the way we could separate them and increased the difficulty of moving to different wave-
equations, such as the elastic. To overcome these limitations, I first derive the “original”
TFWI in an abstract way that makes it applicable to different forms of the wave-equation.
Then, I derive TFWI using the two-parameter approach. Next, I rederive TFWI while
keeping one abstract model. Finally, I provide an alternative method to derive TFWI that
is potentially more accurate than the previous TFWI and closer to the original TFWI.

THEORY

To solve any nonlinear inversion problem in a gradient-based method, we only need to
evaluate two quantities: the objective function and the gradient. Evaluating the objective
function requires the forward modeling operator whereas evaluating the gradient requires
the linearized adjoint operator, i.e., the adjoint of the linearized forward operator. The
linearized forward operator can be computed simply by taking the derivative of the forward
modeling operator with respect to the model space. This linearized operator relates a
(preferably small) perturbation of the model space to a perturbation in the data space. In
the wave-equation, the effect of linearized operator is an explicit scattering of the waves
by the model perturbations or an imaging these perturbations by the adjoint operator. I
will refer to this type of scattering as linearization scattering. For the purposes of this
report, I will ignore the regularization term of TFWI and only focus on the data fitting
term. Moreover, a tilde (~) above a parameter or operator indicates that it is extended.

193
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TFWI

First, we look at TFWI without any approximations or shortcuts, which I refer to as the
original TFWI. The original TFWI objective function is:

- 1~ - 1, -
Jrrwi(m) = S [|[f(m) — dops|[3 = g\lr(m)\@, (1)

where m is the extended model, f is the extended forward modeling operator, dgp is the
observed surface data, and r is the residual. In the extended modeling operator, all parts
of the extended model interact with the wavefield in every propagation step, which is the
main source of cost increase in computation. The gradient of the objective function is:

OJrrwi(m) <6r(ﬁl))*r(fh).

Oom om

(2)
The derivative of the residual is computed as:

Or(m) _ OF(m) _ ¢ 0y (3)

om om

where L is the extended linearized modeling operator. I can now compute the gradient as
follows: N
g(m) = L*(m)r(m). (4)

Although the previous equations are simple and direct, they can be very expensive and
difficult to compute, depending on the extension axes of choice. Therefore, we need to find
a cheaper approach to approximating these computations.

Two-parameter approximation

The previously published approximation to TFWI utilizes the two-parameter approximation
that separates the extended model into two components:

M ~b+p, (5)

where b is the non-extended smooth background component and p an extended rough
perturbation component. The underlying assumption is that the extended portion will not
have a smooth component. It is also easy to understand conceptually: we are separating the
parts of the model that affect the transmission (or forward scattering) from the parts that
affect the reflection (or back scattering). Now, I can approximate the modeling operator
using Taylor’s expansion as follows:

f(m) ~ (b + p) ~ f(b) + L(b)p. (6)

This approximate modeling operator simply adds the data resulting from propagating the
wavefield with the smooth component of the model (the f(b) term) to the data resulting
from scattering the wavefield with the rough component of the model (the L(b)p term).
It is important to notice that this scattering is a result of the approximation we used by
model separation, which is similar to but independent from the linearization scattering
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due to gradient calculation. I will refer to this second type of scattering as approximation
scattering. Both the linearization scattering and approximation scattering use Taylor’s
expansion, which might make things a bit confusing. Moreover, the scattering with the
rough component happens only once, so multiples cannot be modeled with this operator
unless the rough component was added to the smooth background. Using the approximate
operator, the residuals can be calculated as:

r(b,p) = f(b) + L(b)B — dops. (7)
Next, I calculate the residual derivative with respect to the perturbation as:

8r(b7 5) T
———=—— = L(b), 8
S22 = Lib) (5)
and the residual derivative derivative with respect to the background as:

where T is the tomographic operator that is a function of two variables: a propagation
variable and a scattering variable. This tomographic operator has two scattering terms
because we first applied the approximation linearization, and then perturbed that model
using the linearization scattering, which is effectively a scattering of a scatterer. In other
words, it is the second derivative of the modeling operator with respect to the model.
Finally, I can calculate the gradient of p as:

gs(b,B) = L*(b)r(b,p), (10)
and the gradient of b as:
gb(b,p) = L*(b)r(b,p) + T*(b, p)r(b, p). (11)

One issue with the gradient of b is the term L*(b)r(b,p) which can potentially cycle-skip
since the operator is not extended. Another issue is that multiples will not be modeled
(neither by the non-extended part nor by the extended part) unless we feed the extended
perturbation back into the non-extended background. To circumvent these problems, Al-
momin and Biondi (2013) proposed the nested inversion scheme where the objective function
was separated into two components and the observed data was redefined in order to avoid
this term in the gradient of b. This nested scheme requires a balance between how many
iterations we perform in each inner loop as well as a good balance on how to mix and sepa-
rate the smooth and rough components. Having these components in different dimensions
only adds complexity to the understanding of the problem.

One-parameter approximation

The previous approximation is based on the fact that the extended part of the model only
contains rough components. Furthermore, it requires a nested inversion scheme with several
steps that ensure different scales of the model are simultaneously inverting. Also, imple-
menting the previous scheme for other wave-equations, such as the elastic wave-equation,
might not be trivial in terms of which variable to extend and how to separate and mix
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them. Therefore, I rederive the previous approximation in an equivalent but generalized
way using one parameter and an abstract separation operator as follows:

f = C + [I — CJm, (12)

where C is the separation operator. For the operator approximation to be accurate, I need
the following inequality to hold:

|Cm || > [|[T — CJml]|. (13)
Now, I can approximate the modeling operator using Taylor’s expansion as follows
f(m) = f(Cm + [I — C]m) ~ f(Cm) + L(Cm)[I — C]m. (14)

For the previous equation to be efficient, the operator C needs to restrict the extended part
of the model. From the two requirements of the operator C, we can see that separating
the model into smooth and rough components is not the only possibility. In fact, it is more
optimal to separate it into a non-extended part and an exteded part, both of which can
contain rough or smooth components. This latter separation will make the approximation
scattering even smaller compared to the propagation term. The residual can now be written
as:

r() = f(Cim) + L(Cm)[I — Clim — dos. (15)

Next, I calculate the residual derivative as follows:

or(m) 9f(Cm) | JL(Cm) e
5 = om T gm W— Clm+ LCm)[I-C]

= L(Cm)C + T(Cm, [I — C]m)C + L(Cm)[I — C]. (16)

Since I used one model parameter only, the terms can be cancelled resulting in the following
residual derivative:

Or(m)
om

Finally, I can calculate the gradient as follows:

= L(Cm) + T(Cm, [I — C]m)C. (17)

g(m) = L*(Cm)r(m) + C*T*(Cm, [I — C|m)r(m). (18)

Alternative approximation

Now I present an alternative formulation to approximate the expensive TFWI. Instead of
first approximating the modeling operator and then taking the derivative of the residual, 1
first take the “expensive” derivative followed approximating the calculation. This way, I can
focus on approximating the propagation operator only since it is the most expensive step,
instead of approximating the modeling operator. To do so, I need to rewrite our modeling
operator and gradient as functions of the propagation operator. The modeling operator can
be written as:

f(m) = K*P(m)Ks, (19)
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where K is a spatial padding operator, P is the extended propagation operator, and s is
the source. Next, I write the linearized modeling operator as:

L(m) = K*P(m)DU (), (20)

where D is a second time derivative, and Uy is the extended scattering operator that
convolve the input with a source wavefield to calculate a scattered wavefield. The source
wavefield that is used in the scattering operator is calculated as:

us(m) = P(m)Ks. (21)
I can write the adjoint modeling operator as follows:
L*(m) = U (m)D*P*(m)K. (22)

By examining the previous equations, we can see that the only expensive step is the prop-
agation step. Therefore, I will approximate the propagation by a cheaper alternative, such
as:

P(m) ~ P(Cm) + P(Cm)DS(]I — C]m)P(Cm), (23)

where S is a scattering operator. Finally, we use this approximate propagation operator in
equations (19) to (22). Another possiblity is using a multi-scattering (recursive) propagator
that can take more orders of scatterings to better approximate the extended propagation
operator. Notice that the adjoint operator using the approximate propagation will not give
an exact gradient of the objective function, it can be very close, depending on how well we
approximated the propagation operator.

CONCLUSIONS

Scale separation of the model can add complexity to the theory and implementation of
TFWI. I rederive TFWI with one model parameter in an abstract way that is applicable to
any form of wave-equation. This new derivation reduces the complexity of TFWI and any
ambiguity related to how different model components interact and update in the inversion.
I also provide an alternative approximation to TFWI by re-ordering the gradient calculation
and the Taylor’s expansion of the propagation operator. The alternative approximation is
easier to implement and can potentially provide more accurate results.
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Robust joint full-waveform inversion of time-lapse seismic
datasets with total-variation regularization

Musa Maharramov and Biondo Biondi

ABSTRACT

We present a technique for reconstructing subsurface velocity model changes from time-
lapse seismic data using full-waveform inversion (FWI). The technique is based on si-
multaneously inverting multiple survey vintages, with model difference regularization
using the total variation (TV) seminorm. We compare the new TV-regularized time-
lapse FWI with the Lo-regularized joint inversion proposed in our earlier work, using
synthetic datasets that exhibit survey repeatability challenges. The results demon-
strate clear advantages of the proposed TV-regularized joint inversion over alternatives
methods for recovering production-induced model changes that are due to both fluid
substitution and geomechanical effects.

INTRODUCTION

Effective reservoir monitoring depends on successful tracking of production-induced fluid
movement in the reservoir and overburden, using input from seismic imaging, geomechan-
ics, geology and reservoir simulation (Biondi et al., 1996). To achieve this, most traditional
methods rely on the conversion of picked time shifts and reflectivity differences between
migrated images into reflector movement and impedance changes. Though effective in
practical applications, this approach requires a significant amount of expert interpretation
and relies on quality control in the conversion process. Wave-equation image-difference to-
mography has been proposed as a more automatic alternative method to recover velocity
changes (Albertin et al., 2006); it allows localized target-oriented inversion of model per-
turbations (Maharramov and Albertin, 2007). An alternative approach is based on using
the high-resolution power of the full-waveform inversion (Sirgue et al., 2010) to reconstruct
production-induced changes from wide-offset seismic acquisitions, and is the subject of this

paper.

Time-lapse full-waveform inversion (Watanabe et al., 2004; Denli and Huang, 2009;
Routh et al., 2012) is a promising technique for time-lapse seismic imaging where produc-
tion-induced subsurface model changes are within the resolution of FWI. However, as with
alternative time-lapse techniques, time-lapse FWI is sensitive to repeatability issues (As-
naashari et al., 2012). Non-repeatable acquisition geometries (e.g., slightly shifted source
and receiver positions), acquisition gaps (e.g., due to new obstacles), different source sig-
natures and measurement noise—all contribute to differences in the data from different
survey vintages. Differences in the input datasets due to repeatability issues may easily
mask valuable production-induced changes. However, even with noise-free synthetic data
without any acquisition repeatability issues, numerical artifacts may contaminate the in-
verted difference of monitor and baseline when practical limitations are imposed on solver
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iteration count. Maharramov and Biondi (2013) devised a time-lapse FWT that minimized
model differences outside of areas affected by production by jointly inverting for multiple
models, and imposing a regularization condition on the model difference. The joint inver-
sion can be performed simultaneously for multiple model vintages or using an empirical
technique of “cross-updating” (Maharramov and Biondi, 2013, 2014b). Maharramov and
Biondi (2014b,a) applied these methods to noisy synthetic data and compared the results to
alternative methods, demonstrating advantages of both target-oriented simultaneous inver-
sion and cross-updating over alternative methods. Production-induced changes that are due
to fluid substitution effects are spatially constrained to areas affected by fluid transport,
while those due to geomechanical effects—e.g., stretching of the overburden—may result
in smoothly varying velocity model differences. In either case, regularization terms that
promote “sparsity” of spatial model-difference gradients may be expected to improve the
recovery of valuable production effects while suppressing undesirable oscillatory artifacts.
In this work we present the results of using total-variation (TV) regularization of the model
difference in the simultaneous time-lapse FWI and demonstrate the significant improvement
of the inversion results compared to alternative methods.

METHOD

Full-waveform inversion is defined as solving the following optimization problem (Tarantola,
1984; Virieux and Operto, 2009)

|[Mu —dJjs — min, (1)

where M, d are the measurement operator and data, u is the solution of a forward-modeling
problem
D(m)u = ¢, (2)

where D is the forward-modeling operator that depends on a model vector m as a parameter,
and ¢ is a source. The minimization problem (1) is solved with respect to either both the
model m and source ¢ or just the model. In the frequency-domain formulation of the
acoustic waveform inversion, the forward-modeling equation (2) becomes

—tu— (e A = p(w,xt, . 2", (3)

where w is a temporal frequency, n is the problem dimension, and v is the acoustic wave
propagation velocity. Values of the slowness s = 1/v at all the points of the modeling
domain constitute the model parameter vector m. The direct problem (3) can be solved
in the frequency domain, or in the time domain followed by a discrete Fourier transform
in time (Virieux and Operto, 2009). The inverse problem (1) is typically solved using a
multiscale approach, from low to high frequencies, supplying the output of each frequency
inversion to the next step.

FWI applications in time-lapse problems seek to recover induced changes in the sub-
surface model using multiple datasets from different acquisition vintages. For two surveys
sufficiently separated in time, we call such datasets (and the associated models) baseline
and monitor.

Time-lapse FWI can be carried out by separately inverting the baseline and monitor
models (parallel difference) ,or by inverting them sequentially with, e.g., the baseline sup-
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plied as a starting model for the monitor inversion (sequential difference). Another alter-
native is to apply the double-difference method, with a baseline model inversion followed
by a monitor inversion that solves the following optimization problem,

(Mt — M) — (Midi — Mydy)[|s — min, (4)

by changing the monitor model (Watanabe et al., 2004; Denli and Huang, 2009; Zheng
et al., 2011; Asnaashari et al., 2012; Raknes et al., 2013). The subscripts in equation (4)
denote the baseline and monitor surveys, d denotes the recorded data, and the M’s are
measurement operators that project the synthetic and field data onto a common grid. The
superscript s indicates the measurement operators applied to the modeled data.

In all of these techniques, optimization is carried out with respect to one model at a
time, albeit of different vintages at different stages of the inversion. In our method we invert
for the baseline and monitor models simultaneously by solving either one of the following
two optimization problems:

al[Mpu, — db”% + BIMn s, — dm”% +

Y (M, — Mywy) — (Mynd,y, — Mydy) |5 +
a1 [ WpRg(my, — my O[5 4

B Wi R (1, — mELRIOR)”% +

§|WR(m,,, — my — AmPROR)|12°  min,

A~~~ T~ /N~
~— — ~— ~— ~—

or

O‘HMbub—deg“‘ﬁHMmum_deg“‘ (10

N (M50 — M) — (Mydy, — Mydy) |13 + (11
a1 || Wy Ry (my, — my O ||y + (1

B Wi R (my, — mEzRIOR)Hl + (13

§|WR(m,, — my — AmPROR)||; — min, (14

)
—_ D o — T

with respect to both the baseline and monitor models my and m,,. Problem (5-9) describes
time-lapse FWI with Ly regularization of the individual models (7,8) and model difference
(9) (Maharramov and Biondi, 2014b). In this work we study the second formulation (10-14)
that involves Lj-regularization of the individual models and their difference. The terms (10)
correspond to separate baseline and monitor inversions, the term (11) is the optional double
difference term, the terms (12) and (13) are optional separate baseline and monitor inversion
regularization terms (Aster et al., 2012), and the term (14) represents regularization of the
model difference. In (12)-(14), R and W denote regularization and weighting operators
respectively, with the subscript denoting the survey vintage where applicable. If R is the

gradient magnitude operator
Rf(z,y,2) = \/f2+ f; + [2, (15)

then (12-14) become total-variation (TV) seminorms (Triebel, 2006). The latter case is of
particular interest in this work as the minimization of the L1 norm of gradient may promote
“blockiness” of the model-difference, potentially reducing oscillatory artifacts (Rudin et al.,
1992; Aster et al., 2012).
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A joint inversion approach has been applied earlier to the linearized waveform inversion
(Ayeni and Biondi, 2012). In Maharramov and Biondi (2013, 2014b,a), a simultaneous
full-waveform inversion problem (5,9) was studied with a single model difference Ly regu-
larization term (9).

An implementation of the proposed simultaneous inversion algorithm requires solving
a nonlinear optimization problem with twice the data and model dimensions of problems
(1) and (4). The model difference regularization weights W and, optionally, the prior
AmPRIOR may be obtained from prior geomechanical information. For example, a rough
estimate of production-induced velocity changes can be obtained from time shifts (Hatchell
and Bourne, 2005; Barkved and Kristiansen, 2005) and used to map subsurface regions
of expected production-induced perturbation, and optionally provide a difference prior.
However, successfully solving the L;-regularized problem (10-11) is less sensitive to choice
of the weighting operator W. For example, we show below that the TV-regularization using
(15) with W = 1 recovers non-oscillatory components of the model difference, while the Lo
approach would result in either smoothing or uniform reduction of the model difference.
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Figure 1: Starting model used in the inversion. [CR] ’musal /. starting‘

In addition to the fully simultaneous inversion, Maharramov and Biondi (2013, 2014b)
proposed and tested a cross-updating technique that offers a simple but remarkably effective
approximation to minimizing the objective function (5),(9), while obviating the difference
regularization and weighting operators R and W for problem (5,9). This technique consists
of one standard run of the sequential difference algorithm, followed by a second run with
the inverted monitor model supplied as the starting model for the second baseline inversion

mynT — baseline inversion — monitor inversion — 16

baseline inversion — monitor inversion, (16)
and computing the difference of the latest inverted monitor and baseline models. Pro-
cess (16) can be considered as an approximation to minimizing (5) and (9) because non-
repeatable footprints of both inversions are propagated to both models, canceling out in
the difference. Both the simultaneous inversion and cross-updating minimize the model
difference by tackling model artifacts that are in the null space of the Fréchet derivative of
the forward modeling operatorss. The joint inversion minimizes the effect of such artifacts
on the model difference by either minimizing the model difference term (9) in the simulta-
neous inversion, or by propagating these artifacts to both models in cross-updating (16).
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Note that this process is not guaranteed to improve the results of the baseline and monitor
model inversions but was only proposed for improving the model difference. Maharramov
and Biondi (2014b,a) demonstrated a significant improvement of model difference recov-
ery by both the Lo-regularized target-oriented simultaneous inversion and cross-updating
compared to the parallel, sequential and double difference techniques. The simultaneous
inversion and cross-updating yielded qualitatively similar results within the inversion target.

Here we compare joint simultaneous inversion with a TV-regularized model difference
(10,14,15) to parallel difference and cross-updating.
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Figure 2: Baseline model inverted from noise-free synthetic data. [CR|] ‘musal /. bb155Hz

NUMERICAL EXAMPLES

The Marmousi velocity model is used as a baseline, over a 384x122 grid with a 24 m
grid spacing. Production-induced velocity changes are modeled as a negative —150 m/s
perturbation at about 4.5 km inline 800 m depth, and a positive 200 m/s perturbation
at 6.5 km inline, 1 km depth. Additionally, a smoothly varying negative velocity change,
peaking at —50 m/s, was included above the positive anomaly as shown in Figure 4. The
whole Marmousi model is inverted, however, only model differences for the section between
the approximate inline coordinates 4 km and 6.7 km to the depth of approximately 1.4
km are shown here. The inversion is carried out in the frequency domain for 3.0, 3.6, 4.3,
5.1, 6.2, 7.5, 9.0, 10.8, 12.8, and 15.5 Hz, with the forward-modeling carried out in the
time domain (Sirgue et al., 2010). Inversion frequencies are chosen based on the estimated
offset to depth range of the data (Sirgue and Pratt, 2004). The baseline acquisition has
192 shots at a depth of 16 m with a 48 m spacing, and 381 receivers at a depth of 15
m with a 24 m spacing. The minimum offset is 48 m. The source function is a Ricker
wavelet centered at 10.1 Hz. Absorbing boundary conditions are applied along the entire
model boundary, including the surface (thus suppressing multiples). A smoothed true model
(Figure 1) is used as a starting model for the initial baseline inversion (and for the initial
monitor inversion in the parallel difference). The smoothing is performed using a triangular
filter with a 20-sample half-window in both vertical and horizontal directions.

The result of inverting the baseline model from the clean synthetic data is shown in
Figure 2. Random Gaussian noise is added to the noise-free synthetic data to produce



204 Maharramov and Biondi SEP-155

a noisy dataset with 7 dB signal-to-noise ratio. The noisy monitor dataset is generated
for the model perturbation of Figure 4, using the same acquisition geometry and source
wavelet. The results of baseline model inversion from the clean and 7 dB SNR synthetic
data are shown in Figure 3(a) and Figure 3(b), respectively. Results of model difference
inversion from the clean and 7 dB SNR synthetic datasets using various methods are shown
in Figures 5(a),5(b),5(c) and Figures 6(a),6(b),6(c), respectively. The simultaneous inver-
sion objective function contains only terms (10) and (14) with no difference prior, i.e.,
AmPRIOR — (. The model-difference regularization weights W in (14) are set to 1 ev-
erywhere in the modeling domain. The two terms in (10) are of the same magnitude and
therefore o and 3 are set to 1. Parameter § is set to 10~° but can be varied for different
acquisition source and geometry parameters. The result of the initial baseline inversion is
supplied as a starting model for both m; and m,, in the simultaneous inversion. In all the
inversions, up to 10 iterations of the nonlinear conjugate gradients algorithm (Nocedal and
Wright, 2006) are performed for each frequency. Neither regularization nor model priors are
used in single-model inversions (i.e., in the cross-updating and parallel difference methods).
Maharramov and Biondi (2014b) demonstrated significant improvement by cross-updating
compared to sequential differencing, and rough qualitative equivalence of cross-updating
and the Lo-regularized simultaneous inversion. Therefore, in this work we compare the TV-
regularized simultaneous inversion only against parallel differencing and cross-updating.
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Figure 3: (a) Target area of the baseline model inverted from clean synthetic. (b) Target
area of the baseline model inverted from a 7 dB SNR synthetic. In both cases the baseline
model is reconstructed reasonably well, however, errors due to noise are comparable in
magnitude to production-induced effects. [CR|] ’musal /- cleanbase,élbase‘

The results of applying cross-updating to the two datasets are shown in Figures 5(b)
and 6(b), respectively. The corresponding TV-regularized simultaneous inversion results
are shown in Figures 5(c) and 6(c). Since problem (1) is nonlinear, supplying the result
of the highest frequency inversion back to the lowest frequency and repeating the whole
inversion cycle for all frequencies may result in achieving a better data fit. In repeated cy-
cles, lower-frequency inversions usually terminate earlier but higher frequencies still deliver
model updates. For an objective comparison of the joint inversion with the parallel differ-
ence method, the effects of insufficient iteration count are reduced by performing an extra
cycle of baseline and monitor inversion (we call this approach “iterated” parallel difference
(Maharramov and Biondi, 2014b)). The results of applying the iterated parallel difference
to the twodatasets are shown in Figures 5(a) and 6(a). While cross-updating demonstrates
certain robustness with regard to uncorrelated noise in the data and computational arti-
facts (note the significant quantitative improvement of reconstructed difference magnitudes
in Figures 5(b) and 6(b)), the TV-regularized achieves further signifcant improvement by
reducing oscilatory artifacts and honoring both smooth and blocky components of the model
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difference.
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Figure 4: True velocity difference consists of a negative (—150 m/s) perturbation at about
4.5 km inline 800 m depth, and a positive (200 m/s) perturbation at 6.5 km inline, 1 km
depth. [CR] |musa1/. truediﬂ'|

CONCLUSIONS

Our new TV-regularized simultaneous inversion technique is a more robust further develop-
ment of our previous joint inversion method (Maharramov and Biondi, 2013, 2014b,a). Use
of TV regularization in the simultaneous inversion allows recovery of production-induced
changes without specifying variable weighting operator W, and penalizes unwanted model
oscillations that may mask useful production-induced changes.

One potentially beneficial extension of this work is using TV regularization of individual
models in (7,9). This approach may used for both time-lapse and standard FWI, and will
be the subject future work.
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Advances in simultaneous salt boundary and background
tomography updating

Taylor Dahlke, Biondo Biondi and Robert Clapp

ABSTRACT

Level set methods can provide a sharp interpretation of the salt body by defining
the boundary as an isocontour of a higher dimensional implicit representation, and
then evolving that surface to minimize the Full Waveform Inversion (FWI) objective
function. Because the implicit surface update gradient is based on the tomographic
update gradient, there is potential to utilize it to update the background velocity
concurrently with the salt boundary. Using a shape optimization approach on synthetic
examples, we can achieve reasonable convergence both in terms of the residual L2 norm,
as well as the evolution of the salt boundary and background velocity towards the true
model, demonstrating the feasibility of this approach. Various factors in processing
the gradients and calculating step size influence this convergence, which we analyze
and address. Ultimately, this method can be integrated into the processing work flow
as a tool that provides improved building and refining of the velocity models used for
imaging.

INTRODUCTION

Tomographic approaches to interpreting salt bodies can be less than effective, because the
results tend to be too smooth to provide significantly accurate placement of salt boundaries.
Manual and semi-automatic picking of salt boundaries is a common approach to interpreting
the desired sharp delineations, but these methods can be time-consuming and tedious since
expert input is necessary for either the actual picking, or the oversight and correction.
Furthermore, once a model has been produced, it must be used to generate an image, and
then be refined as necessary. A robust method for further automating the salt interpretation
procedure would greatly alleviate this bottleneck.

Some previous approaches to interpreting salt boundaries use a shape optimization ap-
proach (Guo and de Hoop (2013), Lewis et al. (2012)). The boundaries of a salt body can
be represented as the zero-isocontour of a higher dimensional surface (for example, a 2D
boundary as a contour of a 3D surface). A gradient can be derived to evolve this shape
/ isosurface according to the FWI objective function. Unlike the smooth boundaries pro-
duced by tomographic approaches, the isocontour resulting from the shape optimization
provides a sharp boundary, which is a more appropriate way to classify most salt-sediment
interfaces. Guo and de Hoop (2013) utilize this approach using a frequency domain forward
wave operator to evolve a salt boundary and velocity model. However, their approach alter-
nates between updating the background velocity and salt body boundary, which effectively
requires twice as many iterations as performing both updates concurrently.

The approach we take utilizes shape optimization with the use of time domain forward
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wave-propagation, which allows us to take advantage of using a continuous range of frequen-
cies (rather than discrete frequencies) in each iteration, allowing for sharper delineation of
the boundary. Further, we take advantage of the fact that our boundary update gradient
is based on the tomographic update gradient, and make updates to both concurrently after
applying optimal scaling parameters. In theory, this method has the potential to be more
efficient than an alternating update approach. In this paper we will discuss the funda-
mentals of the level set method and its key properties, followed by a demonstration of the
concurrent boundary-tomography update method on a test model, as well as discussion on
how we address the challenges inherent with concurrent updating.

THEORY

We begin with a brief overview of the level set method and how we apply the evolution
scheme it utilizes. The full derivation for the shape optimization implementation can be
found in Dahlke (2014).

Level set fundamentals

In our problem, we are trying to determine the boundary of a two dimensional body. Instead
of using an algorithm that operates in this 2D plane directly, we use the level set algorithm
which evolves a 3D implicit surface, ¢. While our algorithm acts directly on this surface
instead of the boundary, our solution for the 2D boundary is simply represented by a contour
“slice” of this implicit surface where ¢ = 0, as described in Osher and Sethian (1988) and
Burger (2003). While it may seem counterintuitive to add extra dimensionality to our
problem, by doing so we gain some advantages. These include the ability to merge and
separate bodies as the level set evolution proceeds, as well as the ability to handle sharp
corners and cusps in the lower-dimensional (2D) plane that the boundary exists on.

Based on this concept, we define a spatial domain © C R?, a (salt) body Q C ©, and
the salt body boundary I' such that

Q={x]|¢(x,7) >0}, I'={z|¢(z,7) =0},

where 7 indicates the axis along which the evolution steps progress (7 = 0 is the initial
iteration). As such, for a single step along 7, our salt body 2 evolves to Q' . We define a
point along the boundary curve to be

zr = {x €T}

With this definition of the boundary points, the level set of ¢ that represents the salt body
boundary can be described as

(ﬁ(.fr, 7’) = 0.



SEP-155 Advances in simultaneous updating 211

BACKGROUND

[

T+l

/ 69 \ mext = ‘/background

Figure 1: Diagram of domain partitioning. The full inclusive domain is ©. € is the salt
body. 012 is the difference between the salt body domain in iteration 7 and iteration 7+ 1.
I is the boundary of the salt body, with the subscript 7 indicating the iteration. [NR]
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By taking the derivative of this equation, the chain rule gives us

99 9¢ dar _ (1)
or  Oxr Or

This equation can be readily rewritten as

gqb—i—ng U(xp,7) = 0. (2)

We can use V¢ defined over all the full domain of (rather than just zr) since
ﬁqﬁ - U(zp,7) is a dot product, and only the terms where x € T' will contribute to the
overall dot product result. This “velocity” term in equation 2 can be defined as having
both a “speed” and a normal vector component, ¥(zp,7) = V(zr, 7)fi(zr, 7). In complete
form there is also a tangential component, but we ignore this part since it doesn’t contribute
to a change in the surface ¢.

We know the normal vector is defined as

fi(ar, ) = Vo(zr,T)

IVo(ar.m)| ’

which allows us to restate equation 2 in a more familiar representation

¢ _
sl )|V 3
2 = ~V(er,m) V9. Q

The scalar speed term V(xp,7) describes the magnitude of the variation of ¢ that is
normal to the boundary I'. It determines the evolution of the implicit surface, and ultimately
the boundary implied by it. This term can be found to be

0ug(x,t
3 / [ (6 = ity i doat V. (1)

as described in the derivation provided in Dahlke (2014), which demonstrates how this
formulation of the scalar speed term directs the evolution of the implicit surface such that it
minimizes the FWI objective function. An important insight from this referenced derivation
is that the scalar speed term contains the tomographic update gradient within it

—Z/ / 8 “5(;” L (5)

We can take advantage of it already being calculated and use it to make updates to the
background velocity. In the following section we demonstrate this implementation approach.
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APPLICATION ON SYNTHETIC EXAMPLES

We demonstrate the shape optimization algorithm on a 2D model, with the implicit surface
evolved being a 3D surface. In this section we describe the algorithm used and the results
that have come from its implementation.

Evolution algorithm

We begin with an initial background velocity, and a binary function as the initial implicit
surface ¢. Since we assume a constant salt velocity, we use both of these inputs to create
a full initial-guess velocity model (m,). Using this m,, we forward model to get our dsyn
which we use to get a residual. The residual is used to calculate both a tomographic and
a boundary update gradient, as described in the derivation provided in Dahlke (2014). We
then perform forward linearized operations on these gradients so that we can do a linear
plane search (in residual space) for the scaling parameters o and (. Following this, we do a
non-linear line search for a v parameter that rescales a and § in a manner that minimizes
the FWI objective function. We then apply an explict forward Euler scheme that updates
the implicit surface (¢) and the background velocity Viaec. This workflow is outlined in
algorithm 1.

) ) o

G = ¢ ¢ v(ﬁaj.’ + (1Gres), (6)
. i 6V ac

Vb];glli = Vbjack + Yo ab] k’ (7)

where 3 and « are the step sizes (for tomography and salt boundary respectively) and j is
the current iteration point.

Scaling parameter optimization

As shown previously, the salt boundary update gradient is based on the adjoint of the
linearized-Born operator, which is the tomographic update gradient. Since the gradient for
both a tomographic and boundary update are calculated in each step regardless, we attempt
to take advantage of this by finding scaling parameters to apply to these gradient updates
such that we minimize the residual space objective function

min | PG o+ FES — (doe — o) ®)

where F is the forward wave propagator, and G, and G;g'; are the update gradients for

the background velocity and implicit surface ¢ respectively.

Minimizing this objective function gives us parameters that are scaled to the residual
space, not the gradient space where they are actually applied. Since the adjoint operator
that we use creates a scaling difference between the residual and gradient (data and model)
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Algorithm 1 Shape optimization and tomographic update algorithm
Load observed data dps
Load initial implicit surface ¢
Load background velocity Vipacx
for ¢ = 0 to numiter do
Build full velocity model Vi, from ¢ and Ve
Forward model — dgyy,
Calculate data space residuals (r = dgyn — dobs)
Perform direct arrival mute on residuals
Back-propagate residuals (RTM imaging) r — 0V /0i
Calculate V¢
Calculate 0¢/di
Mute and smooth 0V}, /0i
Forward model 0¢/0i — dpound
Forward model 0Vy,1/01 — diomo
Peform linear plane search for a and (8
Perform non-linear plane search for
Update boundary: ¢t! = ¢ + vﬁg—‘f
Update background velocity: Voo = Vi + ya an;H
end for
Output final velocity model

spaces, we must rescale a and (3 once they are found so that they can be effectively applied
to the gradients.

The approach we use is to rescale a and (8 according to a v parameter which is found
using a non-linear line search (which is constrained by the conditions for stability). This
technique is much cheaper than performing a full non-linear plane search for o and 3, but
still allows for a choice of parameters based on the FWI objective function. We choose this
approach, utilizing equation 9 for a line search for ~,

min | F(m(7) = o). )

Tomographic gradient masking and smoothing

The separation of the tomographic information from the reflectivity information is desired
so that the tomogaphic updates more quickly lead to convergence of the true solution.
This seperation can be better achieved prior to this search for the scaling parameters by
masking out the tomographic update gradient in areas where the update has no influence
on changing the next iteration of the velocity model. For example, in this work we assume
a constant velocity throughout the salt bodies we model. Because of this, we dont apply
the tomographic gradient update in the regions where salt exists. If we calculate G,
without first masking out Giome in areas overlapped by salt regions, then we introduce bias
into the objective function (equation 8), since it will optimize for an update that will not

be entirely applied.
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We further assume that the salt boundary change will not undergo significant shifts.
With this in mind, we apply the masking based on the salt body delineation that was created
from the most recent (previous) iteration. Another approach would be to dynamically
update the salt boundary based on the scaling parameter 3, as g is being solved for. While
theoretically producing a more accurate update, this method is also far more expensive,
since numerous applications of the forward linearized-Born operator are necessary. For this
reason we make the approximation of masking based on the previous iteration of the salt
boundary.

When the masking is performed and the salt boundary shrinks, an area of the back-
ground velocity is exposed which contains a sharp boundary between the newly “exposed”
region and the region that was previously exposed and updated. This can create false (al-
beit weak) reflectors around the edge of the salt, causing errors as the evolution of the salt
boundary continues. For this reason, immediately after masking is performed on the to-
mographic gradient, a smoothing operator is applied to remove sharp discontinuities in the
velocity update along this boundary. Because the tomographic update information tends to
be lower frequency than reflection information, this step also helps separate reflection and
tomographic information by acting as a low-pass filter.

Stability

As the implicit surface is evolved, it is important to maintain stability of the evolution. One
relevant aspect of maintaining stability is keeping the implicit surface update step size ()
small enough to satisfy the Courant-Friedrich’s-Levy (CFL) condition, which is stated by
Chaudhury and Ramakrishnan (2007) (when applied to level set evolution) as being

Gmax - ’7/8 < min(hx> hy)7 (10)

where h, and h, are the grid spacing in the x and y directions, and Gnax is the maximum
value of the update gradient. While later we describe how a plane search is used to determine
the scaling parameters « and [, our algorithm adjusts these scaling parameters (while
maintaining their ratio) in such a manner that satisfies the constraint in equation 10.

An additional measure taken to ensure the stablity of evolution is the use of a regu-
larization term that is scaled and added to the boundary gradient before each update is
applied. In this case, a distance regularization term was used. This term drives the spatial
gradient of the implicit surface towards either one or zero (V¢ = {1,0}).

When irregularities begin to occur in the implicit surface during level set evolution,
numerical errors start to occur which can lead to instability. By regularizing the gradient
of the implicit surface as it evolves, we minimize irregularities and are able to continue
evolution without having to reinitialize a signed-distance function to the salt boundary
contour. An excellent reference on this type of regularization is Li et al. (2010).

Results

We apply our algorithm on a simple velocity model, using an acquisition geometry of 32
shots spaced 110 [m] apart, and 63 receivers spaced 50 [m] apart. In the example shown
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in Fig. 2, the initial and true background velocity models differed by up to 100 [m/s] (see
Fig. 5). A bottom reflector and positive velocity gradient provides better illumination
along the bottom and flanks of the circular salt body, which has a velocity of 4500 [m/s].
A stencil radius of five was used for smoothing of the tomographic update gradient prior to
its application.

x [m]

—400 -300 -200-100 0 100 200 300 400 —400 -300 -200 —100 0 100 200 300 400

[o] z
008

[w] z
oog

0021
002t

Full vel model, iteration — 0 True model

Figure 2: Initial velocity model (left) and true velocity model (right). True model
boundary indicated (solid line); Initial boundary guess (dashed line). [ER]
’ taylor/. SBS-frames-149-zoom ‘

DISCUSSION

One thing to note when observing the trend in Fig. 4 is that the objective function does not
decrease monotonically, and in some cases increases slightly. The non-linear line search for
~ finds a minimum to the objective function by doing a quadratic interpolation between the
three points surrounding the working minimum. This approximation is done for efficiency
since the non-linear calculation for each point is relatively expensive, so a relatively low
density of sampling along the v axis is done. Because of the error inherent in this approx-
imation, the algorithm may find a step size that increases the objective function slightly
rather than choose a step size equal to zero.

Another observation is that the objective function plateaus at a solution that has a very
low residual error, but is not the correct answer, indicating the algorithm has converged
on a local minima (Fig. 4). A number of characteristics of the algorithm play into this.
One is the masking operation that is performed on the tomographic update gradient. The
RTM imaging places energy for the updates based on both reflection and tomographic
discrepancies in the model. This mixing of reflection and tomography information is inherent
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Figure 3: Final velocity model (left) and raw RTM image (right) after 149 iterations. [ER]
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Figure 4: Objective function for evolution shown in Fig. 2 [ER|] |taylor/ . obj-val|
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Figure 5: Change in the velocity difference for the model shown in Fig. 2 [ER]
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to the concurrent updating approach. Even when the salt boundaries come quite close to the
true position, the imaging may place energy inside the salt body region (See Fig. 3), which
is never translated into a model update due to the assumption of constant velocity salt. In
a model such as the one demonstrated on, the paucity of non-salt reflectors exasperates this
problem and leads to convergence at a local minima solution, since some of the strongest
updating energy is masked over during updating.

A further challenge demonstrated in this model is the lack of updating directly along
the bottom reflector (See Fig. 3). One explanation for this is the band-limited nature of
the experiment. Because the reflector acts as a step function in velocity space, in order
to perfectly resolve it all frequencies must be available. Of course, our experiment uses a
source wavelet centered at 15 Hz, which means our imaging will not be able to resolve this
boundary to satisfaction unless more high frequencies are included.

The density of acquisition and geometry of the array also influence the number and
strength of RTM imaging artifacts, which also influences the rate and quality of convergence.
While a higher density of acquisition will typically lead to fewer artifacts and smoother
tomographic updates, the smoothing of the tomographic update gradient also simulates
that effect and is more computationally efficient. Figures 6 and 7 show that using a longer
stencil length allows for quicker convergence, and also a better match to the true model.
However, this approach has its limitations, and can reduce the ability of the algorithm
to resolve sharper tomographic anomalies, exasperating the problems created by the band
limited nature of our experiment.
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Figure 6: Different rates of convergence using the same model from Fig. 2 [ER]
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CONCLUSION

In this work we described the derivation of the level set method as applied to the mini-
mization of the FWI objective function. We demonstrated the application of this evolution
algorithm and its incorporation with a background velocity tomographic update on a simple
model. We consider the limitations of this approach in regards to numerical stability, as well
as the assumptions of linearity that we use to find our scaling parameters, and the challenges
regarding the separation of reflection information from the tomographic updating.
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Sjoerd de Ridder hails from the Netherlands and received a
BSc (2004) in Earth Sciences from Utrecht University and an
MSc (2007) in Applied Earth Sciences from Delft University of
Technology. In the fall of 2007 he started a PhD program at Stan-
ford University to work on surface-wave seismic-interferometry
for reservoir scale imaging in the Stanford Exploration Project.
He received the Jon F. Claerbout - Chevron Fellowship in 2009-
2010. During his PhD program he spent summers at China
University of Petroleum in Beijing (2010), BP America (2011),
Chevron (2012) and BP Norway (2013). He graduated in March
of 2014 and started as an Associate Research Professor at the
University of Science and Technology of China (USTC) in Hefei,
Anhui. Supported by Chevrons Center of Research Excellence
(CORE) at Stanford, Sjoerd escaped the summer heat of Hefei
and spend July and August in California. In his free time he likes
to run, bike and hike while traveling and discussing philosophy,
politics and history. In recent years he cycled over 3000 miles
exploring China.

Shuki Ronen is currently (2013) the chief geophysicist of
Seabed Geosolutions, and a consulting faculty at SEP. The photo
dates back to when he was a student at Stanford, 1985.
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Xukai Shen graduated from Tsinghua University in July 2007
with a B.E. in Electrical Engineering. He joined SEP in the fall
of 2007, and is currently working toward a Ph.D. in Geophysics.
He is a student member of the SEG.

Mandy Wong graduated in 2004 with a B.Sc. in Physics and
Mathematics from the University of British Columbia (UBC) in
Vancouver, Canada. In 2006, she obtained a M.Sc. degree in
Condensed Matter Thoery at UBC. Afterward, Mandy worked
for a geophysical consulting company, SJ Geophysics, based in
Vancouver, Canada. Mandy joined SEP in 2008, and is working
towards a Ph.D. in Geophysics. Her main research interest is
imaging with multiples.
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Arevalo, Humberto and Stewart A. Levin, 2014, Well and Seismic matching with ArcGIS
and ProMAX via KML: Esri International User Conference Paper 901, San Diego, 15
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Leader, C., and R. Clapp, 2012, Least squares reverse time migration on GPUs - balacing
IO and computation: 74th Conference & Technical Exbition, EAGE, Extended Abstracts
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inversion with random boundaries: SEG Technical Program Expanded Abstract 31 (Sub-
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Levin, Stewart A. and Fritz Foss, 2014, Downward continuation of Mars SHARAD data:
SEG Technical Program Expanded Abstract 33 (Submitted).
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Li, Y., P. Shen, and C. Perkins, 2012, VTI migration velocity analysis using RTM: SEG
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Wong, M., and Ronen, S., and Biondi, B.L., 2012, Joint imaging with streamer and ocean
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