SEPVector: a C++ inversion library

Fileen Martin, Robert G. Clapp, Huy Le, Chris Leader, and Dave Nichols

ABSTRACT

SEPVector is a library of C++ classes, methods, and simple interfaces for solving
geophysical inverse problems. From the beginning this library was designed to
allow users with relatively little coding expertise to work on heterogeneous com-
puter architectures, a feature that is becoming increasingly critical to modern
library development. Verification of the code features is done through a thor-
ough set of unit tests. Although it is written in C++, Fortran users can easily
learn to use the SEPVector interface through a series of simple examples included
in the package.

INTRODUCTION

As hydrocarbons become more difficult to find, ever more sophisticated imaging tech-
niques are needed to produce accurate images of the subsurface. One approach to
improved imaging is the use of algorithms, such as Reverse Time Migration (RTM)
(Baysal et al., 1983), that more accurately describe wave behavior. As important, is
the recognition that imaging is fundamentally an inversion problem. Inversion has
been used extensively to produce velocity, or more generally earth property, models
for years using ray based techniques (Stork, 1992; Clapp, 2001) and more recently
with the growing use of waveform inversion (Woodward, 1990; Sirgue and Pratt,
2004). There is also growing use of inversion in place of more conventional migration
techniques (Clapp, 2005; Valenciano, 2008; Tang, 2011).

The growing size of seismic datasets, more accurate imaging algorithms, and the
expanding use of inversion all lead to significantly increased compute requirements.
At the same time the last fifteen years as seen significant changes in computer ar-
chitecture including the (re)introduction of vector units (up to 16 in length), multiple
cores (up to 12 per socket), and the (re)introduction of co- processors such as General
Purpose Graphical Processing Units (GPGPU) and Xeon Phi.

The last twenty years have seen several attempts at SEP and other institutions in
building an object oriented inversion library that separates the math (optimization)
from the physics. Nichols et al. (1993) was an attempt at using C++ and Schwab
(1998) in Java but both failed to catch on due to the predominant use of Fortran in
SEP. Fomel and Claerbout (1996) built a heavily used library on top of Fortran90,
but it is difficult to use in complex inversion problems due to Fortrans object ori-
ented limitations and its single thread nature. Clapp (2004) built a python based

SEP-152

Martin et al. 2 SEPVector

library that proved successful for cluster based applications, but was not practical
on smaller problems. Attempts to use outside frameworks (Gockenbach and Symes,
1996; A. D. Padula and Symes, 2009) have not proven to catch on at SEP.

In this paper we introduce a new inversion library, SEP vector. The library is
written in C++4, uses modern programming techniques, such as unit tests for relia-
bility. It is designed to take advantage of modern architecture, such as being vector
and multicore aware on conventional CPUs. In this paper we begin by describing
the core classes of the library, we then discuss our testing environment, and present
some simple examples, before concluding with the future directions we plan to take
the library.

DATA STRUCTURES AND INHERITENCE

One of the largest scale features of the SEPVector library is that all of the data struc-
tures and solvers are classes contained in the SEP namespace. The namespace will
make it easier for users to combine this library with other libraries (e.g. a visualiza-
tion library), especially if the other library has any classes of the same name. Each
instantiation of the classes is an object with some associated data and methods that
it can call. Some classes need similar methods, so in our code similar classes inherit
methods and a description of their data from more general abstract classes.

Most codes have some amount of error checking along the lines of asking whether
the dimension of the input match those of the operator, but what happens when a
vector of the wrong units just happens to have the right length? This can especially
be an issue when chaining together many operators or concatenating operators. Our
solution, inspired by (A. D. Padula and Symes, 2009), associates each vector with a
space, and each operator with a domain space and a range space so that it is easy to
check compatibility of vectors with each other and with operators.

First let’s look at the structure of vectors, the fundamental data structure of
SEPVector. As seen in Figure 1 each vector object stores two pieces of data: a pointer
to an actual data container, and a pointer to the space the vector lives in. When a
vector is created, it is actually the space that creates the data container, ensuring
that these two are compatible. The data container objects manage data through
the Boost MultiArray library, which gives an easy interface to access and modify
multi-dimensional arrays. We chose this widely-distributed package because it has
undergone significant testing and optimization, which can be critical for efficiently
working with high-dimensional data.

At the high level, our code is structured to deal with objects like vectors, spaces,
data containers, operators, and solver steppers. Each of these is an example of an
abstract class, or a class that is never meant to be instantiated without more details
about its implementation. For example, one type of space is a space that handles
floating point vectors for in-core computations, but even that is not enough detail.
As seen in Figure 2, we must further specify whether these vectors are true vectors,

SEP-152

Martin et al. 3 SEPVector

Vector
*sp *dc
build data container | Data
Space ————= Container
(dimensions) *array‘dimensions

l
| Boost multi_array |

Figure 1: A diagram of the structure of a vetor. Notice that each vector has a pointer
to a space and a data container that is build by the space. Many details of the data
container are handled by the Boost multi_array library. [NR]

matrices, or some higher dimensional tensor, then we have a concrete class, derived
from the abstract space class, which we can now create specific instances of. Notice
that all of the in core float spaces would share some methods, for example, checking
compatibility of the spaces.

SEP::Writeable

SEP::inCoreFloat
‘ T

‘ i T T T
‘SEP.:inCoreFIoatlDl |SEP::inCoreFIoatZD| |SEP::inCoreFIOat3D| |SEP::inC0reFIoat4D| |SEP.:inCoreFIoa15D| |SEP::inCoreFIoat6D| |SEP::inC0reFIOat7D‘

Figure 2: The inheritence structure of vector spaces for in core floating point compu-
tations starts with three layers of abstract classes, then each of the concrete derived

classes. Notice that dotted lines signify concrete classes that are not fully imple-
mented. [NR]

Another example of these abstract classes being used is in our structure for defining
operators. Each forward map has an associated domain and range space, as seen in
Figure 3. These spaces can be thought of as model space and data space because the
model and data vectors are elements of these spaces, respectively. All operators are
maps and have a forward operator requiring domain and range spaces, so they inherit
this forward operator from their parent map class. They also have their own adjoint
operator, as is shown in Figure 3. We have provided some basic operators, which are
concrete classes that inherit from the operator class, but as is demonstrated in the
example codes, users can specify their own concrete operator classes.

TESTING ENVIRONMENT

To test the library, we have created a series of unit tests that can be easily compiled
and run. Each test runs some basic operations, and has specific error messages and

SEP-152

Martin et al. 4 SEPVector

Map/Operator

r*domain ‘ *range —‘

’Domain space‘ ’ Range space‘

Vector forward | vector

(model) |« 1 (data)

~adjoint

Figure 3: A diagram of the structure of an operator, which is a type of map. Note
that maps and operators have a domain space and a range space. Maps only have a
forward operator, but operators also have an adjoint. [NR]

output to help the developer pinpoint issues. If there are no problems found by
the tests, they only print the test number and a short summary of the test to the
screen. The user can also run the tests with valgrind to check whether memory is
being managed properly. The tests build up from very simple operations to more
comprehensive ones as follows:

1. Creates and copies space, creates of vector, assigns data to vector, zeroes data
from vector, and checks compatibility of different spaces.

2. Clones a vector and takes the linear combination of two vectors in the same
space.

3. Tests scaling for both ¥y = ax and r = ax.
4. Tests negating a vector for both y = —z and x = —x.

5. Tests equivalent scenarios: linear combination versus scaling after adding so
ar + ay = a(r + y), and scaling versus additive inverse —lz = —z.

6. Tests dot product on a known pair of vectors, and that (z,y) = (y, x)

7. Dot product test on first and second derivative operators to check that (z, Ay) =
(y, Ax)

8. Dot product test on matrix vector multiplication operator for both (z, (I +
A)y) = (y, (I + A)z) and (z, Ay) = (y, A"x).

9. Tests that the conjugate gradient solver is working for a test problem with a
known solution.

Many of these tests run on specific known data like a vector of consecutive integers.
The advantage is that solutions for any length vector can be calculated by hand, so

SEP-152

Martin et al. 5 SEPVector

we know what to expect. The most general test we have is the dot product test, and
test 7 and 8 serve as a nice example of how a user can run the dot product test on
any operator they come up with.

GEE EXAMPLES

Flexibility and usability dictate that writing and constructing problems within this
library should be as readable and intuitive as possible. The majority of the SEP
software legacy has been Fortran based; source-codes provided with reports are largely
written in Fortran90 and make use of simple solver modules that were written a decade
ago, when multi-core performance and heterogeneous environments were less of a
concern. Furthermore, C++ codes, relative to Fortran90, can appear more daunting
and less readable, especially to users with a limited coding background. Concepts
like pointer dereferencing, inheritance and abstract functions are either less visible
or entirely absent in Fortran90, thus to be user-friendly these will be as hidden as
possible.

A series of examples from Claerbout and Fomel (2014) were chosen and imple-
mented using this new vector library. This book contains a number of simple yet
important geophysical concepts which are familiar to many users. Consequently see-
ing how the same problems look in this library compared to the Fortran code will
provide invaluable insight into how to begin using the library for personal purposes.
Especially: how to frame a program, the use of data containers, the use of operators
and combining these classes into a solver.

Included herein is a basic inverse hyperbolic radon code, as seen in Claerbout and
Fomel (2014). The notion of this is simple - an adjoint hyperbolic radon transform
is applied to several spikes in the tau-p space (model space, for this problem) to
produce a series of hyperbolae in that data-space (x-t.) Simply applying the forward
transformation to these data produces a model-space output which is poorly focused
and contains multiple data truncation artifacts. Posing this recovery as an inverse
problem with a conjugate-directions solver produces a cleaner, more representative
series of spikes in the tau-p space.

This demonstrates the use of spaces, vectors, data containers, maps, adjoints
and solvers in a short program. Adapting this problem to larger datasets and more
complex operators will be more straight-forward after building this example.

CONCLUSIONS

In response to more sophisticated seismic imaging procedures, growing datasets and
more heterogeneous computing architectures, we wrote SEPVector, an object oriented
inversion library coded in C++. This code was build from the ground up with modern
architectures in mind, and is thoroughly verified through a series of unit tests. Because

SEP-152

Martin et al. 6 SEPVector

many researchers in SEP primarily code in Fortran, we include a series of familiar
examples that can be compared to Fortran code, as well as extensive easy to navigate
documentation with the code. The primary tools for this library are in place, but
there is still work to be done to expand its capabilities and make it more user friendly.

FUTURE WORK

The framework for multi-CPU core inversion is in place, but there is much work to be
done to extend this library. Current efforts are being put into adding GPU capability,
so extending how arrays are stored and transferred will be necessary. How much of
the current library capability will be adapted for GPU use is still under debate.

More common operators and solvers are being written to save users time when it
comes to, say, taking derivatives, interpolating or calling a conjugate directions solver.
Also more advanced but common operators, such as wave-equation propagators (both
multi-core and GPU) will be written and incorporated into the library in the most
user-friendly manner.

ACKNOWLEDGEMENTS

This work was supported in part by the Department of Energy Computational Science
Graduate Fellowship, provided under grant number DE-FG02-97TER25308.

REFERENCES

A. D. Padula, S. D. S. and W. W. Symes, 2009, A software framework for abstract
expression of coordinate-free linear algebra and optimization algorithms: ACM
Transactions on Mathematical Software, 36, 8:1-8:36.

Baysal, E., D. D. Kosloff, and J. W. Sherwood, 1983, Reverse time migration: Geo-
physics, 48, 1514-1524.

Claerbout, J. and S. Fomel, 2014, Geophysical image estimation by example: Stanford
University.

Clapp, M. L., 2005, Imaging under salt: Illumination compensation by regularized
inversion: PhD thesis, Stanford University.

Clapp, R. G., 2001, Geologically constrained migration velocity analysis: PhD thesis,
Stanford University.

———, 2004, A python solver for out of core, fault tolerant inversion: SEP-Report,
117, 183-190.

Fomel, S. and J. Claerbout, 1996, Simple linear operators in Fortran 90: SEP-Report,
93, 317-328.

Gockenbach, M. S. and W. W. Symes, 1996, Hilbert class library: A library of ab-
stract c++ classes for optimization and inversion: Computers & Mathematics with
Applications, 32, 1-13.

SEP-152

Martin et al. 7 SEPVector

Nichols, D., H. Urdaneta, H. I. Oh, J. Claerbout, L. Laane, M. Karrenbach, and M.
Schwab, 1993, Programming geophysics in C++: SEP-Report, 79, 313-471.

Schwab, M., 1998, Enhancement of discontinuities in seismic 3-D images using a Java
estimation library: 99.

Sirgue, L. and R. G. Pratt, 2004, Efficient waveform inversion and imaging: A strategy
for selecting temporal frequencies: Geophysics, 69, 231-248.

Stork, C., 1992, Reflection tomography in the postmigrated domain: Geophysics, 57,
680-692.

Tang, Y., 2011, Imaging and velocity analysis by target-oriented wavefield inversion:
PhD thesis, Stanford University.

Valenciano, A. A., 2008, Imaging by wave-equation inversion: PhD thesis, Stanford
University.

Woodward, M., 1990, Wave equation tomography: PhD thesis, Stanford University.

SEP-152

