Compression for effective memory bandwidth use
in forward modeling
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ABSTRACT

A common bottleneck in seismic imaging is moving data. Lossy compression
during wave propagation simulations may be a useful tool for decreasing the
amount of data that must be moved. In the future, hardware compression may
be added between main memory and cache memory, so I explore the application
of the fpzip algorithm to compress small sets of data at each time step of acoustic
wave propagation. To make the most of modern architectures, I investigate the
use of wavelet compression of entire wave fields before writing to disk. The
experiments presented show limited promise for using fpzip in seismic imaging
and potential for using wavelet and curvelet compression when writing to disk.

INTRODUCTION

Modern computing is limited by the speed of moving data in computers. Modeling
wave propagation is a fundamental data processing component. It suffers from this
limitation despite being relatively computationally intensive, both between different
levels of cache and main memory, and from main memory to disk. One strategy for
dealing with the data movement during forward modeling is to reduce the amount of
data that is moved. Compression during forward modeling could be a viable option for
seismic imaging if the following conditions are met: 1) compression and decompression
can be done quickly, 2) the amount of data being moved is significantly reduced, and
3) the resulting image is not too corrupted.

Why would forward modeling in seismic imaging be a particularly good candidate
for lossy compression?” Much of the early work in data compression was motivated
by a desire to compress seismic data. Scientists developed methods to compress raw
seismic data so that it is very sparse in some wavelet and wavelet-like bases (Mallat,
2008); (Bosman and Reiter, 1993); (J.D. Villasenor and Donoho, 1996). Additionally,
we may be able to tolerate more errors in forward modeling because we care little
about that wave field. Rather, we care about the end result of a seismic imaging
problem which is fundamentally ill-posed. If we use full waveform inversion (FWI)
we are not guaranteed to calculate a solution close to the true solution even with a
perfect forward modeling operator, so we might be able to allow some information
about an intermediate step in the process to be lost to compression. In the context of
reverse time migration (RTM), the image is the result of many sums of correlations,
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so some errors in the source and receiver wave fields can be tolerated as long as they
are incoherent. If lossy compression allows us to speed up our calculations enough, we
could use the same computer resources to process larger data sets or further explore
the probability distribution of images given our current data set.

In this report, I present two ways of using lossy compression to help alleviate the
computational bottleneck often seen when simulating wave propagation due to our
memory bandwidth limitations of our machines. First, I investigate the possibility
of hardware compression between DRAM and cache using the fpzip algorithm on
small chunks of data (Lindstrom and Isenberg, 2010). Then, I investigate the use of
compressing a full wave field with a wavelet decomposition (R. Wu and Geng, 2008)
prior to writing to disk with the aim of performing these operations on graphics
processing units (GPUs). I look at this strategy for an individual compressed image
that would be used as the input to a reverse time migration, and as a series of
compressions that are used for restarting the forward modeling. For both strategies,
I present reproducible computer experiments to test the robustness of finite-difference
time domain (FDTD) two-way two-dimensional acoustic isotropic wave propagation
to the proposed compression strategies.

COMPRESSION BETWEEN DRAM AND CACHE

Several partial differential equations (PDE) simulations have been shown to withstand
up to a factor of 3-5x lossy compression as chunks of data the size of a cache line
are moved between main memory and cache in D. Laney and Wegener (2013). Two
of these codes are fluid dynamics, and one is a multiphysics plasma-laser interaction
model. The multiphysics code includes an electromagnetic wave propagation package,
but it does not appear that the effect of compression on the wave propagation was
studied in isolation.

Because it is user-friendly and easy to obtain, I chose to use the fpzip algorithm
and code for compression and decompression (Lindstrom and Isenberg, 2010). The
results from D. Laney and Wegener (2013) suggest that fpzip might be expected
to achieve a factor of two compression (the 3-5x ratios were using APAX, which is
produced by a now out-of-business company). The assumption behind fpzip is that
the repetitive data are near each other, and it uses the Lorenz predictor to compress
data based on this assumption (Lindstrom and Isenberg, 2006). There does not seem
to be any prior published work on the use of lossy compression at the scale of cache
lines in acoustic wave propagation. I used Algorithm 1 to compress and decompress
the wave field at each time step.

In this algorithm I assume that the finite difference scheme is second order in
time, but it could be higher order. For the numerical experiments presented later, I
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Algorithm 1 Software compression of wave field between main memory and cache

Initial conditions: u(0,x) = up(x), du(0,x) =0

Compress initial wave field

fori=1,...,nt do
Uncompress wave fields u.(t;_1,x) and u.(t;—o,x) with fpzip file read
Update uy(t;,x) = L (uc(ti—1,X), ue(ti—2, X))
Compress current wave field u,(;,x) with fpzip file write

end for

use the isotropic acoustic second order in time and space wave operator:

v(x; ) dt\
Uy (tiyXj) = (%) (we(tic1, Xjo1k) + te(tizr, Xjp1k) — due(tizn, Xjk)

+ ue(ticr, Xjp1) + ue(tizr, X p41)) + 2ue(tir, X5 6) — ue(tizo, Xj5)(1)

where dt is the time step, dz is the spatial grid size, v(x) is the velocity model,
u. is the wave field after compression, and wu, is the wave field before compression.
This compression scheme could be extended to other wave operators that are more
physically realistic.

WAVELET COMPRESSION OF FULL WAVE FIELDS

Data movement between cache and DRAM takes as long as a couple hundred cycles,
but it takes even longer to write to disk. Some algorithms for reverse time migration
(RTM) require writing to disk once every four time steps in a forward model. Other
algorithms may require writing to disk less frequently for checkpoints that could
potentially be used for restarting the computation if it is interrupted.

Wavelet compression was a strategy used in the nineties for storing and trans-
mitting large volumes of seismic data from the field to computers at offices. For
two-dimensional wavelets, it was possible to get acceptable compression by up to a
factor of approximately 20. However, the real savings were found for three dimen-
sional wavelets, which could accept compression by a factor of 100 while maintain-
ing a close approximation to the original data (J.D. Villasenor and Donoho, 1996).
It is important that the reduction in memory bandwidth is more significant than
the increase in computation, so this strategy may be most effective on architectures
which can perform fast compressions. GPUs have been shown to perform significantly
faster than traditional processors for computing wavelet compression and decompres-
sion(T. Wong and Wang, 2007). This suggests that multidimensional wavelet com-
pression of a wave field (perhaps on the CPU while the GPU continues propagation
calculations) before each disk write may be useful for reducing the amount of data
actually written to disk.

The data compressed in previous studies (J.D. Villasenor and Donoho, 1996) was
only the recorded wave field over many samples at the surface sensor locations. We
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need to compress an entire wave field from just one or two time steps for each disk
write, which may require a different wavelet basis or produce different acceptable
compression ratios. Here I present results for two-dimensional acoustic modeling as a
first step towards compression for three-dimensional modeling. Wavelet compression
of individual photographs has been explored on GPUs (T. Wong and Wang, 2007), but
our report investigates compression both in the context of individually compressed
images that are used as inputs to RTM, and in the context of restarting a wave
propagation simulation.

One way to deal with computational failures is restarting a simulation from check-
points. Hopefully errors would not happen very often, and we would rely on these
checkpoints much less frequently than we actually are writing to disk. Is it possible
to rely on only compressed wave fields for checkpointing, or do the errors grow too
much? Algorithm 2 describes one possible compression scheme in this context where
the user would set some threshold of error or compression ratios.

Algorithm 2 Software compression of wave field for checkpoint /restart from disk

Initial conditions: u(0,x) = up(x), du(0,x) =0
Compress initial wave field into wavelet basis with threshold
Write to disk
f is number of time steps between writing to disk
fori=1,....,nt do
if restart is needed then
Go back to time step i — (¢ mod f)+1
Uncompress wave fields u.(¢;_1,x) and u.(t;_2,x) from wavelet basis
end if
Update uy,(t;,x) = L (uc(ti-1,X), uc(ti—2, X))
if ©+ mod f == 0 then
Compress u,(t;, X), u,(t;—1,X) in wavelet basis
Write to disk
end if
end for

As before, L in Algorithm 2 could be any wave operator, and the dependence on
two time steps is just for the assumption that it is a second order in time scheme.
This algorithm could be adapted to leave out the ’if restart is needed’ step, and the
wave fields written to disk could be used for RTM or another imaging procedure. In
the following experiments we use a second order in space, second order in time FDTD
isotropic acoustic two-dimensional forward model. In this study, we only investigate
how robust this forward modeling operator is to compression.

HOW TO MEASURE ERROR

For these toy experiments, I measured errors by also calculating the wave field with
the same wave operator but without any compression. This is only done for small
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problems to build an idea of good compression ratios and types of compression; it
would never be done in practice. I chose to measure the average relative error per
time step as measured by the Frobenius norm of pointwise differences

1 nt Uti,' —Uuti,' %
E;H L @)

where u is the comparison wave field that is never compressed, and wu, is the wave
field that has undergone compression. A phase shift might appear as a large error
when measured this way, but it may not be much of an issue if it does not result in
different structures in the final image. A better way to measure errors would show if
new shapes are introduced, as can be done with prediction error filters (Clapp, 2008).
In fact, an ideal measure of error for test problems would look at the resulting image
to detect any changes rather than the wave field.

EXPERIMENTS WITH FPZIP

To test what compression ratios could be achieved with fpzip, I ran an example for
which I already had a good idea what the wave field should look like: a two layer
velocity model. I studied a 16 km by 16 km region discretized by 16 m by 16 m grid
blocks with a top layer that was 4 km deep and has velocity 4 km/s, and a 12 km
thick bottom layer with wave speed of 3 km/s. To satisfy the CFL condition, I used a
time step of 0.002 seconds, and observed the domain for 1.6 seconds (800 time steps).
To keep the code simple, the region has reflecting boundary conditions (wave field set
to zero), and a single source in the middle (8 km, 8 km) which was a Ricker wavelet
with peak frequency of 10 Hz:

s(t;) = (1 — 2(10m(10 — 4)dt)?)e~(10m(10-0)d)? (3)

I did these calculations in both single and double precision, with four levels of com-
pression (including lossless), as seen in Figures 1(a) and 1(b).

Although it is possible to visually inspect these images and see that some are
nearly identical, it is preferable to quantify these differences. I calculated the average
relative Frobenius norm error (Figure 2). As seen in both the error plot and the
wave fields, a factor of 4/3 compression is acceptable, as is a factor of two for double
precision. A factor of two compression for the single precision calculation seems to
maintain the information about the discontinuity in the velocity model, but it gives
the false appearance of dispersion. This false dispersion results in a relatively large
pointwise error that is even worse than the factor of four compression. The factor
of four compression retains a little information about the double precision, but much
less than the factor of two compression of single precision. Why? The difference
occurs because the single precision allows more points to be included in the Lorenz
predictor. A factor of four compression of single precision loses all useful information.
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(b)

Figure 1: Wave field at 1.6 seconds produced by a centrally located source in the two
layer velocity model for both single (top) and double (bottom) precision computations
with compression ratios (left to right): 1x (lossless), 4/3x (24 bit single, 48 bit double),
2x (16 bit single, 32 bit double), 4 (8 bit single, 16 bit double). [ER]
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Figure 2: Lossy compression with fpzip on double precision and single precision was
tested. Lossless compression (0 error) was 32 bits for single precision and 64 bits for
double precision. The average relative error per time step as sampled every 100 time
steps in the Frobenius norm is plotted. [ER]
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Although it is not realistic, a two layer velocity model is nice because it is easy to
predict what the wave field should look like. To look at the result of compression on
a more realistic synthetic example, I turned to the Marmousi model(Benamou, 1996).
The model I used was 9192 m by 2904 m divided into 24 m by 24 m blocks. I used
the same source as for the two layer model, and I again placed it in the center of the
model with reflective boundaries on all sides. I recorded this wave field everywhere
for 500 time steps, which were 0.00218 s long to respect the CFL condition. The
resulting wave fields at just over a second after the start can be seen in Figures 3(a)
and 3(b). The error results were nearly identical to those of Figure 2.

Figure 3: (Left) Double precision and (right) single precision at 500 time steps from
source in center of Marmousi model for (top to bottom) compression by factor of 1,
4/3, 2, and 4. [ER]

A factor of two compression for double precision is nearly identical to lossless
compression. For single precision, the major features of the wave field look similar,
but it is unclear what the result of this will be on the final image. A factor of
four compression for double precision does not contain enough information for a good
image. A factor of four compression contains no useful information for single precision.

EXPERIMENTS WITH WAVELET AND CURVELET
COMPRESSION

The high compression ratios (around 100) achieved in J.D. Villasenor and Donoho
(1996) required using the 9/7 biorthogonal CDF wavelet filter, which is available in
the toolbox, but called the biorthogonal 4.4 wavelet. For two dimensions, a ratio
of at least 25 could be achieved, although it is unclear what wavelet set was used to

SEP-152



Martin 8 Forward model compression

achieve these ratios (Bosman and Reiter, 1993). To quickly get a wavelet compression
for the purpose of evaluating robustness of forward modeling to compression, I used
the Matlab wavelet toolbox. The other approach I used was compression with the
CurveLab Matlab library (E. Candes, 2007). For these experiments, I again used the
Marmousi model from Benamou (1996) with the same source, reflective boundaries
on all sides, and 400 times steps that are each 0.00218 s long.

In the first experiment, I simulated compression when writing to disk for the
purposes of checkpointing and restarting to see whether the CDF wavelet or curvelets
were better suited to the purpose of restarting computation. For both wavelets and
curvelets, errors introduced by compression will build on each other and grow, so the
question is whether this growth is more controlled by one type of compression. I used
a level two decomposition with the CDF 9/7 wavelet, with a hard global threshold set
at ten. For the curvelet compression I used eight angles and for each angle, kept any
nonzero coefficients at least one fiftieth the size of the maximum nonzero coefficient.
To quickly see the effects of restarting from a compressed wave field, I compressed
the wave field every fifty time steps, then used the compressed field to continue the
forward modeling. The errors and compression ratios can be seen in figures 4(a), 4(b),

and 5(a), 5(b).
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Figure 4: Differences between the wave field with and without compression grow as
time goes on when compressed wave fields are used for restarting wave propagations
every fifty time steps. A simple measure of this is relative I error for (left) a two level,
eight angle curvelet compression keeping coefficients at least one fifteenth the maxi-
mum coefficient, and (right) a one level CDF 9/7 compression with a hard threshold
at ten. [CRJ, [ER|]

The results from Figures 4(a), 4(b), 5(a) and 5(b) show that errors due to
compression in both the curvelet and wavelet domains grow as compression is applied
to previously compressed wavefields. The level of compression begins at a similar
level but as the computation progresses, the sparsity level in the wavelet domain
appears to be more controlled than in the curvelet domain. The growth of errors in
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8 Angle, Level 2 Curvelet Compression Level 1 CDF 9/7 Wavelet Compression

02f

- 01r

No. nonzeros / n_*n
.
No. nonzeros /n_*n

o . . . . . . . . . . . . .
50 100 150 200 250 300 350 a 50 100 150 200 250 300 350 a
Time steps Time steps

(a) (b)

Figure 5: When using compressed wave fields for restarting wave propagation calcu-
lations every fifty time steps, the ratios of nonzeros kept in compressed version to
size of the spatial domain increase. This happens both for (left) level two eight angle
curvelet that retains coefficients at least one fifteenth the maximum coefficient, and
(right) a one level CDF 9/7 compression with a hard threshold at ten. [CR], [ER]

both domains is overall about the same size, but the growth is more continuous in
the curvelet domain, while in the wavelet domain most of the error appears to occur
right at the compression step. However, it is difficult to draw conclusions on this
measure of error, because visual inspection shows that smaller amplitude events are
picked up much better by the curvelet domain than the wavelet domain.

The final experiment I conducted was simply compressing an individual wave
field to get an idea of how much compression might be acceptable in both the wavelet
and curvelet domains when those compressed wave fields are only going to be used
as an input to RTM. Figure 6 shows the 400th time step of a second order FDTD
propagation of a 10 Hz peak Ricker wavelet at the center of the the Marmousi domain
with reflective boundaries and two compressed versions.

The results that led to Figure 6 also show that in the curvelet domain with eight
angles, a compression that keeps only coefficients at least one fifteenth the size of the
maximum coefficient (i.e. fourteen percent as many nonzeros as n,n,) gives acceptable
results with ||u.(400 % 0.00218, ) — «(400 % 0.00218, x)||2/||«(0.00218, z)||» = 13%. A
two level CDF 9/7 wavelet decomposition with hard global threshold ten can achieve a
reasonable result with ||u.(400%0.00218, x) —u(4000.00218, x)||2/||x(0.00218, x)||s =

35% by using just 8% as many nonzero coefficients as n,n..

This is not quite as good a compression ratio as was achieved for two-dimensional
wavelet compression in Bosman and Reiter (1993), but the spatial relation of the
data being compressed was different. Also note that the choice of wavelet filter
was motivated by three dimensional data compression results rather than the two-
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Figure 6: (Bottom) compressed with two level eight angle curvelet and only retaining
coefficients at least one fifteenth the max coefficient size, (middle) uncompressed,
(top) compressed with CDF 9/7 two level wavelets with hard threshold set to ten.
[CR]
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dimensional results since the aim is to have a method that will eventually make large
three dimensional problems more manageable. However, these errors propagate in
a nonlinear way to the final image, so this forward modeling procedure will need to
be put into a more complete imaging workflow to understand the errors introduced
in the image due to lossy compression in the middle of wave (forward and adjoint)
propagation.

DISCUSSION

These experiments show that compression with fpzip has limited success, yielding
reasonable results while requiring as little as half the bandwidth between DRAM and
cache memory. Experiments for wavelet compression of full wave fields when writing
to disk show that the data could be reduced by a factor of around ten without sig-
nificant impact on the wave field. For both strategies, more informative measures of
error should be used. The impact on the imaging process as a whole also needs to
be evaluated by substituting either Algorithm 1 or Algorithm 2 for the forward and
adjoint modeling, and by using the output of isolated compressions as an input to
RTM. Because of the limitations of small scale compression and the fact that hard-
ware compression between DRAM and cache has yet to be implemented, future work
will likely focus on full wave field compression on GPUs when writing to disk. This
includes a study of compression of three-dimensional wave fields, which we expect
to accomodate higher compression ratios, with more realistic finite difference opera-
tors and moving the wavelet compression and decompression to GPUs to get timing
results.
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