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Preface

The electronic version of this report1 makes the included programs and applications available
to the reader. The markings [ER], [CR], and [NR] are promises by the author about the
reproducibility of each figure result. Reproducibility is a way of organizing computational
research that allows both the author and the reader of a publication to verify the reported
results. Reproducibility facilitates the transfer of knowledge within SEP and between SEP
and its sponsors.

ER denotes Easily Reproducible and are the results of processing described in the pa-
per. The author claims that you can reproduce such a figure from the programs,
parameters, and makefiles included in the electronic document. The data must either
be included in the electronic distribution, be easily available to all researchers (e.g.,
SEG-EAGE data sets), or be available in the SEP data library2. We assume you have
a UNIX workstation with Fortran, Fortran90, C, C++, X-Windows system and the
software downloadable from our website (SEP makerules, SEPlib, and the SEP latex
package), or other free software such as SU. Before the publication of the electronic
document, someone other than the author tests the author’s claim by destroying and
rebuilding all ER figures. Some ER figures may not be reproducible by outsiders
because they depend on data sets that are too large to distribute, or data that we do
not have permission to redistribute but are in the SEP data library.

CR denotes Conditional Reproducibility. The author certifies that the commands are in
place to reproduce the figure if certain resources are available. The primary reasons
for the CR designation is that the processing requires 20 minutes or more, MPI or
CUDA based code, or commercial packages such as Matlab or Mathematica.

NR denotes Non-Reproducible figures. SEP discourages authors from flagging their fig-
ures as NR except for figures that are used solely for motivation, comparison, or
illustration of the theory, such as: artist drawings, scannings, or figures taken from
SEP reports not by the authors or from non-SEP publications.

Our testing is currently limited to LINUX 2.6 (using the Intel compiler), but the code should
be portable to other architectures. Reader’s suggestions are welcome. More information on
reproducing SEP’s electronic documents is available online3.

1http://sepwww.stanford.edu/private/docs/sep148
2http://sepwww.stanford.edu/public/docs/sepdatalib/toc html
3http://sepwww.stanford.edu/research/redoc/
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Fast log-decon with a quasi-Newton solver

Antoine Guitton

ABSTRACT

I speed up the log-decon method by replacing the slow steepest-descent method with
a faster quasi-Newton technique known as the limited-memory BFGS.

INTRODUCTION

The log-decon method of Claerbout et al. (2011) estimates a filter that can both handle
non-minimum phase wavelets (e.g., Ricker) and produce sparse seismic reflections where
the polarity is easily identifiable. This method is extended in Claerbout et al. (2012) to
include variable gain. Claerbout proposes to compute the filter coefficients with a steepest-
descent approach, where the step length can be estimated very accurately with a Newton-
search technique. Steepest descent is notoriously slow: its convergence rate depends on the
conditioning of the problem producing a well-known zig-zagging effect close to the solution.
Here, I propose to employ the L-BFGS method, a quasi-Newton technique that improves
the convergence and decreases the number of iterations.

TWO SOLVERS

In this section, I follow Claerbout’s notations for all the variables: lower case letters are
for variables in time and space, while upper case letters are for variables in frequency and
space.

The slow steepest-descent method

The steepest descent method requires the computation of the gradient. The model space
is a vector of filter coefficients u(t). Claerbout shows that the gradient du(t) of the sparse
log-decon method corresponds to the crosscorrelation of the residual (the reflectivity series)
with the soft-clipped residual (see Claerbout et al. (2012) for a generalization with a variable
gain). The pseudo-code below shows the steepest descent algorithm.

Once u(t) is estimated, we obtain the wavelet w(t) = FT−1
(
e−U(ω)

)
and the sparse

decon output r(t) = FT−1
(
D(ω)eU(ω)

)
, where D(ω) is the Fourier transformed input data.

The fast L-BFGS method

The L-BFGS method is a member of the quasi-Newton family: it updates at each iteration
an approximation of the inverse Hessian Q. This technique is very cost effective: given

1



2 Guitton SEP–148

the most recent history of gradient and model vectors (usually around 5) kept in memory,
the quasi-Newton search direction Qdu (inverse Hessian times the gradient) is computed
directly with simple vector multiplications. Therefore, the L-BFGS solver can be used for
large non-linear problems (Nocedal, 1980).

Contrary to steepest descent where the step length is estimated with a Newton-search
technique, the step length in L-BFGS is computed such that sufficient decrease of the er-
ror and of the local curvature is attained (so called “Wolfe conditions”). The appendix
shows the L-BFGS solver in more details. The L-BFGS code can be downloaded at
http://users.eecs.northwestern.edu/˜nocedal/lbfgs.html The pseudo-code below shows both
the steepest-descent and L-BFGS algorithms.

U = 0. # or other initializations
Remove the mean from U(omega).

Iteration {
dU = 0
Compute dU
Remove mean from dU
du = FT(dU)
if (steepest descent)
{
Compute alfa with Newton iterations
u = u + alfa*du
}

else if (L-BFGS)
{
Compute alfa with More and Thuente method
u = u + alfa*Qdu # Q = inverse approximate Hessian
}

}

A fair warning

Comparing the convergence of optimization techniques can be quite difficult to do in a
fair manner. My steepest descent algorithm includes a termination criterion based on the
Armijo rule only, namely, a sufficient decrease condition of the objective function (whereas
L-BFGS use the Wolfe conditions). In addition, both the steepest descent and L-BFGS
algorithms have different line-searches, which will affect convergence and computational
performances. The L-BFGS line-search is based on the More and Thuente method, which
uses bracketing and quadratic/cubic interpolation. The steepest-descent algorithm uses
a very simple scheme where the step length is divided by two until the sufficient decrease
condition is respected. Therefore, some of the computational differences come from the line-
search algorithm and stopping criteria in addition to the inherent convergence properties of
the two methods.



SEP–148 Quasi-Newton log-decon 3

A COMPARISON ON A FIELD-DATA EXAMPLE

Figure 1 shows a near-offset section of a 2-D line from the Gulf of California used in
Claerbout et al. (2012). The left side displays the input data and the right side the deconed
data when the L-BFGS solver is used. I do not show the result of the steepest-descent
because both methods estimate very similar wavelets, as shown in Figure 2. As expected,
the reflectivity of the deconed data in Figure 1 is revealed quite well: the polarity of large
reflectors is enhanced. Also, a non-minimum phase wavelet is obtained, regardless of the
method (Figure 2).

In terms of convergence speed, it takes 35 iterations and 1.7 seconds for the L-BFGS
technique to reach a minimum, and 123 iterations and 24 seconds for the steepest-descent
algorithm (Figure 3). Ignoring the time it takes to read and write data on disk, each
iteration of the L-BFGS algorithm is about five times faster, with almost four times less
iterations. Clearly, this difference is not solely due to the better convergence properties
of the quasi-Newton algorithm over the steepest-descent method. As mentioned before,
different line-search strategies and stopping criteria matter as well.

Figure 1: Left: input data. Right: deconed data with the L-BFGS solver
antoine1/. Comp-cabo
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Figure 2: Top: wavelet estimated with the L-BFGS method. Bottom: wavelet estimated
with the steepest-descent method. antoine1/. Comp-wvlt

Figure 3: Convergence compari-
son between the steepest descent
(solid) and L-BFGS (dash) meth-
ods. Note the narrow horizon-
tal scale to highlight small differ-
ences close to the convergence point.
antoine1/. Comp-fct
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CONCLUSION

The log-decon method is sped up by using the L-BFGS method compared to the steepest-
descent solver. A factor 20 is observed in this paper but results will vary depending on the
experimental setup.

APPENDIX

The L-BFGS method is suitable for smooth functions where local minima exist. It is not a
method for global optimization where the global minimum is sought. L-BFGS is presented
here in general terms using global definitions for the different variables: it does not follow
the notations of the log-decon method.

We define m∗ a local minimizer for f(m) and we assume that f(m) and m∗ satisfy the
“standard requirements”:

1. f is twice differentiable,

2. ∇f(m∗) = 0,

3. ∇2f(m∗) is positive definite , i.e., m′∇2f(m∗)m > 0 for all m ∈ <N (′ denotes the
adjoint).

where N is the dimension of the model vector m and <N the real space for the model vector
m. Any vector m∗ that satisfies the standard requirements is a local minimizer of f(m).

Newton’s method is an iterative process where the solution to the problem is updated
as follows:

mk+1 = mk − λkH−1
k ∇f(mk), (1)

where mk+1 is the updated solution at iteration k + 1, λk the step length computed by a
line search that ensures a sufficient decrease of f(m) and Hk = ∇2f(mk) the Hessian (or
second derivative). In many circumstances the inverse of the Hessian can’t be computed
directly. It happens for example when the matrix H is too big or when operators are used
rather than matrices. Fortunately we might be able to compute an approximation of the
Hessian of f(m). This strategy gives birth to quasi-Newton methods where the way in
which the Hessian is computed determines the method (Kelley, 1999).

A possible update of the Hessian is given by the BFGS technique Broyden (1969);
Fletcher (1970); Goldfarb (1970); Shanno (1970). The BFGS update is given by

Hk+1 = Hk +
yy′

y′s
− (Hks)(Hks)′

s′Hks
, (2)

where s = mk+1−mk and y = ∇f(mk+1)−∇f(mk). In practice, however, we rather write
the previous equation in terms of the inverse matrices. We have then

H−1
k+1 =

(
I− sy′

y′s

)
H−1

k

(
I− ys′

y′s

)
+

ss′

y′s
. (3)

In addition, we use the history of the iterations to compute the new Hessian rather than a
full storage of the matrix H−1

k . This requires that a gradient step vector y and a solution
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step vector s are kept in memory after each iteration. Consequently this method might not
been affordable with large data and model space. In the next section a modified version of
the BFGS method that limits the storage needed to compute the update of the Hessian is
proposed.

The limited-memory BFGS method

Nocedal (1980) derives a technique that partially solves the storage problem caused by the
BFGS update. Instead of keeping all the s and y from the past iterations, we update the
Hessian using the information from the l previous iterations, where l is given by the end-
user. This implies that when the number of iterations is smaller than l, we have the usual
BFGS update, and when it is larger than l, we have a limited-memory BFGS (L-BFGS)
update.

I give the updating formulas of the Hessian as presented by Nocedal (1980). First, we
define

ρi = 1/y′
isi, vi = (I − ρiyis′i) and H−1 = B.

As described above, when k, the iteration number, obeys k + 1 ≤ l, where l is the storage
limit, we have the BFGS update

Bk+1 = v′
kv

′
k−1 · · ·v′

0B0v0 · · ·vk−1vk

+v′
k · · ·v′

1ρ0s0s′0v1 · · ·vk

... (4)
+v′

kρk−1sk−1s′k−1vk

+ρksks′k.

For k + 1 > l we have the limited-memory update

Bk+1 = v′
kv

′
k−1 · · ·v′

k−l+1B0vk−l+1 · · ·vk−1vk

+v′
k · · ·v′

k−l+2ρk−l+1sk−l+1s′k−l+1vk−l+2 · · ·vk

... (5)
+v′

kρk−1sk−1s′k−1vk

+ρksks′k.

These equations show how the update of the Hessian is calculated.

Usually the L-BFGS method is implemented with a line search for the step length λk to
ensure a sufficient decrease of the misfit function. Convergence properties of the L-BFGS
method are guaranteed if λk in equation (2) satisfies the Wolfe conditions (Kelley, 1999):

f(xk + λkdk) ≤ f(xk) + µλk∇f(xk)′dk, (6)
|∇f(xk + λkdk)′dk| ≥ ν|∇f(xk)′dk|. (7)

ν and µ are constants to be chosen a priori and dk = −Bk∇f(mk). For ν and µ we set
ν = 0.9 and µ = 10−4 as proposed by Liu and Nocedal (1989). Equation (6) is a sufficient
decrease condition that all line search algorithms must satisfy. Equation (7) is a curvature
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condition. The line search algorithm has to be carefully designed since it absorbs most of
the computing time. I programmed a line search based on the More and Thuente (1994)
method. Because the line search is time consuming, the step length λk = 1 is always tested
first. This procedure saves a lot of computing time and is also recommended by Liu and
Nocedal (1989). I now give the algorithm used to minimize any objective function involving
nonlinear problems.

An efficient algorithm for solving nonlinear problems

The solver works as follows:

1. Choose m0, l, B0. Set k = 0.

2. Compute

dk = −Bk∇f(mk), (8)
mk+1 = mk + λkdk, (9)

where λk meets the Wolfe conditions.

3. Let l̂=min{k, l − 1}. Update B0 l̂ + 1 times using the pairs {yi, si}k
j=k−l̂

, i.e., let

Bk+1 = v′
kv

′
k−1 · · ·v′

k−l̂
B0vk−l̂ · · ·vk−1vk

+v′
k · · ·v′

k−l̂+1
ρk−l̂sk−l̂s

′
k−l̂

vk−l̂+1 · · ·vk

... (10)
+v′

kρk−1sk−1s′k−1vk

+ρksks′k. (11)

4. Set k = k + 1 and go to 2 if the residual power is not small enough.

The update Bk+1 is not formed explicitly; instead we compute dk = −Bk∇f(xk) with
an iterative formula Nocedal (1980). Liu and Nocedal (1989) propose scaling the initial
symmetric positive definite B0 at each iteration as follows:

B0
k =

y′
ksk

‖ yk ‖2
2

B0. (12)

This scaling greatly improves the performances of the method. Liu and Nocedal (1989)
show that the storage limit for large-scale problems has little effects. A common choice for
l is l = 5. In practice, the initial guess B0 for the Hessian is the identity matrix I; then
it might be scaled as proposed in equation (12). The nonlinear solver as detailed in the
previous algorithm converges to a local minimizer m∗ of f(m).
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Modeling data error during deconvolution

Jon Claerbout and Antoine Guitton

ABSTRACT

Our current decons take the data sacrosanct and find the best noncausal wavelet to
deconvolve it with. We propose allowing the data to include an explicit noise that does
not fit the convolutional model. We write regressions to define this noise, and develop
an expression for the gradient needed to fit the regressions.

INTRODUCTION

Data fitting with the `1 norm has well-known remarkable qualities. Even more suitable to
seismic problems is the hyperbolic penalty function h(r) =

√
1 + r2 − 1 (Li et al. (2010)).

Applying it to deconvolution of 2-D synthetic data easily solved a complicated case not solve-
able by `2 decons (Zhang and Claerbout (2010a)). Unfortunately, application to field data
was not successful. Returning to synthetic data, the culprit turned out to be the minimum-
phase assumption. This can be understood by examining the Ricker (non-minimum phase)
wavelet, a long-standing example of a wavelet hard to spike.

Solving for a product of forward and backward PEFs achieved an excellent result on
synthetic data and a spectacular result on a Gulf of Mexico data set (Zhang and Claerbout
(2010b)). By deconvolving properly we were delighted to find we had made reflection
coefficient polarity much more clear. We were highly motivated to improve on this and
integrate it with impedance estimation. Not well documented were difficulties connected
with polarity reversal and apparent time shifts. They were attributed to the non-linearity
of the method.

Claerbout et al. (2011) reformulated the problem in the frequency domain with the
unknown parameters being the values at lags defining the log spectrum. This avoided many
problems, but extensive testing by Qiang Fu and Yi Shen revealed reliability issues much
like those identified by Zhang. For a long while we understood our difficulty to be a need
for preconditioning to guide the non-linear problem closer to the desired solution. Suddenly
we came to realize the problem is more like a null space, though not exactly that because of
the nonlinearity. The apparent polarity reversals and time shifts resulted from spiking the
first or the third lobe of the Ricker wavelet instead of consistently spiking the middle lobe.
Claerbout (2012) resolved these problems by means of a regularization (called the Ricker
regularization) that ensures Ricker-like wavelets. Unfortunately, like all regularizations, you
can never be sure how much to add, leading to degraded results when you add too much.

Then the non commutivity of gain with filtering was theoretically resolved leading to
small but noticable improvements (Claerbout et al. (2012)). Guitton and Claerbout (2012)
also added a regularization term that penalizes long positive or negative lags of the filter.
This penalty ensures that the estimated wavelet does not shift in masking areas that can
be present in the gain function (i.e., preventing local minima).

9
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With stability now under much better control (we still need to experiment with strength
of the regularizations) we set out to demonstrate that sparse decon principles could find
natural cutoffs for high and low frequencies in data. We seemed to be seeing frequencies
dangerously close to the 125Hz Nyquist on our available 4ms data so we ordered and waited
to obtain 2ms data to boost the Nyquist to 250 Hz. Much to our horror (Guitton and
Claerbout (2012)), sparseness decon, like old fashioned l2 decon, boosts energy up to near
the new much higher Nyquist. Also discovered in that paper is that our shot wavelets are
picking up sea swell noise. We do not wish to filter out sea swell as a preprocess because
we do not wish to lose low frequency information that could be essential to impedance
estimation. Swell noise modeling has been done by Parrish (2005). Subtracting such models
should work better than filtering.

The formulation of this paper integrates sea swell modeling with our non minimum-
phase, sparseness goaled, shot waveform estimation and data deconvolution. The experi-
mental results mentioned above led to the theory you find here. What else might we find?
We expect the noise to contain any bits of the data with non-typical spectra, both ampli-
tude and phase. Besides the low-frequency sea swell, we might find the water bottom itself
and its multiples contain the very high frequencies that we do not expect in waves that
penetrate the earth.

INTRODUCING NOISE AS ITSELF A MODEL

The idea of this paper is that we should not try push all our data into the convolutional
model. We should explicitly solve for an unknown part of the data that poorly fits this
model. I call this part noise and define it negatively −N (so the minus sign is missing from
all the analysis and code).

The decon filter C = eU , parameterized by U , we take as noncausal. The constraint
is no longer a spike at zero lag, but a filter whose log spectrum vanishes at zero lag,
0 = u0 =

∫
lnC(ω) dω, so we are now constraining the mean of the log spectrum. This is

a fundamental change which we confess to being somewhat mysterious.

The single regression for U including noise N now becomes two.

0 ≈h (D + N)eU = (D + N)C (1)
0 ≈2 N (2)

The notation ≈h means the data fitting is done under a hyperbolic penalty function.
The regularization need not be `2. To save clutter I leave it as `2 until the last step when I
remind how it can easily be made hyperbolic.

Under the constraint of a causal filter with c0 = 1, traditional auto regression for
ct = FT−1C with its regularization looks more like

0 ≈ N = Dc (3)
0 ≈ c (4)

Comparing equations 1-2 with 3-4 you see we are not simply rehashing traditional method-
ology but seem to be off in a wholly new direction! We are here because C = eU solved our
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non-minimum phase problem, and seeing sea swell in our estimated shot wavelets told us
we need to replace D by D + N .

Antoine noticed the quasi-Newton method of data fitting requires gradients but not
knowledge of how to update residuals ∆r so the only thing we really need to think about
is getting the gradient. The gradient wrt U is the same as before (Claerbout et al. (2011))
except that D + N replaces D. The gradient wrt N is the new element here.

Let d, n, and c be time functions (data, noise, and filter). Let r = (d − n) ∗ c be the
residual. Let ht = h(rt) = hyperbolic stretch of r. Expressing our two regressions in the
time domain we minimize

min
n

∑
t

n2/2 + h((d + n) ∗ c) (5)

A scaling factor is required between the terms. We expect to learn it by experimentation.

Now we go after the gradient, the derivative of the penalty function wrt each component
of noise ns. Let the derivative of the penalty function h(rt) wrt its argument rt be called
the softclip and be denoted h′

t = h′(rt). Let H ′ denote the FT of h′. Let c′(t) be the time
reverse of c(t) while in Fourier space C ′ is the conjugate of C.

∆ns = ns +
∂

∂ns

∑
t

h(rt) (6)

= ns +
∑

t

h′(rt)
∂

∂ns
(d + n) ∗ c (7)

= ns +
∑

t

h′
t

∂

∂ns

∑
τ

nt−τcτ (8)

= ns +
∑

t

h′
t

∂

∂ns

∑
j

njct−j (9)

= ns +
∑

t

h′
t ct−s (10)

= ns +
∑

t

h′
t c′s−t (11)

∆N = N + C ′H ′ (12)

For simplicity I set out with a quadratic penalty function on the noise, but it is easy to
make it hyperbolic. Simply use softclip on n. Change ∆n = n + · · · to ∆n = h′(n) + · · · .

Now having the gradient we should be ready to code.

ALGORITHM

Before altering the old algorithm we need to be careful about a couple things. We may
need different gain functions for (d + n) ∗ c and for n. Sea swell is quite stationary in its
physics, but the hyperbolic penalty function applies to the statistical perspective which is
one where images are boosted in time from their physical form. We also need to be careful
not to mix up h(n) with h(r = (d + n) ∗ c). We will need to scale the regularization with
the fitting by experimentation.
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We could update the old algorithm (Claerbout et al. (2011)) with the new noise parts.
Alternately, we could follow the suggestion of Antoine and switch to the quasi Newton
method. In either case we’ll need to introduce a scale factor (learned from practice) to
choose how much of D ends out in N .

INTERNET HUMOR

Theory is when you know everything but nothing works.

Practice is when everything works, but you don’t know why.

In our lab, theory and practice are combined. Nothing works and nobody knows why.
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Decon comparisons between Burg and conjugate-gradient
methods

Antoine Guitton and Jon Claerbout

ABSTRACT

In testing on several nearby data sets, three shown here, the Burg method of deconvo-
lution exhibited no issues of numerical round-off. In every case it did exhibit whiteness,
an aspect of the theory normally considered desirable. Prediction-error code based on
conjugate gradients (actually conjugate directions) showed some minor issues. Out-
put comparisons of the two were never perceptibly different on paper documents such
as this. When those same PDF documents are viewed on a screen, differences might
be noticeable with “blink” screen presentation. Doing no more than the number of
iterations theoretically predicted (equal to the number of filter coefficients) gave differ-
ences generally noticeable with blink presentation. Tripling the number of iterations
made the differences much smaller, sometimes differing at a mere handful of pixels.
Although discrepancies were minuscule on the filtered data, the differences are quite
clear in a spectral comparison. Differences tend to occur at the very high and very low
frequencies that are weak in the field data.

INTRODUCTION

The classical stationary linear least-squares deconvolution problem may be solved in a
variety of ways. While testing our new sparseness deconvolution method (non-causal, non-
linear, hyperbolic penalty) we had occasion to use some classic methods for comparisons.
In particular, we used the Burg decon code (Claerbout, 1976) and the conjugate direction
(CD) code (Pef in Claerbout and Fomel (2012)). In the absence of precision issues, the CD
code is theoretically equivalent to the conjugate gradient method. Unexpectedly, during our
early studies some astonishing differences appeared. Were these differences due to coding
bugs, improper comparisons, or precision issues not previously recognized by us? Perhaps
all. These two methods do differ in some fundamental aspects, principally but not entirely
related to end effects. Another difference is that the Burg method assures a minimum-phase
filter but that is not true of the regression methods in GEE, namely Pef.

PRECISION AND ACCURACY

Focusing on precision we arrange our study so end effects are minimal and the stationarity
assumption is not stressed. We are not attempting an exhibition of known theoretical
differences, but we do intend to obtain for practical work, guidelines for dealing with poorly
understood numerical-analysis issues.

Reflection data is not stationary; and it comes exhibiting diverse aspects [reference
Yilmaz and Cumro shot profiles]. We chose simply to test with several of our current data

13
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sets of interest. Results with three of them are included here. To simulate stationarity,
Kjartansson t-squared gain is applied. We also taper the ends of the trace to avoid any
transients there. Additionally, we average spectra of hundreds to thousands of traces in
each data set. This average spectrum is used to devise a single decon filter applied to every
trace in the data set.

We were not aware of precision issues with the Burg method, neither were we aware that
it has been tested under modern environments where high order filters are easily computed.

The conjugate-direction method in GEE has some issues likewise never investigated.
Theoretically it converges in a number of steps equal the filter length, but this says nothing
about precision. It is easy enough to do more iterations than required. Thus we have
compared the theoretical number of iterations with triple that number. Accuracy greater
still should be obtainable by an additional measure that we did not try. The algorithm
proceeds by updating a residual. These updates might accumulate errors. Thus, the residual
could be recomputed from time-to-time during iteration. The textbook program Pef in GEE
is not doing that. We could have tested that additional grasp for precision, but we did not.

More fundamentally, the Burg method builds in the stationarity assumption and mini-
mum phase (by assuring a sequence of reflection coefficients is bounded between ±1). The
Pef code (concerned with multidimensional data containing gaps) makes no such effort. It
could predict a growing function which is obviously non-stationary. Does that mean the
output of Pef could be non-white? Likely so, but we don’t know if that is a practical issue.

RESULTS

We began by using the usual Kjartansson t2 gain correction. One power of t is a geometrical
divergence correction. The other power of t is the expected loss of bandwidth propagating
through a constant-Q medium. Not wanting to study the end-effect differences between
the two methods (as they are already well defined by theory) we taper both ends of each
seismogram to zero.

We compute the spectrum of each data set in the usual way. We average the energy
spectrum of each trace, then take the logarithm of the average, and finally shift the logarithm
as a function of frequency to be zero at 40Hz.
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Figure 1: The log spectrum of the the Kjartansson data set and decon outputs by the
three different methods. The wide ranging spectrum is that of the input data. The two
near constant spectra are the Burg and the “triply iterated” CG decon outputs. By triply
iterated we mean 3× the number of iterations theoretically required. The “not-so-near-
constant” curve arises from CD with the theoretically needed iterations, namely, as many
as the filter coefficients. This curve seems to resist the theoretical requirement to boost
very low and very high frequencies (which in practice might not be a bad idea!). [ER]
antoine2/. DeconLogFourier-DATA2
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Figure 2: Left is a portion of the Kjartansson data set. Right is its Burg decon. Outputs of
the CG Pef were on paper indistinguishable from Burg decon, but slightly distinguishable
when alternately blinking on a screen. [ER] antoine2/. Decon-DATA2
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Figure 3: The Gulf of California data set. Unwelcome near-zero frequencies appear from
trace to trace. These appeared with all decon methods. Apparent precursors to the water
bottom are PDF document artifacts. [ER] antoine2/. Decon-DATA6
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Figure 4: Gulf of Mexico data set. Suspicious low frequencies are strongest following the
top of salt reflector at 2.3s but visible throughout the data. Seems likely someone filtered
this data before it came to us. [ER] antoine2/. Decon-DATA5
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Decon in the log domain - practical considerations

Ohad Barak, Antoine Guitton and Shuki Ronen

ABSTRACT

We apply deconvolution in the log domain to marine seismic data. The inversion
promotes sparsity. We compare the deconvolution results of using two types of reg-
ularizations: filter symmetry and filter length. We show that the regularizations aid
in acquiring the correct shot waveform, and in sparsifying the data. An consideration
that we can add to the inversion is the elimination of the marine acquisition notch
frequency.

INTRODUCTION

In marine streamer acquisition, both the source and the receivers are at some depth. As
a result, their reflection from the water surface generates “ghost” arrivals. These ghosts
are recorded in addition to the primary path of energy propagation from source to reflector
to receiver. This causes the recordings of the specular reflections to be in practice non-
minimum phase wavelets, and more similar to Ricker wavelets, as most of the energy does
not arrive at the onset of the wavelet. Since Ricker is a delayed zero-phase wavelet, predictive
decon will have limited success on marine streamer data, as the inverse filter will have
coefficients that increase with time. Additionally, the airgun typically employed as a source
in marine surveys generates a low-frequency bubble, whose reverberations contaminate the
recorded data.

Zhang et al. (2011) extended traditional deconvolution to non-minimum phase wavelets.
Claerbout et al. (2011) replaced the unknown filter coefficients by lag coefficients in the log
spectrum of the deconvolution filter. Given data D(ω), the deconvolved output rt is:

rt = FT−1

[
D(ω) exp

(∑
t

utZ
t

)]
(1)

where FT−1 is the inverse Fourier transform, and Z = eiω. ut are the log spectrum variables
of the deconvolution filter. The source wavelet is the inverse of the exponent of these log
variables. The positive lag coefficients correspond to the causal part of the wavelet, and the
negative ones to the anticausal part.

Claerbout et al. (2012) introduced the concept of inverting for sparsity, with the added
complication that seismic data is non-stationary but decreases in amplitude over time. A
gained residual qt = gtrt is sparsified using a hyperbolic penalty function H(qt), where gt is
a known gain function. The inversion finds the model parameters ut which cause the gained
residual qt to be as sparse as possible. The purpose is to enhance frequencies where they
promote sparsity, which is our assumption about the underlying geology. In addition they
proposed two regularizations:

19
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Symmetry regularization
The expected shot waveform is a zero-phase Ricker wavelet, ignoring the bubble which
arrives later. Therefore, in the log spectral domain it is desirable to have only even parts
of the filter coefficients ut around the zero-lag. The symmetry regularization does this by
incorporating the odd parts near zero-lag into the residual:

0 ≈ ε1
∑

τ

wτ (uτ − u−τ ), (2)

where uτ are the coefficients at positive lags and u−τ the coefficients at negative lags. wτ is
a weighting function that decreases from one to zero with increasing lag. Conceptually, the
width of the weighting function should be just large enough to contain the Ricker wavelet of
the data. ε1 controls the degree to which this regularization affects the objective function.

Filter length regularization
The deconvolution filter’s positive lags should include both the zero-phase Ricker wavelet
of the reflections, and the wavelet of the bubble with its reverberations (which are caused
by the implosion of water into the cavity generated by the airgun). The filter should not
have large negative lags, beyond those needed for the anti-causal part of the Ricker wavelet.
Therefore a filter length lag regularization is added to the residual

0 ≈ ε2
∑

τ

(cτuτ + a−τu−τ ) , (3)

where cτ is the weighting function for the positive lags. This function starts at zero for
small positive lags, until the lag deemed to be sufficient to contain the bubble. a−τ is the
weighting function for the negative lags. This function is zero for small negative lags, and it
ramps up from zero to one within a small time lag, since we do not expect anything before
zero time other than the first lobe of the Ricker.

Additional considerations

Another consequence of the source and receiver ghost signals is the presence of notch fre-
quencies. The particular frequency value in which a notch will occur depends on the time
difference between the positive and negative lobes of the Ricker, and therefore on the depths
of the source and receiver, and their offset:

fn =
Vw

2dcos(θ)
, (4)

where Vw is the water velocity, d is the depth and θ is the reflection angle. Since the sources
and receivers are usually towed at a depth of only a few meters, the notch frequency is quite
high (above 100Hz), and increases with offset. In order to see it in the spectrum of the data
we would usually require a time sampling of 2ms.

The purpose of deconvolution is to separate out the parts of the data that are a result
of acquisition from the parts that are a result of geology. Therefore, if the notch is visible
in the spectrum of the data, we expect that after a successful deconvolution the notch will
have been filled in.
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In this paper, we show the results of applying this deconvolution method to various
offsets of a marine streamer dataset, with and without regularizations. The code used is
the same as in Claerbout et al. (2012), and was written by Antoine Guitton.

DECON RESULTS

Near offset

The dataset we used is a single 2D line from a marine streamer survey in the Gulf of
Baja California (Lizzaralde et al., 2002). This line consists of 2298 shots. There were 480
receivers along the cable, and the group spacing was 12.5m. The nearest offset was 180m,
and the farthest was 6180m.

Figure 1 is the near-offset section of the data. A gain of t2 has been applied. Note
the Ricker-like appearance of the reflections. Note also the bubble visible 200ms below the
sea-bottom reflection. Other weaker bubble reverberations are within the section. A weak
direct arrival of one of the bubble reverberations appears faintly at 500ms.

We ran two types of inversions:

1. Gained input deconvolution: Inversion is applied to data which was gained by t2, and
there is no gain applied to the residual (gt = t0).

2. Gained output deconvolution: Input data was not gained, but the residual was gained
at each iteration of the inversion (gt = t2).

Additionally, for each gain type, we ran the inversion with and without regularizations,
by setting the values of ε1 and ε2 in equations (2) and (3) accordingly.

Figure 2(a) shows the gained input deconvolution run without regularizations. Note
that while the deconvolution has indeed spiked the reflections on the central lobe of the
Ricker wavelet, the bubble is still visible, and the precursors are strong. Figure 2(b) is
the gained output deconvolution run without regularizations. While the bubble seems to
have been dealt with better in this section, the precursors above the sea-bottom reflection
are stronger, and the entire section appears noisier. Figure 4(a) shows the shot-waveform
estimated by the gained input deconvolution, and 4(b) is the one estimated by the gained
output deconvolution. In each plot, the upper trace is the same as the lower trace, except
that it has been clipped in order to enhance the smaller coefficients in the display. The
smaller coefficients are important, since deconvolution is a division operation. Note how
much more energy is in the anti-causal part of the shot-waveform in Figure 4(b) as compared
to Figure 4(a). Both of them however show the main shot-waveform as a Ricker centered
at zero-lag, and a bubble with its associated reverberations. This means that the inversion
has indeed arrived at what we assumed to be the correct objective: in order to sparsify the
data, the Ricker wavelet and the bubble must be removed.

Figure 3(a) is the gained input deconvolution run with the symmetry and filter length
regularizations. Compared to Figure 2(a), the bubble is weaker, and so are the precursors.
This can be further validated by comparing the precursors of the shot waveform in Figure
4(a) vs. Figure 4(c). Figure 3(b) is the gained output deconvolution run with the regu-
larizations. Compared to Figure 3(a), the bubble is better eliminated. There is a slight
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difference in the estimated bubble in the shot-waveforms of Figures 4(c) and 4(d), and this
is enough to cause the difference in bubble elimination. The precursors for the gained out-
put deconvolution with regularization are the weakest, which is a direct result of forcing
the filter length to be short.

Figure 1: Gained near-offset section of Baja data. Offset is 180m. Note the Ricker-like
appearance of the reflections, and the bubble around 200ms below the sea-bottom reflection.
[ER] ohad1/. EW05s

Offset group

In this section, the purpose was to test whether utilizing more of the data will aid the
inversion in acquiring the effective shot waveform, and therefore produce the sparsest result.
We have seen that for the near offset section, even without regularization the estimated
waveform was a Ricker wavelet. We now apply the inversion to a near-offset range, from
180m to 1180m.

Figure 5(a) is the result of applying the gained input deconvolution to the offset group
without regularization, and then windowing out the near offset only for display. Compared
to the same process applied to the near offset only (Figure 2(a)), the polarity of the reflec-
tions is incorrect, and the precursor is stronger. We can also see a low frequency precursors
in the water. The deconvolution has spiked the Ricker on its second negative lobe.
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(a)

(b)

Figure 2: Deconvolution of the 180m offset only. (a) Gained input deconvolu-
tion without regularization. (b) Gained output deconvolution without regularization.
Note how the Ricker wavelet has been spiked, and the strong precursors. [ER]
ohad1/. deconEW05s-t0-6,deconEW05s-t2-6
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(a)

(b)

Figure 3: Deconvolution of the 180m offset only. (a) gained input deconvolution with
regularization. (b) gained output deconvolution with regularization. Compared to Figures
2(a) and 2(b), the precursors are weaker and the bubble is better handled. In (b) there is
less noise than in (a). [ER] ohad1/. deconEW05s-t0-reg-6,deconEW05s-t2-reg-6
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(a) (b)

(c) (d)

Figure 4: Estimated shot waveforms resulting from inversion using near offset data only.
In each graph, the lower trace is unclipped, and the upper trace is clipped to enhance the
small coefficients. (a) Gained input decon without regularization (link to figure 2). (b)
Gained output decon without regularization. (a) and (b) are the shot waveforms, and their
inverses are those that generated Figures 2(a) and 2(b) after deconvolution. Note how much
more energy is in the anti-causal part of the shot waveform in (b) compared to (a). (c)
Gained input decon with regularization. (d) Gained output decon with regularization. (c)
and (d) are shot waveforms, the inverses of which generated Figures 3(a) and 3(b) after
deconvolution. [ER] ohad1/. EW05s-t0-6,EW05s-t2-6,EW05s-t0-reg-6,EW05s-t2-reg-6
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Figure 5(b) is the result of applying the gained output deconvolution to the offset group
without regularization. When compared with Figure 2(b), the polarity of the reflections is
again wrong, but the precursor is weaker. The low-frequency precursor is visible here too.
In this case, the deconvolution has spiked the Ricker on its first negative lobe.

The respective estimated shot waveforms are shown in Figures 7(a) and 7(b). Note
the shift of the negative spike about the zero-lag in these two figures. Note also the low
frequency (visible in the clipped traces) in the anti-causal part of the shot waveforms. These
results show that for the range of offsets chosen here, requiring the inversion to produce the
sparsest output does not result in the correct shot waveform. The interpretation of these
results is that the shot waveform varies over this offset range. This change is sufficient to
have the inversion produce a shot waveform that on average creates the sparsest output
when it is deconvolved with the data.

Figure 6(a) is the result of gained input deconvolution with regularizations on the offset
group. Compared to Figure 5(a), we can see how the polarity of the reflections is now correct,
and also that the precursor is weaker. The bubble however, has not been eliminated.

Figure 6(b) is the gained output deconvolution with regularizations. For this figure, we
see spiking with the correct polarity. The precursors are much weaker than the gained input
result in Figure 6(a). The bubble has been strongly attenuated, though not as well as in
Figure 4(d).

Figures 7(c) and 7(d) are the estimated shot waveforms of the regularized gained input
and gained output deconvolutions, respectively. The central Ricker wavelet is almost iden-
tical between them, but there are slight differences in the estimated bubble. There is just
a hint of stronger anti-causal coefficients in Figure 7(c). Observing the obvious differences
in the decon results, we can see why these slight differences are important.

EFFECTS OF DECON ON SPECTRUM

Synthetic test notch elimination

The frequency notch of marine data is an attribute of the acquisition system. We wish to
test whether this deconvolution removes the frequency notch under “perfect” conditions.
For this purpose, a synthetic wavelet was constructed of three spikes, so as to resemble
a Ricker wavelet. The time difference between the lobes are such that they simulate a
situation where the source and receivers were at a depth of 9m. The wavelet itself is nearly
zero-phase, the spikes having the values [−1, 2,−0.99].

Figure 8(a) is the wavelet, and Figure 8(b) is its amplitude spectrum. The notch is
at 83Hz. The regularized deconvolution was applied to this trace. In Figure 8(c) is the
estimated shot waveform, and Figure 8(d) is its spectrum. The waveform resembles the
synthetic trace, but its first negative lobe is slightly smaller than the second negative lobe,
and it has small anti-causal and causal coefficients. Its spectrum is similar in shape, with
the notch at the correct frequency. However it does not go to zero at the zero frequency, or
at the notch frequency, as in the synthetic trace spectrum.

Figure 8(e) is the deconvolution result. Though the correct lobe has been spiked, there
are strong precursors. It appears that the deconvolution has constructed some low frequen-
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(a)

(b)

Figure 5: Deconvolution of offset group (180m - 1180m). (a) Gained input deconvolution
without regularization. (b) Gained output deconvolution without regularization. The de-
convolution was applied to all offsets in the range, but only the 180m offset deconvolution
result is displayed. Note that the wavelet was spiked on a negative lobe. The bubble
is still prominent, and there are strong low-frequency precursors in the water. [ER]
ohad1/. deconEW05g-t0-6,deconEW05g-t2-6
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(a)

(b)

Figure 6: Deconvolution of offset group (180m - 1180m). (a) gained input deconvolution
with regularization. (b) gained output deconvolution with regularization. The deconvolu-
tion was applied to all offsets in the range, but only the 180m offset deconvolution result is
displayed. Note how with regularization, both have been spiked on the central positive lobe
of the Ricker wavelet. The precursors have been removed. The bubble is better removed in
(b). [ER] ohad1/. deconEW05g-t0-reg-6,deconEW05g-t2-reg-6
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(a) (b)

(c) (d)

Figure 7: Estimated shot waveforms resulting from inversion using offset group. In each
graph, the lower trace is unclipped, and the upper trace is clipped to enhance the small
coefficients. (a) Gained input decon without regularization. (b) Gained output decon
without regularization. (a) and (b) are shot waveforms, the inverses of which generated
Figures 5(a) and 5(b) after deconvolution. In both cases, the main lobe has the wrong
polarity. In (a) it is before zero-lag, and in (b) it is after zero-lag. (c) Gained input decon
with regularization. (d) Gained output decon with regularization. (c) and (d) are shot
waveforms, the inverses of which generated Figures 6(a) and 6(b) after deconvolution. Note
how regularization helped to generate a more correct shot waveform, with much weaker
precursors. [ER] ohad1/. EW05g-t0-6,EW05g-t2-6,EW05g-t0-reg-6,EW05g-t2-reg-6



30 Barak et al. SEP–148

cies that were absent from the data. In Figure 8(f) we can see that the notch frequency
has not been filled as such, but rather that the other frequencies have been decreased so as
to equalize the spectrum. The notch frequency of this waveform does not have zero energy,
however.

Field data notch elimination

Before applying deconvolution, it is useful to check which frequencies are in the data, as
some frequencies may have been filtered out in preprocessing, or were simply not acquired.
We also need to test if the notch is apparent in the data, as we expect the deconvolution
to remove it. If the source and receivers are deep enough, we will be able to see the notch
with the 4ms data we usually have. For the Baja dataset, the source and receivers were at
a depth of about 9m, putting the theoretical notch frequency for zero offset at 83Hz, and
therefore visible at the data’s sampling rate of 4ms.

Figure 9(a) is part of a single near-offset trace, which contains the direct arrival and
some of the bubble reverberations. There is no “geology” in the part of the recording, only
the effective source signature. Figure 9(b) is the log of the frequency spectrum of this time
series. We can see that the very low frequencies have either not been acquired or have
been filtered. The bubble harmonics are apparent starting from 6.5Hz at intervals of about
6-7Hz. The source notch is apparent around 113Hz.

Figure 10(a) is the same near-offset trace with the addition of some reflection data.
Figure 10(b) is the log spectrum of the entire trace. The notch now appears at around
103Hz. This notch is the result of the combined source and receiver ghosts, which have
time delays pertaining to the receivers’ and sources’ depths in the water, and their offsets.
Figures 11(a) and 11(b) are a single shot gather and its log spectrum. The notch starts
from around 90Hz in the near offset, and increases in frequency with increasing offset, as
illustrated by equation 4.

Figure 12(a) shows the log spectrum of the near-offset section shown in Figure 1. Espe-
cially apparent is how the frequency notch moves about the spectrum, from 90Hz to 110Hz.
We interpret this as the result of the changing depths of the airgun and the receivers, as
they are towed behind the acquisition vessel in the sea. Figure 12(b) is the log spectrum
of the regularized gained input deconvolution result, and Figure 12(c) is that of the gained
output deconvolution result.

These figures show some additional considerations which are useful for understanding
the data, and can aid in evaluating the deconvolution results. In this case, we know that the
inversion cannot work perfectly, since the lowest frequencies are not present. We also know
that the notch is not at a constant frequency, and therefore the shot waveform is necessarily
not constant along the entire near-offset section. We can also see that the deconvolution with
the current regularizations is only mildly successful in removing the acquisition frequency
notch.

DISCUSSION AND CONCLUSION

The inversion optimizes for sparsity, since we assume that geology is sparse, but that re-
quirement alone is not enough. We assume that in a particular marine survey, a single
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(a) (b)

(c) (d)

(e) (f)

Figure 8: (a) Input trace. (b) Spectrum of input trace. Note the notch at zero and 83Hz (c)
Estimated shot waveform from deconvolution. (d) Spectrum of estimated shot waveform.
Note how the notch frequencies have some energy. (e) Deconvolved trace. The deconvo-
lution has added some low frequency noise. (f) Spectrum of deconvolved trace. [ER]
ohad1/. synth-trace,spec-synth-trace,synth-t0,spec-synth-t0,deconsynth-t0,spec-deconsynth-t0
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(a) (b)

Figure 9: One near offset trace. (a) Direct arrival and bubble. (b) Log of spectrum of direct
arrival and bubble. [ER] ohad1/. EW05-bubble,EW05-bubblespec

(a) (b)

Figure 10: One near offset trace. (a) Direct arrival, bubble and reflec-
tions. (b) Log of spectrum of direct arrival, bubble and reflections. [ER]
ohad1/. EW05-notch,EW05-notchspec
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(a) (b)

Figure 11: (a) Shot gather for shot at x=-62850 (b) Log of spectrum of shot gather, showing
the notch frequency at around 90Hz at near offsets. [ER] ohad1/. EW05-shot992,EW05-ft

(a) (b)

(c)

Figure 12: (a) Log spectra of near offset section. (b) Log spectra of gained input decon. (c)
Log spectra of gained output decon. Note the notch in (a) and how it changes frequency
with surface location, which is a result of perturbations in the source and receiver depths
as they are towed behind the vessel. The notch is better filled in (b), but it appears to be
filled by some noise generated by the deconvolution itself, just as in Figure 8(e). [ER]
ohad1/. spec-EW05s,spec-EW05s-t0-reg-6,spec-EW05s-t2-reg-6
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effective shot waveform was used to record all data, and therefore a single filter should be
sufficient to deconvolve the entire dataset. The question is how much does that assumption
stand up to reality. When considering increasing offsets the recorded waveform may change,
and the data is likely to contain not just specular reflections but refractions as well. If there
is a significant difference between effective shot waveforms within a survey, the inversion
may estimate a shot waveform that produces the best average result for the input data it
was given. However, this result may not be very useful for any particular trace in the data.
This indicates that we should estimate the shot-waveform only from near-offset data.

The symmetry and filter length regularizations enable us to shape the desired shot
waveform to our expectation: a Ricker wavelet, with some bubble reverberations trailing
after it. These regularizations help in arriving at a useful result even when the shot waveform
varies, such as when we use many offsets. They are easy to implement in the lag-log domain.

Instead of applying the deconvolution to a constant offset or to a multiple offset section,
within which the shot waveform can change as a result of different angles of incidence, it
may be preferable to apply it to data sorted by angles of incidence. For specular reflections
of the same incidence angle, we can assume that the waveform is constant. Therefore, one
possibility is to transform the data to the τ − p domain, and run the deconvolution on
constant ray-parameter slices.

The source and receiver depths can change over the acquisition line, and therefore the ef-
fective shot waveform and its associated frequency notch may change at each shot. One way
of evaluating the success of the deconvolution is in testing how it deals with the frequency
notch. We would like to see the notch removed from the data, but we do not want the
inversion to fill it with noise. A further avenue of research is to add the notch elimination
as a parameter into the inversion.

It is important to check whether the low frequencies were filtered out in preprocessing.
This will affect the result since the inversion may compensate by generating low frequencies
that have nothing to do with the geology. Also, the filtering may affect the source wavelet,
meaning that the Ricker we see is as much a result of preprocessing as it is of the acquisition.

Another conclusion is that success of this deconvolution method is on a dataset by
dataset basis. How it functions depends on the data characteristics, and the variability
of the shot waveform over traces. Considering the regularization parameters, we cannot
conclude from one dataset what set of parameters will work on another.
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Six tests of sparse log decon

Antoine Guitton and Jon Claerbout

ABSTRACT

Previously, we developed a sparseness-goaled decon method. Here we test it on six data
sets. None showed the unfortunate phase-shift we always see with minimum-phase
decon. None showed the polarity reversals or time shifts that perplexed our earlier
work. Results on all six data sets enhance polarity visibility. We had expected to see
sparseness decon limit the bandwidth in some natural way unlike prediction-error decon
with its white output. Instead, in all the cases our sparseness decon boosted frequencies
much the way predictive decon does. We had not expected to see an estimated shot
waveform containing a lot of low-frequency sea surface waves. One such result provoked
a new theoretical development not yet tested (Claerbout and Guitton, 2012).

INTRODUCTION

We have tested our basic sparse deconvolution method on six data sets. Results are generally
positive, but not totally as expected. We are pleased to report none of the results here
showed the kind of phase-shift issues we always see with minimum-phase decon. For the
most part, the decons enhance the appearance of polarity. One of the data sets (DATA4)
had a clearly defective gun array with an extremely non-minimum phase wavelet and our
deconvolution worked wonders on it (see Figure 5).

One problem persisted until about six months ago: we could not be sure which of the
three lobes of the Ricker wavelet would be enhanced. Then a new regularization, proposed
theoretically, ensured spiking on the central Ricker lobe, meaning we shall no longer see
apparent polarity reversals or time shifts.

We had expected to see that sparseness would limit the bandwidth in some natural
way. Instead, in all the cases the sparseness decon boosted frequencies much the same
way predictive decon does. Worse yet, one of the shot waveforms contained a lot of low-
frequency sea surface waves. Serendipitously this bad result provoked Jon Claerbout to
introduce theory augmentations (Claerbout and Guitton, 2012) that have not yet been
coded or tested.

REGULARIZATIONS

Because predictive decon fails on the Ricker wavelet, Zhang and Claerbout (2010) devised
an extension to non-minimum phase wavelets. Then Claerbout et al. (2011) replaced the
traditional unknown filter coefficients by lag coefficients ut in the log spectrum of the de-
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convolution filter. Given data D(ω), the deconvolved output is

rt = FT−1

[
D(ω) exp

(∑
t

utZ
t

)]
(1)

where Z = eiω. The log variables ut transform the linear least squares (`2) problem to
a non-linear one that requires iteration. The gained residual qt = gtrt is “sparsified” by
minimizing

∑
t H(qt) where

qt = gt rt (2)

H(qt) =
√

q2
t + 1− 1 (3)

dH

dq
= H ′(q) =

q√
q2 + 1

= softclip(q) (4)

Traditional decon approaches are equivalent to choosing a white spectral output. Here we
opt for a sparse output.

Earlier frustrations led to various regularizations. We minimize the following functional:

J(u) = |q|hyp +
ε1
2
‖W1u‖2 +

ε2
2
‖W2Ju‖2 (5)

where bold faces are for either vectors or matrices. The first regularization term tends to
limit the range of filter lags (Figure 1). The second term, introduced by Claerbout et al.
(2012) encourages symmetry (u−τ = uτ ) around the central Ricker lobe. It does this by a
matrix J that senses asymmetry uτ − u−τ at small lags τ and suppressing it.

The gradient search direction becomes

∆u =
∑

t

(rt+τ )
(
gtH

′(qt)
)

+ ε1W′
1ru1 + ε2J′Wru2 (6)

It happened in all the examples in this paper (except the one with a defective airgun array)
the ε2 “Ricker regularization” was not needed because no polarity reversals or apparent
time shifts were noted so ε2 = 0 in all cases. The value of ε1 was selected by trial and error.

Data plots

Data panels have gained raw data on the left and the results of sparseness decon on the
right. Observe how they almost invariably show the sparseness panel preserving signal
polarity.

Sparse decon is applied on six different data sets referred as DATA4, DATA5, DATA6,
DATA8, DATA11 and DATA12.

DATA4 was dug out from our SEP data server (∆t=2 ms). Its origins are unknown.

DATA5 is a common-offset section from the Gulf of Mexico (∆t=4 ms). It was Yang’s
“discovery” data set, in many ways still the most interesting data set, but with some
problems noted.
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Figure 1: Weighting function used in
the regularization to force long lags
to be zero. The positive lags allow
more non-zero coefficients to include
the bubble. These limits apply in
the lag-log space of uτ and so apply
only approximately to the shot wave-
form and the decon filter. [ER]
antoine3/. Weight

DATA6 is a common-channel section from a 2-D line shot in Baja California (Lizzaralde
et al., 2002) during the PESCADOR experiment (∆t=4 ms). It was downloaded from the
academic seismic portal at the University of Texas, Austin (http://www.ig.utexas.edu/sdc/)

DATA8, 11 and 12 are unprocessed, raw common-channel sections coming from 2-D
lines shot offshore Washington state as part of the COAST project (∆t=2 ms).

Spectral plots

The spectrum calculation in all the cases (except for DATA4) is based on gaining the output
by ttpow. The value of tpow was chosen to balance amplitudes throughout the section. With
the sparse decon, that gain is done after filtering. We have since decided a more appropriate
gain function is t2/t0(x) where t0(x) is water depth, but our software to do it requires
completion and more testing.

Unexpectedly, we found that sparse decon yields nearly white output for all six datasets.
Its whiteness is comparable to that of the Burg decon. We had hoped it would drop
off naturally at high and low frequencies as those frequencies should contribute little to
sparseness. This observation was another prod to Jon Claerbout to revise the current
sparseness theory to an augmented theory found elsewhere in this report. This augmented
theory provides those “bad frequencies” another place to go besides the decon output.

Shot waveforms

The shot waveforms turned out to be Ricker like in all cases except DATA4 which clearly
has misfiring guns.
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Figure 2: Data set from Baja California. The decon is bringing up some low frequencies
after strong events in the water, but not after the water bottom. We observed that the
Burg predictive decon does the same (not shown here). We feel this is wrong, most likely
a result of this data having an unknown preprocessing history, likely a low-cut filtering of
the sea swell. [ER] antoine3/. DeconShort-DATA6
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Figure 3: The data spectrum
shows we have 4ms sampling.
Sparse decon is almost as white
as an industry PEF. [ER]
antoine3/. DeconLogFourierShort-DATA6

Figure 4: A shot waveform beau-
tifully consistent with our precon-
ceived ideas about causality, Ricker
wavelets, and bubbles. [ER]
antoine3/. Wavelet-DATA6
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Figure 5: This data was very badly recorded (precursor to main pop) and would have
been tossed out except that it very nicely demonstrates sparse decon’s ability to handle a
drastically non-minimum phase source. [ER] antoine3/. DeconShort-DATA4
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Figure 6: Yang’s discovery data set from the Gulf of Mexico. We love this one because it
shows so clearly the opposite wave polarity (black) on the bottom of the salt ( 2.7 sec). It
also shows another delightful soft layer (black), a rugose layer above the top of salt ( 2.1
sec). [ER] antoine3/. DeconShort-DATA5
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Figure 7: The data spectrum shows
we have 4ms sampling. Sparse
decon output is almost as white as
an industry PEF decon (not shown).
Again it’s annoying that the sparse
decon so strongly boosts very high
and very low frequencies. [ER]
antoine3/. DeconLogFourierShort-DATA5

Figure 8: A shot waveform with
good causality and bubble, but
would be improved if we were
to use some of the “Ricker-
ness” regularization. [ER]
antoine3/. Wavelet-DATA5
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Figure 9: The data set from offshore Washington. This data set misbehaves. The water
bottom does not look as Ricker-like as we usually see and the sparseness decon happens to
have spiked the first lobe instead of the middle lobe. So this is a case for which we might
like to introduce some “Ricker regularization”. [ER] antoine3/. DeconShort-DATA8



SEP–148 Sparse decon test results 45

Figure 10: The spectrum shows
sparse decon pulling up frequencies
all the way to 240Hz. This is very
suspicious! Essentially, the same
result (not shown) was seen with
DATA11 and DATA12. This result
is unexpected to us. We suspect
it means we will find such a result
with almost any 2ms data set. [ER]
antoine3/. DeconLogFourierShort-DATA8

Figure 11: This shot waveform is ob-
viously wrong. Understanding why
was a great boon to Jon Claerbout
who has an augmented theory pa-
per in this report. The shot wave-
form here appears to have a low
frequency that has soaked up a lot
of the ocean surface-wave frequency,
a fraction of a Hertz. [ER]
antoine3/. Wavelet-DATA8
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Figure 12: Data set from offshore Washington. On multiples where we obviously ex-
pect to be able to recognize polarities we find them nicely enhanced by the deconvolu-
tion. Unfortunately, we don’t pick up such sharp events in the sedimentary section. The
sparseness decon is very high frequency, as any decon. Again, we feel the “bad frequen-
cies” are coming through much more strongly than the sparseness goals suggests. [ER]
antoine3/. DeconShort-DATA11



SEP–148 Sparse decon test results 47

Figure 13: Another data set from offshore Washington. Conclusions similar to DATA11.
[ER] antoine3/. DeconShort-DATA12
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Tomographic full waveform inversion and linear modeling of
multiple scattering

Biondo Biondi

ABSTRACT

I present a tomographic full waveform inversion method that is based to an extension
of the velocity model in time. The resulting wavefield modeling operator is linear
with respect to the non-zero time lags of the extended velocity, but can effectively
model multiple scattering caused by velocity perturbations. This property is attractive
to achieve robust global convergence in a waveform inversion algorithm. A simple
1D numerical example illustrates the properties of the new modeling operator and its
promises for robust waveform inversion.

INTRODUCTION

In a recent report Biondi and Almomin (2012) and Almomin and Biondi (2012) presented
waveform-inversion methods with robust convergence characteristics even when the initial
velocity model is far away from the correct one. These methods are based on an extension
of velocity and reflectivity along the subsurface offset axes. This extension enables the
kinematics of reflected to be correctly modeled by a linear operator even when the velocity
errors are large. However, the extension also explodes the null space of the inverse problem.
To ensure convergence towards desirable models a tomographic term is added to the inver-
sion objective function that penalizes velocity models with energy at non-zero subsurface
offsets.

In this paper I introduce a tomographic full waveform inversion (TFWI) that is based
on an extension of the velocity model along the time axis instead of the subsurface off-
set axes. This time extension has the theoretical advantage that it can be directly linked
to the modeling of multiple scattering phenomena; therefore, overcoming the limitations
of conventional full waveform inversion (FWI), whose gradient is based on a first-order
scattering approximation. Furthermore, the velocity extension along the time axis should
enable robust convergence from transmitted, or refracted events, in addition to reflected
events. This versatility can be beneficial when inverting long offset data that contain over-
turned and refracted events as well conventional reflections. A one-dimensional extension
along time is also computationally more efficient than a two-dimensional extension along
subsurface offsets. This is an important practical advantage since the computational cost
of modeling wave propagation in extended velocity models is substantially larger than in
conventional velocity models (Almomin, 2012).

Throughout this paper I illustrate the theory with simple 1D examples. Waves are
propagated in 1D, and model parameter, both background and perturbations, are averaged
over the whole propagation interval. In addition to be fast to compute by using Matlab,
the 1D examples have the advantage of reducing the dimensionality of the model space and
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thus making the analysis of behavior of objective functions and gradients illustrative of the
more general conceptual contributions of the paper. The numerical examples describes a
transmission tomography problem to illustrate the capability of the proposed method to
effectively use transmitted events, in addition to reflected ones.

CONVENTIONAL FULL WAVEFORM INVERSION (FWI)

Conventional full waveform inversion is performed by solving the following optimization
problem

min
v2

JFWI

(
v2
)

(1)

where:
JFWI

(
v2
)

=
1
2

∥∥L (v2
)
− d

∥∥2

2
, (2)

v = v (~x) is the velocity vector, L is a wave-equation operator non linear with respect to
velocity perturbations and the data vector d is the pressure field P = P (t, ~x) measured at
the surface.

The wave-equation operator is evaluated by recursively solving the following finite dif-
ference equation [

D2 − v2∇2
]
P = f , (3)

where D2 is a finite-difference representation of the second derivative in time, ∇2 is a
finite-difference representation of the Laplacian, and f is the source function.

Gradient computation with FWI

The efficient solution of the optimization problem expressed in equation 1 is performed by
gradient based methods, and thus requires the evaluation of the linear operator L, which is
the linearization of L with respect to velocity perturbations δv2. This linear operator can
be derived by perturbing equation 3 as follows[

D2 −
(
vo

2 + δv2
)
∇2
]
(Po + δPo) = f , (4)

where Po and vo are the background wavefield and velocity, respectively, and δPo is the
scattered wavefield.

Equation 4 can be rewritten as the following two equations:[
D2 − vo

2∇2
]
Po = f , (5)[

D2 − vo
2∇2

]
δPo = δv2∇2 (Po + δPo), (6)

which represents a nonlinear relationship between velocity perturbations and scattered
wavefield. To linearize this relationship we drop the term multiplying the perturbations
with each other; that is, we drop the scattered wavefield from the right hand side of equa-
tion 6 and obtain the following coupled equations:[

D2 − vo
2∇2

]
Po = f , (7)[

D2 − vo
2∇2

]
δPo = δv2∇2Po. (8)
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The linear operator L used to compute the gradient of the FWI objective function 2 is eval-
uated by recursively propagating the background wavefield Po and the scattered wavefield
δPo by solving equations 7–8.

The scattered wavefield δPo is a linear function of the velocity perturbations δv2 be-
cause equation 8 takes into account only fist order scattering. Notice that the linear operator
L
(
vo

2
)

is itself a non linear function of the background velocity, both directly by deter-
mining the propagation speed of the scattered wavefield (left hand side in equation 8), and
indirectly through the background wavefield (right hand side in equation 8).

Problems with FWI

Unfortunately, high-order scattering must be taken into account to model accurately wave-
field perturbations when the velocity perturbations have wide spatial extent and/or large
amplitude. Such velocity perturbations cause significant (larger than one fourth of wave
cycle) time shifts in the propagating wavefield. The linear operator L cannot model large
time shifts because the source function on the right-hand side of equation 8 is triggered
by the background wavefield reaching a velocity perturbation, and consequently it has the
timing as the background wavefield. Furthermore, the perturbed wavefield is propagated
with the background velocity vo. In mathematical terms

L
(
vo

2 + δv2
)
6= L

(
vo

2
)

+ L
(
vo

2
)
δv2. (9)

The problem is even deeper. When δv2 causes large time shifts by multiple scattering,
there is no perturbation δ̂v2 that can model those time shifts by single scattering; that is,

L
(
vo

2 + δv2
)
6= L

(
vo

2
)

+ L
(
vo

2
)
δ̂v2 for any δ̂v2. (10)

The non linearity of the modeling operator makes the objective function equation 2
to be non convex when the velocity perturbations are sufficiently large. Figure 1 shows
an example of non-convexity of the objective function. The result correspond to several
1D transmission problems sharing the same starting velocity (1.2 km/s) and with different
true velocities. For all these experiments the source-receiver offset is 4 km and the source
function is a zero-phase wavelet bandlimited between 5 and 20 Hz. The FWI norm is plotted
as a function of the true velocity. If the true velocity is lower than ≈ 1.18 km/s or larger
than ≈ 1.22 km/s a gradient based method will not converge to the right solution, even in
this simple and low-dimensionality example.

The challenges of solving the optimization problem in equation 1 by gradient based op-
timization can be alternatively represented by graphing, as a function of the initial velocity
error, the search direction (opposite sign of the gradient direction) of the objective function
with respect to velocity square. Figure 2 display this function computed by applying the
adjoint of the linear operator L to the data residuals; that is

∇JFWI = L′ [L (vo
2
)
− d

]
. (11)

For a gradient based method to converge, the search direction should be always negative
when the true velocity is lower than 1.2 km/s, and positive when the true velocity is higher.
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Multiple-scattering modeling

We can achieve accurate modeling of perturbed wavefield by solving equations 5–6 instead of
equations 7–8. Equations 5–6 can be solved numerically with a simple explicit method; that
is, one that adds the scattered wavefield up to time t to the right-hand side of equation 6 to
compute the scattered wavefield at t+∆t. Even in presence of large velocity variations, the
scattered wavefield has now the correct time shift. Numerical solutions produce accurate
results, although the scattered wavefield is still propagated with the background velocity,
because multiple scattering is taken into account of.

The challenge with using these equations in a gradient-based inversion algorithm is
that the relation between the scattered wavefield δPo and the velocity perturbations δv2

is now nonlinear. In the next section, I present a method for linearizing this relation that
is alternative to the conventional one represented by equations 7–8, and is based on an
extension of the velocity model in time.

TOMOGRAPHIC FULL WAVEFORM INVERSION (TFWI)

We can rewrite equations 5–6 by performing the following substitution

δPo = Po
t′∗ (T− I) , (12)

and consequently

Po + δPo = Po
t′∗ T, (13)

where T is a convolutional operator in time that may vary both in space and time; I is the
identity operator. For example, when the perturbed wavefield is a time-shifted version of
the background wavefield, the operator T is a shifted delta function. With this substitution
equation 6 can be rewritten as

[
D2 − vo

2∇2
]
δPo = δv2

(
T̃

t′∗ ∇2Po

)
, (14)

where the substitution of T with T̃ takes into account of the Laplacian.

If we define an velocity model extended in time δṽ2 (t, t′) = δv2 t′∗ T̃, we can rewrite
equation 14 as [

D2 − vo
2∇2

]
δPo = δṽ2

(
t, t′
) t′∗ ∇2Po. (15)

The estimation of an extended velocity as a function of both t and t′, and for each
seismic experiment (e.g. shot), can be unpractical. We can approximate equation 15 by
making the velocity dependent only from the convolutional time lag; that is, τ = t− t′ and
the same for each seismic experiment. The approximation of equation 15 can be written as[

D2 − ṽ2 (τ = 0)∇2
]
∆P = δṽ2 (τ)

τ∗ ∇2Po, (16)

where the change of notation from δPo to ∆P indicates that the scattered wavefield ∆P
is now an approximation of the true multiple-scattered wavefield δPo.
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Figure 1: FWI norm as a function
of the true velocity, when the start-
ing velocity is equal to 1.2 km/s.
biondo1/. FWI-Norm-new
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Figure 2: FWI search direction as a
function of the true velocity, when
the starting velocity is equal to 1.2
km/s. biondo1/. FWI-Grad-new
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Formally solving equation 16 we obtain

∆P =
[
D2 − ṽ2 (τ = 0)∇2

]−1
[
δṽ2 (τ)

τ∗ ∇2Po

]
(17)

that is a linear relationship between δṽ2 and ∆P defined by the linear operator L̂ such as
∆P = L̂δṽ2.

If we define the total wavefield to be

P = Po + ∆P, (18)

and the extended non-linear modeling operator as

L̃ (ṽ) = L (ṽ (τ = 0)) + L̂ (ṽ) δṽ2, (19)

the objective function

JEFWI (ṽ) =
1
2

∥∥∥L̃ (ṽ)− d
∥∥∥2

2
(20)

has the same local minima of the original FWI objective function, but it also provides
smooth descending paths to the global minimum in the additional dimensions. The problem
is now under constrained because many solutions fit the data equally well. Among all these
possible solutions we are interested in the solutions for which the extended velocity model
is as focused as possible around the zero time lag of the model.

To converge towards a desirable solution we can add an additional term to the objective
function that penalizes extended velocity model with significant energy at non-zero time
lag; that is,

min
ṽ

JTFWI (ṽ) , (21)

with
JTFWI (ṽ) =

1
2

∥∥∥L̃ (ṽ)− d
∥∥∥2

2
− εF (ṽ) , (22)

where F is an operator that measure the focusing of the model at zero time lag. A straight-
forward example of such operator is

F (ṽ) = −‖|τ | ṽ‖2
2 . (23)

Gradient computation with TFWI

The gradient computation of the TFWI objective function has three components. The first
component takes into account the dependency of the background wavefield from velocity; it
is the same as for the FWI case. The second component is related to the dependency of the
approximation of the scattered wavefield ∆P from the extended velocity. It is performed by
applying the adjoint of the linear operator L̂. The application of L̂′ to the data residual is
accomplished similarly to the FWI gradient by injecting the residual at the receiver location
and running backward in time the propagation expressed in equation 17.

The third component takes into account the dependency of ∆P from the velocity at
zero time lag; its evaluation is more involved than for the previous two terms but is crucial
to the convergence of the inversion towards a velocity model that explain the kinematics in
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the data. The forward operator can be evaluated as a chain of two operators. The first one
relates perturbations in velocity to perturbations in the background wavefield, as expressed
by equations 7–8. The second one is computed by forward solving in time equation 17,
where the source term is given by the perturbations in the background wavefield, and
not by the perturbations in the extended velocity. Consequently this term is zero when
the extended velocity perturbations δṽ2 are zero, independently from the perturbations in
the background wavefield. The adjoint is computed by applying the adjoint of these two
operators in reverse order.

Finally, the gradient of the regularization terms depends on the expression of the specific
focusing operator F . For the choice expressed in equation 23, the computation of the
gradient is trivial.

NUMERICAL 1D EXAMPLE

I will use a simple 1D numerical example to analyze some of the characteristics of the
TFWI method I presented in the previous sections. Figure 3 shows the difference between
the background wavefield propagated with v=1.2 km/s and the wavefield propagated with
the true velocity of v=1.13 km/s. The difference wavefield is displayed as a function of
propagation distance and traveltime. The data are recorded with a receiver located at 7
km for a total of 4 km offset from the source. The velocity error is sufficiently high that
the wavefields are completely out of phase at the receiver location. We are therefore in the
situation described by equation 10. Because the events are out of phase at the receiver, the
backprojection of the data residual into the velocity model yields a gradient (equation 11)
that is substantially zero, as it can be verified in Figure 2. Conventional FWI would have
troubles to converge even for this simple problem.

On the contrary, the linearized modeling equation defined in equation 17 would have
no troubles to model the data residual. For example, we can easily reproduce the wavefield
difference shown in Figure 3 by setting the extended-velocity perturbation to be a delta
function along the τ axis, where the shift of the delta function linearly increases with
the distance from the origin. This linear shift is computed by integrating the difference
in slowness between the background model and the true model. The extended-velocity
perturbation is shown in Figure 4. Figure 5 shows the result of solving equation 17 with
the model shown in Figure 4. The approximation of the scattered wavefield ∆P is almost
identical to the wavefield difference shown in Figure 3.

Next step is the backprojection of the data residual recorded by extracting the wavefields
at the receiver position into the extended velocity model. In the previous section, I explained
that there are three terms in this backprojection. In this case, the first and the third are
zero. As discussed previously, the first component is zero because the events in the data
residual are out of phase. The third term is zero because the starting extended model is
zero at non-zero time lags. Figure 6 shows the contribution of the second component of
the gradient. It is zero on the right of the receiver location, and it is basically constant as
function of the propagation distance on the left of the receiver location.

Forward modeling solving equation 17 with the model shown in Figure 6 yields a scat-
tered wavefield that at the receiver location is extremely close to the original residual shown
in Figure 3. Therefore, the first term of the objective function 22 has a well-behaved
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Figure 3: Difference between back-
ground wavefield computed with
the starting velocity (1.2 km/s)
and the wavefield propagated with
the true velocity (1.13 km/s).
biondo1/. Init-Residual

Distance (m)

T
im

e 
(s

)

 

3000 4000 5000 6000 7000

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 4: Extended velocity per-
turbation chosen to approximately
model the wavefield difference shown
in Figure 3 by applying equation 17.
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Figure 5: Perturbed wavefield com-
puted by solving equation 17 with
the model shown in Figure 4.
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parabolic shape as a function of the step size applied to the search direction, with well-
defined minimum that determines the extended model after a first iteration of an iterative
inversion algorithm.

The extended model obtained at the first iteration can then be used to compute the
data residuals and gradient at the second iteration. Since the data residual are small, the
main contribution to the gradient comes from the second term of the objective function;
that is, the focusing operator. It is straightforward to verify that for the choice of focusing
operator in 23, the most significant component of this gradient is away from the zero time
lag. The projection of this gradient in the data space has a non-zero component and will
create a data residual, which can in turn be backprojected into the velocity model. The
most interesting component of this backprojection is at zero-time lag since it is the one that
will effect the propagation velocity of the background wavefield at the next iteration.

Among the three gradient components discussed in the previous section, only the third
one effects the extended velocity at zero-time lag. Figure 7 shows the search direction
obtained by averaging this gradient component along the whole propagation interval as a
function of the true velocity. As before the the starting velocity is 1.2 km/s. In contrast
with the conventional FWI search direction shown in Figure 2, the search directions shown
in Figure 7 is always negative for a true velocity lower than 1.2 km/s, and always positive
for a true velocity larger than 1.2 km/s. This indicates that no matter how large the initial
velocity error, the TFWI method will start moving the zero-lag component of the extended
model in the correct direction. This result is far from being a proof of global convergence,
but is definitely encouraging.

CONCLUSIONS

Perturbations in the propagating wavefield caused by multiple scattering can be approx-
imately modeled by a linear operator when the velocity function is extended in time. A
tomographic full waveform method based on a time extension of the velocity model is likely
to have attractive global-convergence characteristics, and thus to overcome one of the main
challenges of conventional full waveform inversion.
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Figure 6: Extended-velocity gradi-
ent computed by applying the ad-
joint of the linear operator L̂ to the
data residuals measured at the re-
ceiver located at a distance of 7 km.
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Computational analysis of extended full waveform inversion

Ali Almomin

ABSTRACT

I compare the computational cost of conventional full-waveform inversion to the ex-
tended full-waveform inversion in both space and time. These model space extensions
provide accurate results but increase the cost drastically. I also compare the cost of
the nonlinear inversion to linearized inversion by scale-separation. I then propose ex-
tending the inversion in data space where there are more underlying assumptions but
whose cost competes with the conventional inversion. I test extending the inversion by
source ray parameter on the Marmousi model. The results of the synthetic tests show
that convergence is possible even with large errors in the initial model which would
have prevented convergence of conventional full-waveform inversion.

INTRODUCTION

Seismic velocity analysis methods can be divided into two major groups. First, there are
techniques that aim to minimize the misfit in the data domain, e.g., full waveform inversion
(FWI) (Tarantola, 1984; Pratt, 1999; Luo and Schuster, 1991). Second, there are other
techniques (Symes and Carazzone, 1991; Biondi and Sava, 1999; Shen, 2004; Zhang et al.,
2012), that aim to improve the quality in the image domain, such as migration velocity
analysis (MVA). These approaches try to measure some quality of the image and then
invert for the estimated image perturbation using a linearized wave-equation operator.

There are significant advantages to minimizing the residual in the image space: global
convergence, increased signal-to-noise ratio, and decreased complexity of the data (Tang
et al., 2008). However, a common drawback to doing velocity analysis in the image domain
is that only the transmission effects of the velocity are used. This results in incomplete
vertical resolution in the estimated model updates. On the other hand, FWI does not have
that problem, since it utilizes the information from both the forward-scattered and back-
scattered wavefields. This results in higher resolution model estimates. Moreover, the data
misfit is computed in the data space directly without the need to go to another domain or to
separate the data into several components. This direct computation results in a relatively
simple relationship between the data residuals and the model updates. However, FWI has
the disadvantage that its objective function is far from being smooth and convex; it requires
the starting model to be very close to the true model to avoid convergence to local minima.

Biondi (2012) presents a generalized framework for full waveform inversion that avoids
the cycle-skipping problem while utilizing all the components of seismic data to invert for
the medium parameters. This is achieved in two steps: first by extending the velocity
model through an additional degree of freedom, and second by imposing a regularization to
constrain this added degree of freedom.

59
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In this paper, I compare the cost of conventional full waveform inversion to extended
inversion in model space that uses subsurface offset and time lags. I also compare the cost
of the extended inversion to linearized inversion by scale separation (Almomin and Biondi,
2012). Next, I propose extending full waveform inversion through a data space axis, such
as source location or source ray parameter, instead of model space axes. Finally, I test the
source ray parameter extension on the Marmousi model.

COMPUTATIONAL COST

Nonlinear wave equation inversions are commonly performed using gradient-based iterative
optimization. Each iteration typically consists of three steps. First, calculate the residuals,
which requires one nonlinear forward operation. Second, calculate the gradient, which
requires one linearized adjoint operation. Finally, determine the step size by a line search,
which requires few nonlinear forward operations. For our calculations, we will assume the
line search requires three forward operations results in a total per iteration effort of four
forward and one adjoint operations.

Conventional FWI

For conventional full waveform inversion, the modeled data is computed using the nonlinear
forward operator as:

d(ω,xr,xs; v(x)) =
∑
x

f(ω,xs)G(ω,x,xs; v(x))δ(xr − x), (1)

where d(ω,xr,xs; v(x)) is the modeled data, v(x) is the velocity model, f(ω,xs) is the
source function, ω is frequency, xs and xr are the source and receiver coordinates, and
x is the model coordinate. In the acoustic, constant-density case, the Green’s function
G(ω,x,xs; v(x)) satisfies:(

ω2

v2(x)
+∇2

)
G(ω,x,xs; v(x)) = δ(xs − x). (2)

The propagation can be done in the time domain by convolving each model point with
a finite-difference stencil. However, the time marching requires the time axis sampling to
satisfy dispersion and stability conditions (Marfurt, 1984), generally much finer than the
data sampling. Moreover, each time step requires multiplying the time slice by the velocity
squared. Therefore, the cost of forward modeling can be written as:

CFWI−F = NxNyNzNsource(NtpCFDTD + Ntp), (3)

where Nx, Ny and Nz, are the number of points along the three spatial axes, Nsource is
the number of sources, CFDTD is the cost of convolving one model location by the time-
domain finite-difference stencil and Ntp is the number of time samples for propagation. By
linearizing equation 1 over the squared slowness, we can compute the adjoint as:

∆s2(x) =
∑

ω,xr,xs

ω2f(ω,xs)G(ω,x,xs; v(x))G(ω,x,xr; v(x))∆d∗(ω,xr,xs; v(x)), (4)
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where ∆s2(x) is the perturbation in squared slowness and ∗ denotes the complex conjugate.
For the adjoint, the imaging time sampling can be much larger than that of propagation
since it does not need to satisfy the dispersion and stability conditions. Hence, the cost of
computing the adjoint of FWI can be written as:

CFWI−A = NxNyNzNsource(2×NtpCFDTD + 2×Ntp + Nti), (5)

where Nti is the number of time samples for imaging. The total cost of one iteration of
FWI becomes

CFWI = NxNyNzNsource(6×NtpCFDTD + 6×Ntp + Nti). (6)

Model-Space Extensions

Biondi and Almomin (2012) introduced an extension to full waveform inversion that can
mitigate the cycle-skipping problem and allow for a larger error in the initial model. This is
achieved by extending the velocity model along the subsurface offset and then solving the
corresponding extended wave equation. The modeled data becomes:

d(ω,xr,xs; v(x,xh)) =
∑
x

f(ω,xs)G(ω,x,xs; v(x,xh))δ(xr − x), (7)

and the extended Green’s function satisfies:(
v2(x,xh) ∗−1 ω2 +∇2

)
G(ω,x,xs; v(x,xh)) = δ(xs − x), (8)

where xh is subsurface offset and ∗−1 denotes a deconvolution operator over subsurface
offset. This extended wave equation convolves each time slice by all subsurface offsets of
velocity. The cost of extended forward modeling becomes:

CEFWI−F = NxNyNzNsource(NtpCFDTD + NtpNhxNhy), (9)

where Nhx and Nhy are number of subsurface offsets along the x and y axes, respectively.
By linearizing equation 7 over the velocity squared, we can compute the adjoint as:

∆v2(x,xh) =
∑

ω,xr,xs

∇2f(ω,xs)G(ω,x− h,xs; v(x,xh))

G(ω,x + h,xr; v(x,xh))∆d∗(ω,xr,xs; v(x,xh)). (10)

Therefore, the cost of computing the adjoint of EFWI can be written as

CEFWI−A = NxNyNzNsource(2×NtpCFDTD + 2×NtpNhxNhy + NtiNhxNhy) (11)

and the total cost of one iteration of EFWI becomes

CEFWI = NxNyNzNsource(6×NtpCFDTD + 6×NtpNhxNhy + NtiNhxNhy). (12)

We can see that the computational cost becomes extremely high when we include the
subsurface offsets in the velocity model. One way to reduce the cost is presented in Biondi
(2012) where the velocity model is extended over time instead of horizontal offset. In that
case, the cost becomes a function of one time-lag parameter instead of two horizontal lags
in 3D:

CTimeEFWI = NxNyNzNsource(6×NtpCFDTD + 6×NtpNτ + NtiNτ ), (13)

where Nτ is the number of time lags. The computational disadvantage is that several time
slices need to be held in memory for each time instead of the conventional two slices.
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Linearized Model-Space Extensions

Any of the previously mentioned inversions can be linearized by scale separation as shown
in Almomin and Biondi (2012). To linearize the conventional FWI, the velocity model is
separated as:

s2(x) = b(x) + r(x), (14)

where b(x) is the background component and r(x) is the perturbation component. The
linearized FWI forward operator can be written as follows:

d(ω,xr,xs; b(x), r(x)) =
∑
x

ω2f(ω,xs)G(ω,x,xr; b(x))r(x)G(ω,x,xs; b(x)). (15)

As shown in equation 15, the cost of the linearized forward operator is equal to the adjoint
cost of conventional FWI. Also, the adjoint of the linearized operator with respect to the
perturbation is the same as the conventional FWI adjoint and has the same cost as well.
The adjoint with respect to the background is:

∆b(x) =
∑

ω,xr,xs,y

ω4f(ω,xs)G(ω,y,xs; b(x))r(y)

G(ω,x,y; b(x))G(ω,x,xr; b(x))∆d∗(ω,xr,xs; b(x), r(x))+

ω4f(ω,xs)G(ω,x,xs; b(x))G(ω,x,y; b(x))r(y)
G(ω,y,xr; b(x))∆d∗(ω,xr,xs; b(x), r(x)). (16)

Although equation 16 has six Green’s functions, only four propagations are required since
each background wavefield is the same for two Green’s functions. In addition, these back-
ground wavefields are the same for the adjoint of perturbation. Hence, the total cost of the
linearized FWI per iteration, assuming complete reuse of background wavefields, is

CLFWI = NxNyNzNsource(12×NtpCFDTD + 12×Ntp + 9×Nti). (17)

This shows that scale separation by itself increases the cost of the original nonlinear opera-
tor since it adds several propagations, imaging and scattering steps. However, a significant
cost cutting for extended inversions is possible by extending only the perturbation com-
ponent without extending background component. By following the same derivation for
linearized FWI, I find the cost of linearized extended FWI in subsurface offset when I
extend perturbation only to be

CLEFWI = NxNyNzNsource(12×NtpCFDTD + 12×Ntp + 2×Nti + 7×NtiNhxNhy). (18)

By extending only the perturbation, we remove the subsurface offset multiplication factor
Ntp. This results in a large reduction in cost because the number of propagation time
steps Ntp is much larger than the number of imaging time steps Nti. Similarly, the cost of
linearized extended FWI in time can be written as

CTimeLEFWI = NxNyNzNsource(12×NtpCFDTD + 12×Ntp + 2×Nti + 7×NtiNτ ). (19)

For the extended FWI in time, the cost reduction by linearization is less dramatic than the
extended FWI in subsurface offset since there is only one additional convolution axis.
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Data-Space Extensions

Model space extensions provide an accurate solution to the cycle skipping problem because
they decompose the wavefields in the subsurface along the extended axes, either space or
time. However, this is also reason for their high cost: each data point will interact with all
points of the extended model. To avoid this problem, I propose extending full waveform
inversion through a data space axis, such as source location, instead of model space axes.
The reason for data space extension is that each extended model component operates on the
corresponding component in data space and vice versa. In other words, each experiment can
be computed similarly to the conventional way, but the model is changed between different
experiments. However, extending the model through a data space axis has the underlying
assumption that data components remain separated in the subsurface. This assumption
depends on the complexity of the model. For instance, image space angle gathers and data
space ray parameter gathers provide similar information in a fairly simple model (Sava and
Fomel, 2003), but the latter breaks down in a very complicated model.

The extended inversion, whether in model space or data space, needs to satisfy two
conditions. First, the observed data can always be explained by the extended model re-
gardless of the selection of the initial model (Biondi, 2012). Second, the extended model
should allow gradual change by regularization to produce a non-extended model. The data
space extensions that can potentially satisfy these conditions are source location and source
ray parameter. The source location extension has the advantage of using the exact same
propagation engine as the conventional inversion, so its implementation requires minimal
adjustment to existing applications. Moreover, the source location satisfies the extension
conditions fairly well. Figure 1 shows source location image gathers for a two-layer model
when using the correct velocity, a 10 percent lower velocity, and a 10 percent higher ve-
locity. We see that regularizing the additional axis by a derivative can satisfy the second
condition. The disadvantage of this extension is having a velocity model for each source
location, which can require a very large memory size and burdensome I/O in 3D.

Figure 1: Source location image
gather for a two-layer model when
using the correct velocity (left), a 10
percent lower velocity (middle), and
a 10 percent higher velocity (right).
[CR] ali1/. image-s

Extending the model by source ray parameter requires plane-wave encoding of the data
(Whitmore, 1995; Zhang et al., 2005; Liu et al., 2006). Figure 2 shows source ray parameter
image gathers for a two-layer model when using the correct velocity, a 10 percent lower ve-
locity, and a 10 percent higher velocity. Similar to source location, the source ray parameter
seems to also satisfy the second condition of model extension. The first condition is tested
in the Synthetic Examples section below. In addition, the number of planes is generally
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much smaller than the number of source locations, so it both reduces the cost and makes
the size of the extended model very manageable.

Figure 2: Source ray parameter im-
age gather for a two-layer model
when using the correct velocity
(left), a 10 percent lower velocity
(middle), and a 10 percent higher ve-
locity (right). [CR] ali1/. image-p

The cost of source location encoding is the same as conventional FWI, whereas the cost
of source ray parameter extension is

CRayEFWI = NxNyNzNp(6×NtpCFDTD + 6×Ntp + Nti), (20)

where Np is the number of planes. Figure 3 compares the costs of all mentioned inversions
assuming Nx = Ny = 1000, Nz = 100, Nsource = 10000, CFDTD = 16, Ntp = 1000,
Nti = 100, Nhx = Nhy = 100, Nτ = 200, and Np = 1000, where the costs are normalized by
the cost of conventional FWI. The log-scale highlights that the difference in cost between
these inversions can be several orders of magnitude.

Figure 3: Cost comparison of
conventional and extended full
wavefrom inversions. [NR]
ali1/. CostEFWI
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SYNTHETIC EXAMPLES

A modified Marmousi model is used for the synthetic example where a 500m water layer
is added to the top. Figure 4 shows the true velocity model. A Ricker wavelet with
a fundamental frequency of 15 Hz and temporal sampling of 1.5 ms is used as a source
function to model the data. There are 461 fixed receivers with a spacing of 20 m and 21
plane sources with ray parameter ranging from −1 s/km to 1 s/km. The initial model
shown in Figure 5 is obtained by strongly smoothing the true model.
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Figure 4: The true velocity of Mar-
mousi model. [ER] ali1/. vtrue

Figure 5: The initial velocity of Mar-
mousi model. [ER] ali1/. init
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I modeled the observed data with the conventional acoustic wave-equation nonlinear
modeling operator. Then, I ran inversion without any tomographic regularization term.
This inversion verified the first extension condition, that the modeled data can be explained
using the initial model.

Figure 6: The data residual norm as
a function of iterations of Marmousi
model unregularized inversion. [CR]
ali1/. res2

Figure 7: Three ray parameter gath-
ers showing the difference between
the initial model and the unregu-
larized inverted model at x=2.5, 5,
7.5 km of Marmousi model. [CR]
ali1/. inv2dv

I show the results of running 1000 iterations of the unregularized inversion. Figure 6
shows the residual of the data fitting as a function of iterations. The residual decreases
monotonically without getting stuck in a local minima and is approaching zero. This means
that the first condition is fairly satisfied for this example. Figure 7 shows the difference be-
tween the initial and final model at three locations as a function of depth and ray parameter.
The three gathers show varying degrees of difference across the ray parameter axis, which
indicates the inconsistency between these data components given the initial velocity model.
Figure 8 shows the average of the final model across the ray parameter axis. Although the
final model matches most of the observed data, no low wavenumber components are cor-
rectly estimated in this unregularized inversion since the kinematic errors are compensated
for by the difference between ray parameter models.

Next, I show the results of running 10000 iterations of the inversion regularized by a
derivative across the ray parameter axis. Figure 9 shows the residual of the data fitting
and model regularization as a function of iterations. The data fitting residuals decrease
slower than the data residuals in the unregularized inversion since two objective functions
are competing to be minimized. Nonetheless, it is not getting stuck in a local minima and
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Figure 8: The unregularized in-
version results of Marmousi model.
[CR] ali1/. inv2

Figure 9: The data residual norm
(solid line) and the model residual
norm (dashed line) as a function of
iterations of Marmousi model regu-
larized inversion. [CR] ali1/. res

Figure 10: Three ray parameter
gathers showing the difference be-
tween the initial model and the reg-
ularized inverted model at x=2.5, 5,
7.5 km of Marmousi model. [CR]
ali1/. invdv
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Figure 11: The regularized inversion
results of Marmousi model. [CR]
ali1/. inv

is approaching zero. Figure 10 shows the difference between the initial and final model
at three locations as a function of depth and ray parameter. The three images show no
variations across the ray parameter axis, which indicates that the inversion successfully
converged the extended model to a physical model. Figure 11 shows the average of the
final model across the ray parameter axis. Both low and high wavenumber components are
correctly estimated and the inversion converged towards the true answer.

CONCLUSIONS

I have shown that extending the velocity in model axes increases the computational cost
drastically. Scale separation can reduce the cost but remains much more expensive than
conventional FWI. I presented an alternative approach to extended FWI by using data
space axes. Although the underlying assumptions might make it less accurate than model
space extensions in very complex models, the cost is greatly reduced and becomes similar to
the cost of conventional FWI. The synthetic Marmousi example showed remarkable results
even when the initial model had large errors. The results of this model are comparable to
the results of model space extensions but are significantly cheaper in cost.
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Efficient depth extrapolation of waves in elastic isotropic
media

Musa Maharramov

ABSTRACT

We propose a computationally efficient technique for extrapolating seismic waves in an
arbitrary isotropic elastic medium. The method is based on factorizing the full elastic
wave equation into a product of pseudo-differential operators. The method extrapolates
displacement fields, hence can be used for modeling both pressure and shear waves. A
significant reduction in the cost of elastic modeling can be achieved compared to the
currently prevalent time- and frequency-domain numeric modeling methods and can
contribute to making multicomponent elastic modeling part of the standard seismic
processing work flow.

INTRODUCTION

Extrapolation of seismic wave fields in depth using one-way propagation operators is an
efficient alternative to time- and frequency-domain modeling with the full wave equation,
particularly in seismic migration applications (see (Claerbout, 1985), (Biondi, 2005)). While
one-way extrapolators have long been established as key components of the seismic imaging
toolbox for isotropic acoustic media, extrapolation of elastic wave fields is still carried out
by solving the full elastodynamic system either in the time or frequency domain, either
approach being computationally expensive. The high computational cost of wave extrapo-
lation in elastic media is one of the barriers to a widespread adoption of multicomponent
seismic processing in industrial applications. Some progress has been made recently in the
development of efficient one-way methods for certain simplest anisotropic elastic models
(e.g., vertically transversally isotropic or tilted transversally isotropic media – see (Shan,
2007), (Nolte, 2008), (Maharramov and Nolte, 2011)) However, these methods use the
“pseudoacoustic” approximation (see (Grechka, 2009)) and are used for a kinematically
accurate propagation of pressure waves only.

In this paper we present a method for one-way frequency-domain extrapolation of dis-
placement fields in an elastic isotropic medium. The approach of this paper is based on
factorizing the elastic wave equation using pseudo-differential operators without introducing
stress-related unknown functions into the equations. Our approach is conceptually similar
to the derivation of the acoustic single square-root equation (see (Claerbout, 1985)), except
the resulting factorized propagation operators can not be obtained analytically, but are
computed numerically.
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THE METHOD

We start with the wave equation governing the displacement in an arbitrary heterogenous
isotropic elastic medium in the Navier form (see (Segall, 2010)):

ρüi = µ∆ui +
µ

1− 2ν

∂

∂xi

∂uk

∂xk
, i = 1, 2, 3, (1)

where ui denote the components of a displacement field, µ is the shear modulus, ν is
Poisson’s ratio for the medium, and ρ is the density. In this paper we consider a heterogenous
elastic medium under the assumption of local homogeneity – otherwise the elastic moduli
would not be factored outside of the differentiation operators in equation 1. However,
our method can be extended to cover the case when the local homogeneity assumption is
dropped. “Freezing” the coefficients of equation 1 and applying the Fourier transform in
time and horizontal variables x1 = x, x2 = y, and substituting

µ

1− 2ν
= λ + µ, (2)

where λ is the Lamé coefficient (see (Mavko et al., 2009),(Segall, 2010)), we get

ρω2u1 + µ

[
(−k2

x − k2
y)u

1 +
∂2u1

∂z2

]
+ (λ + µ)

[
−k2

xu1 − kxkyu
2 + ikx

∂u3

∂z

]
=0,

ρω2u2 + µ

[
(−k2

x − k2
y)u

2 +
∂2u2

∂z2

]
+ (λ + µ)

[
−kxkyu

1 − k2
yu

2 + iky
∂u3

∂z

]
=0,

ρω2u3 + µ

[
(−k2

x − k2
y)u

3 +
∂2u3

∂z2

]
+ (λ + µ)

[
ikx

∂u1

∂z
+ iky

∂u2

∂z
+

∂2u3

∂z2

]
=0, (3)

where kx, ky are horizontal wave numbers and ω is the frequency. The left-hand side of
system 3 is the result of an ordinary differential operator applied to a vector-function u =
(u1, u2, u3) and parameterized by horizontal wave numbers. In the present form equations 3
cannot be used for computationally efficient explicit depth extrapolation in a heterogeneous
medium; however, these equations can be used for modeling displacements by solving a
series of boundary-value problems (see (Maharramov, 2012)). In (Maharramov, 2012) it
was suggested that equations 3 might be factorized in such a way as to allow solving them
by alternating one-way extrapolation in opposite directions. More specifically, we seek a
factorization of operator equation 3 of the form:(

E(λ, µ)
∂

∂z
+ A(kx, ky) + cωI

)
×
(

E(λ, µ)
∂

∂z
+ B(kx, ky) + cωI

)
u = 0, (4)

where

E(λ, µ) =

 √
µ 0 0

0
√

µ 0
0 0

√
λ + 2µ

 ,

cω =
√

ρω, (5)

and A,B are 3 × 3 matrices with components that are complex-valued functions of the
horizontal wave numbers, I is the 3 × 3 identity matrix. Performing the multiplication in
equation 4 and using equation 3, we obtain:

A(kx, ky)B(kx, ky) + cω[A(kx, ky) + B(kx, ky)] = P (kx, ky),
A(kx, ky)E(λ, µ) + E(λ, µ)B(kx, ky) + 2cωE(λ, µ) = S(kx, ky), (6)
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where

P =

 −(λ + 2µ)k2
x − µk2

y −(λ + µ)kxky 0
−(λ + µ)kxky −(λ + 2µ)k2

y − µk2
x 0

0 0 −µ(k2
x + k2

y)

 ,

S =

 0 0 i(λ + µ)kx

0 0 i(λ + µ)ky

i(λ + µ)kx i(λ + µ)ky 0

 . (7)

Combining equations 6 and 7, we get the following equation for the operators A and B:

A(kx, ky)B(kx, ky) + cω(A(kx, ky) + B(kx, ky)) = P (kx, ky),

E(λ, µ)B(kx, ky) + A(kx, ky)E(λ, µ) = S̃(kx, ky), (8)

where
S̃(kx, ky) = S(kx, ky)− 2cωE(λ, µ). (9)

Equations 4, 8 in combination with equations 7 and 9 suggest the following procedure for
extrapolating solutions to system 1 in depth:

1. Solve the system of matrix equations 8 for A,B, for each pair of horizontal wave
numbers kx, ky and two reference values of each elastic parameter λmin, λmax and
µmin, µmax;

2. Evaluate (
E(λ, µ)

∂

∂z
+ B(−i∂x,−i∂y) + cωI

)
u(x, y, z = 0)

from the initial conditions and assign the value to an auxiliary function ũ(x, y, z = 0);

3. Solve (
E(λ, µ)

∂

∂z
+ A(−i∂x,−i∂y) + cωI

)
ũ(x, y, z) = 0 (10)

by downward continuing in depth, using the formula

ũ(x, y, z + ∆z) = exp
[
−∆zE−1(A(−i∂x,−i∂y) + cωI)

]
ũ(x, y, z). (11)

4. Perform each step of the depth extrapolation for four combinations of the reference
elastic parameters, then apply the inverse Fourier transform to the four fields and
interpolate at each spatial point of the depth slice using true λ(x, y), µ(x, y) as e.g. in
the PSPI method (see (Biondi, 2005)).

5. After reaching the desired maximum depth, find the solution u by upward extrapola-
tion: (

E(λ, µ)
∂

∂z
+ B(−i∂x,−i∂y) + cωI

)
u(x, y, z) = ũ(x, y, z). (12)

6. Repeat the above steps for each frequency component u(ω, x, y, z).
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The above algorithm is stable if the spectrum of matrix

A(kx, ky) + cωI (13)

is not in the interior of the left half-plane, and the spectrum of

B(kx, ky) + cωI (14)

is not in the interior of the right half-plane. While the above algorithm tries to mimic two-
way wave propagation, it is effectively just an approximation to the propagation process as
it ignores the interaction between the up and down-going wave at intermediate depth steps.
A less accurate alternative would be to downward-continue the wave field using equation 11
in a way similar to the one-way depth extrapolation using the scalar square-root equation
(see (Claerbout, 1985),(Biondi, 2005)). The latter approach would be unable to image any
dips beyond 90◦, however, it would reduce the cost of extrapolation by a further factor of
2. Note the cost of solving equation 10 in depth is roughly three times that of solving the
scalar square-root equation.

The above analysis may be extended to the case of an arbitrary anisotropic elas-
tic medium. The fact that the components of the pseudo-differential operator matrices
A(−i∂x,−i∂y), B(−i∂x,−i∂y) are not given in an analytical form, but are only computed
numerically, does not limit their applicability.

Factorization of system 3 in the elastostatic case was one of the approaches mentioned by
the author in Maharramov (2012). However, the one-way extrapolation technique is mostly
useful for elastodynamic problems as the passband of the factorized depth extrapolators
(e.g., as in equation 11) narrows down to zero with the temporal frequency passing to the
zero static limit.

Figure 1: The phase of a phase-shift
operator corresponding to the max-
imum imaginary part of the eigen-
values of operator 15. Multicompo-
nent “phase-shift” is defined by three
such scalar phase-shift operators and
a 3×3 matrix Q of equation 16. [ER]
musa/. maximageigenval

Note that equation 1 uses elastic parameterization that degenerates into a singularity
if the shear modulus is equal to zero. This is not causing any problems with purely acous-
tic wave extrapolation as the singularity is effectively removed from equations 3 by the
substitution in equation 2.
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IMPLEMENTATION AND RESULTS

The system of matrix equations 8 is solved only once for each triple of temporal frequency
and elastic moduli values, and for each pair of horizontal wave numbers. In our proto-
type implementation of the one-way extrapolator we compute the matrices A,B at the
beginning of the frequency loop and subsequently use the tabulated matrices in the depth
extrapolation loop (inside the frequency loop). A more efficient approach can be employed
in a production implementation of the extrapolation method: system 8 can be solved using
Newton’s method (see e.g. (Higham, 2008)) in a one-off computation for each set of the
temporal frequency, elastic moduli and horizontal wave numbers and stored in a look-up
table. The symmetry of the extrapolation operators 11, that appear to be multi-component
counterparts of the acoustic phase-shift operator (see Claerbout (1985)), can be exploited
to achieve a substantial reduction in the size of the precomputed operator tables. Figure 1
is the plot of the maximum of the imaginary parts of the three eigenvalues of operator

K = −∆zE−1 [A(−i∂x,−i∂y) + cωI] , (15)

within its passband. The operator is the one used later to produce images of Figures 2,3,4,5.
The real parts of the eigenvalues of operator 15 are zero within the operator passband and
negative outside. The imaginary parts of the other two eigenvalues exhibit similar behavior.
Operator K, of equation 15, is the logarithm of the extrapolation operator 11, and the
spectral plot of Figure 1 corresponds to the phase of the phase-shift extrapolator in the
acoustic case (see (Biondi, 2005)). The crucial difference in the elastic multicomponent
case is that the multicomponent “phase-shift” is defined by three such scalar phase-shift
operators with phases φ1, φ2, φ3, and a unitary operator Q, determined by the eigenvector
expansion of K as follows:

K = Q

 iφ1 0 0
0 iφ2 0
0 0 iφ3

Q∗. (16)

The pass bands of the three phase shift operators are, generally, different, but the real
parts of the eigenvalues of 15 are non-positive across all three pass bands.

Figures 2,3,4,5 demonstrate the result of applying our method to extrapolating displace-
ment waves from a concentrated impulse at the surface. Medium parameters used in this
test were 316 m/s shear-wave velocity

vS =
√

µ/ρ

and 632 m/s pressure-wave velocity

vP =
√

(λ + 2µ)/ρ.

The extrapolation grid was 128× 128× 128 with a 5 m step, frequency range 2-12 Hz with 1
Hz step. The values of the elastic parameters used in this test are uncharacteristically low
for seismic applications and were chosen solely for the purpose of fast small-scale simulation
on a single-core PC using Matlab.

Since the impulse at the surface is an asymmetric horizontal displacement but can be
assumed to be symmetric in the vertical direction, our waves are effectively a combination
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Figure 2: Pressure wave extrapo-
lated from an impulse displacement,
2-12 Hz, 128 × 128 × 128 grid, 5 m
step, 316 m/s shear-wave and 632
m/s pressure-wave velocity. [ER]
musa/. pressure

Figure 3: Vertical component of
a wave extrapolated from an im-
pulse displacement, inline section,
2-12 Hz, 128 × 128 grid, 5 m
step, 316 m/s shear-wave and 632
m/s pressure-wave velocity. [ER]
musa/. component3
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pressure and shear waves for the horizontal components, while the vertical displacement
wave should kinematically match the pressure wave. And indeed, the pressure wave plot 2
and vertical displacement plot 3 exhibit excellent kinematic agreement.

Figure 4: Inline component of a wave
extrapolated from an impulse dis-
placement, inline section, 2-12 Hz,
128×128×128 grid, 5 m step, 316 m/s
shear-wave and 632 m/s pressure-
wave velocity. Note the slow shear
wave. [ER] musa/. component1

The horizontal wave-component plots 4 and 5, on the other hand, show pressure- and
shear-wave images, both correctly positioned in agreement with the velocity values used
in the simulation. Boundary reflections and low frequency content cause some imaging
artifacts that are not related to the method.

CONCLUSIONS AND DISCUSSION

The method presented in this paper can be used in seismic migration algorithms in order to
achieve a substantial reduction of run time in comparison with reverse time migration. More
specifically, stability of the time-domain modeling typically utilized in the reverse-time mi-
gration requires time steps significantly smaller than the time resolution of seismic data (see
(Biondi, 2005)). Depth extrapolation of wave fields using one-way equations 10 and 12 can
be performed for an arbitrary frequency range. Extrapolating wave fields in the frequency
domain using two-way system 3 would require solving a large sparse system of equations
using e.g. a finite element method, still posing significant computational challenges for in-
homogeneous media. However, the one-way extrapolation method, while limited in dip and
less accurate in terms of amplitudes, lends itself to efficient implementation using e.g. PSPI
or finite differencing. Furthermore, the approach of this paper can be expected to apply to
more complex elastic anisotropic models (see (Grechka, 2009)) and may be developed into
a computationally efficient alternative to the existing pseudo-acoustic anisotropic modeling
methods while allowing easy separation of pressure and shear waves.
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Figure 5: Crossline component of a
wave extrapolated from an impulse
displacement, inline section, 2-12 Hz,
128×128×128 grid, 5 m step, 316 m/s
shear-wave and 632 m/s pressure-
wave velocity. Note the slow shear
wave. [ER] musa/. component2

ACKNOWLEDGEMENTS

The author would like to thank the Stanford Exploration Project for supporting this work,
and Jon Claerbout, Stewart Levin, Biondo Biondi and Paul Segall for a number of useful
discussions.

REFERENCES

Biondi, B., 2005, 3D Seismic Imaging: Society of Exploration Geophysicists.
Claerbout, J., 1985, Imaging the earth’s interior: Blackwell Scientific.
Grechka, V., 2009, Applications of seismic anisotropy in oil and gas industry: EAGE.
Higham, N., 2008, Functions of matrices: theory and computation: SIAM.
Maharramov, M., 2012, Identifying reservoir depletion patterns with applications to seismic

imaging: SEP Report 147, 193–218.
Maharramov, M. and B. Nolte, 2011, Efficient one-way wave-equation migration in tilted

transversally isotropic media: 73rd EAGE Conference and Exhibition, Extended Ab-
stracts.

Mavko, G., T. Mukerji, and J. Dvorkin, 2009, The rock physics handbook: Cambridge
University Press.

Nolte, B., 2008, Fourier finite-difference depth extrapolation for VTI media: 70th EAGE
Conference and Exhibition, Extended Abstracts.

Segall, P., 2010, Earthquake and volcano deformation: Princeton University Press.
Shan, G., 2007, Optimized implicit finite-difference migration for TTI media: 77th SEG

Conference and Exhibition, Extended Abstracts.



Stanford Exploration Project, SEP148, October 29, 2012

Modeling ocean-bottom seismic rotation rates

Ohad Barak and Shuki Ronen

ABSTRACT

Seismic systems today record up to four components which provide the particle dis-
placement and the pressure. The pressure is proportional to the divergence of the
displacement. We need the hydrophones because the divergence is useful and cannot
be calculated in processing. The curl cannot be calculated from four component data
just like the divergence cannot be directly calculated from the displacements. If the
curl is useful, we can add rotation sensors to today’s four component recorders and
have seven component data.
To evaluate the added information that would come from rotation sensors we used
elastic modeling. In our synthetic data experiment, we predicted the effect of a seabed
scatterer on fully multi-component data. We used a pressure source that generates P
waves. The P-waves are converted to S-waves and to surface waves propagating on the
seabed. Our evaluation is that the added information from rotation sensors will be
useful for identifying and separating surface waves from body waves.

INTRODUCTION

Four-component ocean-bottom seismic sensors (Figure 1) are a combination of a hydrophone
and three-component geophones that measure linear particle velocity. The hydrophone
records pressure changes in the water, and is ideally coupled to the water. It picks up
mostly P-waves. The geophones are coupled to the sea-bed, and record particle velocities
relating to all wave modes: P, S, and surface waves. The multiplicity of wave modes recorded
by the geophones can be problematic for later sesimic processing stages, which assume a
single wave mode recording (i.e., imaging with P-wave or S-wave data only). It is therefore
desirable to be able to separate different wave modes within the data.

The divergence of particle motion is a spatial derivative. If we knew the displacement
values everywhere within the seismic volume, then we could calculate the divergence. How-
ever, receiver stations are usually too sparse in relation to the acquired wavelengths to
calculate the divergence, and in any case are always spread along a single surface (the
sea bottom). The value of the divergence is not redundant even if we measure the three
components of the displacement, since it can be used to detect the propagation direction
of the waves incident on the sea bottom (upward or downward). The pressure that the
hydrophone records is proportional to the divergence of the particle displacements, and is
therefore used for upgoing/downgoing wavefield separation.

Similar to the divergence, we can measure the rotation of particle motion by calculating
the curl of the displacements. As with the divergence, curl is a spatial derivative operator,
and insufficient sampling of the waves in the field can inhibit its direct calculation. However,
a recently-proposed rotation sensor can be used to measure the rotation “in place”. A
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rotation sensor measures the rotation rate (radians/unit time) of the ground at the receiver
location. Similar to linear motion, the rotational motion has three components: roll, pitch
and yaw. Figure 2 illustrates these motion components.

There are implementations of rotational seismic recording for earthquake seismology
(Lee et al., 2009) employing ring lasers. However, these instruments are large and expensive,
and are therefore not applicable to exploration acquisition. There have also been attempts to
record rotational seismic data with a “Rotaphone”: conventional geophones arranged along
a circle (Brokesova and Malek, 2010). Newer technologies are currently under development
to make rotational sensors a viable option for seismic acquisition systems. The interested
reader can go to http://www.rotational-seismic.org for more information on this acquisition
technology.

Figure 1: An example of a 4 com-
ponent receiver package. One hy-
drophone and three geophones pro-
vide (after correction for the instru-
ment response) the pressure of the
water and the velocity of the sen-
sor package, which is ideally coupled
to the seabed. The particle veloc-
ity is the time derivative of the dis-
placement vector, and the pressure
is proportional to the divergence of
the displacement, which is a spatial
derivative. [NR] ohad2/. obnode

 

1 Hydrophone 

3 Geophones 

Figure 2: To know what an aircraft
is doing, it is not sufficient to know
its linear velocity but also the rota-
tions. There are three components
to the velocity, and in addition there
are three components to the rota-
tion: roll, pitch, and yaw. [NR]
ohad2/. f18

The purpose of this paper is to estimate what kind of rotational motion we may expect
in a simple model of ocean-bottom acquisition. We also want to show that additional
information about the wave types can be acquired by having rotational motion data.

THEORY

The elastic isotropic wave equation has two state variables: the stress tensor and the particle
velocity vector. The particle velocities are propagated by:

∂iσii + ∂jσij + fi(x, t) = ρ∂tvi, (1)
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where σii are the normal stresses, σij are the transverse stresses, fi is a particle velocity
force function in direction i, x is the spatial source location operating at time t, ρ is density
and vi is the particle velocity in direction i. The stresses are propagated using the stress-
displacement relation:

∂tσii = (λ + 2µ)∂ivi + λ∂jvj + fP (x, t),
∂tσij = µ (∂jvi + ∂ivj) , (2)

where λ and µ are the Lamé elastic constants and fP is a pressure force function. The
pressure force is added equally to the normal stresses to generate a P-wave source.

We use the staggered time grid methodology for elastic propagation (Virieux, 1986), in
which the stresses and particle velocities are half a time step apart. Therefore equations 1
and 2 are solved in alternation during the propagation.

The divergence of particle displacements is proportional to the pressure in the medium,
the proportion being the medium parameters. It is equal to the average of the normal
stresses in the stress tensor:

P = σ = (λ + µ)∇ · ~u, (3)

where P is the pressure value and ~u are the displacements. Pressure waves cause a vol-
umetric deformation in the medium, and their value can therefore be extracted by using
equation 3 on forward modeled wavefields. However, other wave types can also generate a
volumetric deformation at free surfaces, as a result of the discontinuity of the stresses.

We define rotation as the first time derivative of the curl of displacements:

~R = ∂t∇× ~u. (4)

The curl operation results in the non-volumetric part of the deformation, i.e. the “shear”
deformation. At a free surface, this deformation will cause a rotation. In an isotropic
medium, the curl is associated with S-waves. However, at a free surface, both P-waves and
surface waves will also generate non-volumetric deformation. The units we use for rotations
in this paper are milliradians/second.

MODELING RESULTS

The purpose of the modeling we ran was to synthesize ocean-bottom seismic acquisition,
therefore we used a simple 2-layer model of water over solid. The source was at the water
surface, and receivers were at the water bottom. We executed two runs: one with a near-
seabed anomaly, and one without. The anomaly generated scattering of both P and S
waves, which upon interacting with the seabed also gave rise to a seabed interface wave.
The model without the anomaly enabled us to see which part of the wavefield was due
to the scattering. The Vp velocity models used are shown in Figures 3(a) and 3(b). The
parameters of the two layers were:

1. Vp1 = 1.5 km/s, Vp2 = 1.6 km/s.
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2. Vs1 = 0km/s, Vs2 = 0.6 km/s.

3. ρ1 = 1.025 gr/cm3, ρ2 = 1.7 gr/cm3.

The anomaly was a Gaussian, which extended outward to a radius of 10 meters, and was
centered 10 meters below the seabed. The medium parameters at the center of the anomaly
were: Vp = 1.75 km/s, Vs = 0.9 kms, and ρ = 2.1 gr/cm3. We did not do any testing with
the anomaly parameters, although presumably altering these parameters would result in
greater or lesser scattering. At this point, all we required was a feasible source of surface
waves. A near-seabed anomaly simulates a “rock” buried just below the seabed, or the leg
of a platform, either of which could be sources for scattered surface waves. Our source was
a pressure source simulating an airgun, located at the water surface. The wavelet was a
Ricker with 25Hz central frequency. There is no source-side ghost from the water surface,
since we used an absorbing upper boundary. However, this ghost is simulated by the second
lobe of the injected Ricker wavelet.

(a) (b)

Figure 3: P-wave velocity models. (a) velocity model without anomaly. (b) velocity
model with anomaly. The anomaly is a Gaussian, with a diameter of 20 meters. [ER]
ohad2/. vp2d,vp2d-anom

Figures 4(a) and 4(b) are snapshots of the vertical and horizontal P particle velocities
of the entire wavefield at t = 0.3s. The incident, reflected and transmitted P-waves are
prominent in these snapshots. Also visible is the transmitted S-wave, which is the conversion
of the P-wave inciding on the seabed. The scattered S-wave and Scholte wave are visible as
a semicircle, expanding from the anomaly location at x = 100m.

Figure 4(c) is the pressure as calculated by equation 3. We can see that the waves
that generate most of the volumetric deformation are indeed the P-waves. However, the
Scholte wave also generates some volumetric deformation at the seabed. Figure 4(d) is
the rotation as calculated by equation 4. The waves that generate shear deformation (and
thus rotational motion at the surface) are the transmitted S-wave, and the scattered S and
Scholte waves. Notice that the transmitted S-wave is coming off the P head-wave, and is
therefore propagating along the seabed at P-wave velocity.

Figures 5(a)-5(d) are snapshots of the same four fields, at t = 0.8s. The scattered S-
wave and the scattered Scholte wave are separated at this point in the propagation, since
the velocity of surface waves is slightly lower than that of S-waves. The imprint of the
Scholte wave on both the pressure and the rotation sections is visible.
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(a) (b)

(c) (d)

Figure 4: Wavefield snapshots at t = 0.3s seconds for the velocity model containing a near-
surface anomaly. (a) Vertical particle velocity. (b) Horizontal particle velocity. (c) Pressure.
(d) Rotation. The source is an airgun near the sea surface. In (a) and (b), all wave modes
are present: direct P, reflected P, transmitted P and transmitted S. Also apparent are the S
and Scholte waves which have scattered off the anomaly at x = 100m. In (c) and (d) there
is separation: the S waves are not in (c) and P waves are not in (d). The surface waves are
in both (c) and (d). [ER] ohad2/. 0vx2b,0vz2b,0P2b,0rot2b

(a) (b)

(c) (d)

Figure 5: Wavefield snapshots at t = 0.8 seconds for the velocity model containing a
near-surface anomaly. (a) Vertical particle velocity. (b) Horizontal particle velocity. (c)
Pressure. (d) Rotation. Note how the scattered S body wave and the Scholte surface
wave separate with travel time, as a result of their slightly differing velocities. Note
that the Scholte wave generates both a rotational and a volumetric deformation. [ER]
ohad2/. 0vx2,0vz2,0P2,0rot2
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Figures 6(a) and 6(b) are the vertical and horizontal particle displacement recordings
at the seabed for the velocity model without the anomaly. Figures 6(c) and 6(d) are the
pressure and rotation, respectively. The incident P-wave causes both a pressure deformation
and a shear deformation at the surface, and it therefore generates a transmitted S-wave.
However the moveout of the S-wave is still that of the P-wave.

(a) (b)

(c) (d)

Figure 6: Synthetic data recording at sea-bottom without anomaly. (a) Vertical particle
displacement. (b) Horizontal particle displacement. (c) Pressure. (d) Rotation. [ER]
ohad2/. 0uxr1,0uzr1,0Pr1,0rotr1

Figures 7(a) and 7(b) are the vertical and horizontal particle displacement recordings
at the seabed for the velocity model containing the anomaly. At x = 1000m, the arrivals of
the direct P, scattered S and scattered Scholte wave are are marked. The S arrival is too
weak compared to the P and Scholte waves to be observed in these sections. Figures 7(c)
and 7(d) are the pressure and rotation recordings. We can think of these sections as the
hydrophone and rotational sensor recordings. Comparing Figures 6(d) and 7(d), we can see
that while most of the linear particle displacement is due to the P-wave, the Scholte wave
is responsible for generating strong rotational motion.

Figures 8(a)-9(c) show the three separate arrival-time windows of each wave type. The
arrival times and offset where they were extracted from are marked in Figure 7(a). Figure
8(a) is the volumetric pressure generated by the P-wave and Scholte wave arrivals, as
calculated by equation 3. Figure 8(b) is the hodogram of particle displacements of those
arrivals. Notice that the P hodogram is slightly elliptical, which means that the particle
motion is not linear, as it is in a body wave. The reason for that is the mode conversion
which takes place when the P-wave hits the seabed. What we are seeing is a combination
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(a) (b)

(c) (d)

Figure 7: Synthetic data recording at sea-bottom with anomaly. The scattered Scholte
wave is visible, but the scattered S-wave is relatively too weak to observe in these sections.
The annotations indicate where time windows were taken for the plots in the next figure.
(a) Vertical particle displacement. (b) Horizontal particle displacement. (c) Pressure. (d)
Rotation. [ER] ohad2/. 0uxr2,0uzr2,0Pr2,0rotr2
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of P and S displacements. We can see however that the Scholte displacement hodogram is
very elliptical. Figure 8(c) is the rotation rate of the P and Scholte arrivals, as calculated by
equation 4. The P-wave does generate some rotational motion, and this is again a result of
the mode conversion at the seabed. However, the Scholte wave generates greater rotational
motion, even though the linear displacements of this wave are much weaker than those of
the P-wave.

Figures 9(a)-9(c) are the pressure, displacement hodogram and rotation rate of the scat-
tered S-wave arrival. The volumetric pressure this arrival generates is very weak compared
to the P-wave, but while its displacements are 3 orders of magnitude weaker than those
of the P-wave, its rotational motion is only 2 orders of magnitude weaker. Note how the
hodogram is nearly perpendicular to the P-wave displacement hodogram.

(a) (b)

(c)

Figure 8: P and Scholte wave arrivals at the ocean-bottom receiver at x = 1000m, where
the scattering was off the anomaly. (a) Pressure of arrivals. (b) Hodogram of displace-
ments of arrivals. (c) Rotation rate of arrivals. Note how the P-wave has greater lin-
ear displacements compared to the Scholte wave, but a smaller rotation rate. [ER]
ohad2/. 0Pr2-p-gr,0uxzr2-p-gr-hodo,0rotr2-p-gr

Figures 10(a),10(b) and 10(c) are the ratios between the rotation rates and the absolute
value of the displacement vectors of the P, S and Scholte wave arrivals. This ratio serves as
a good indication as to which of the waves is a P-wave, and which are S or Scholte waves.
The S and Scholte waves give rise to much more rotational motion in comparison to linear
motion. P-waves, even when propagating along the seabed, generate mostly linear particle
motion.
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(a) (b)

(c)

Figure 9: Shear wave arrival at the ocean-bottom receiver at x = 1000m, where the scat-
tering was off the anomaly. (a) Pressure of S arrival. (b) Hodogram of displacements of S
arrival. (c) Rotation rate of S arrival. [ER] ohad2/. 0Pr2-s,0uxzr2-s-hodo,0rotr2-s

(a) (b) (c)

Figure 10: Ratio of rotation rate to absolute value of displacement for P, S and Scholte
wave arrivals at the ocean-bottom receiver at x = 1000m, where the scattering was off the
anomaly. (a) Ratio for P arrival. (b) Ratio for S arrival. (c) Ratio for Scholte wave arrival.
Note that the ratio for S and Scholte waves is an order of magnitude greater than for the
P wave. [ER] ohad2/. 0rotind2-p,0rotind2-s,0rotind2-gr
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DISCUSSION AND CONCLUSION

The main conclusion is that rotational sensors can provide us with additional information
about the type of waves recorded by ocean-bottom acquisition. The key characteristic for
separating between the waves is the ratio between the linear and rotational motions. At
the seabed, the P-waves have a mostly linear motion. Scattered S and Scholte waves have
a mostly rotational motion.

When designing a new sensor, one of the important questions is its sensitivity. Sensor
sensitivity can be parameterized by over-drive level and dynamic range. A sensor that is not
sensitive enough will not register weak signal. A sensor that is too sensitive will over-drive
too often and will not provide useful information on high amplitude events. Depending
on the electronics and the analog instrument impulse response, the time to recover from
overdrive may be from a few milliseconds to a second. The dynamic range is of course limited
by the analog dynamic range of the sensor and by the number of bits of the digital data
(32 bits in modern emerging A/D converters which is usually way above analog dynamic
range). In this paper we provide predicted numbers in terms of milliradians/sec of rotation,
bars of pressure, and millimeters of displacement.

However, it is important to note that so far our study is based on 2D elastic modeling.
In this paper there is circular spreading of body waves and no spreading of surface waves,
which is why they do not weaken with offset. The reason we chose the offset x = 1000m
at which to analyze the displacements was because the different arrivals were sufficiently
separated there, and their different characteristics could thus be displayed. In 3D, there
is spherical spreading of body waves and circular spreading of surface waves. The relation
between the body-wave rotations and surface-wave rotations may be very different in 3D
as a result of the added degree of freedom. We plan to extend this study to 3D before
providing sensitivity requirements for dynamic range and over-drive levels.
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Two point raytracing for reflection off a 3D plane

Stewart A. Levin

ABSTRACT

I present a simple, elegant approach to calculating two-point rays reflecting off a 3D
dipping plane and investigate extensions to converted wave reflection and offset-vector
map demigration.

INTRODUCTION

For SEP-147, I calculated the response of various classic seismic algorithms on a reflection
off of a plane in 3D. After wrestling with spatial geometry in old textbooks, I derived the
following result from scratch using elegant, coordinate-free vector notation.

Figure 1: Diagram of planar reflec-
tor and the points and vectors I use
for calculating the reflected raypath.
[NR] stew1/. planerayfig
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Given a source location S, a receiver location R, and a plane n · (P − P0) = 0, where n
is a unit normal, to find the reflection point P , drop a perpendicular w from n to the line
connecting P to R. Snell’s Law says that running w in the other direction connects to the
line between P and S. So for some scalars α and β we have

(R− P ) = α(n + w)
(S − P ) = β(n−w)
n ·w = 0

n · (P − P0) = 0

.

Dotting n onto the first two equations gives

n · (R− P ) = n · (R− P0) = α
n · (S − P ) = n · (S − P0) = β

,

and subtracting the first two equations produces

(R− S) = (α− β)n + (α + β)w,

89
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which can be solved directly for w now that we have α and β. Given this w, the first
equation immediately yields

P = R− α(n + w),

the desired reflection point. This can also be described in terms of the midpoint M of the
source and receiver as

P = M − 1
2
(α + β)n− 1

2
(α− β)w .

CONVERTED WAVE REFLECTION

The same approach applies to P -to-S or S-to-P reflection as well with one important
difference—the angle of reflection differs from the angle of incidence. Now

(R− P ) = α(n + w)
(S − P ) = β(n− ζw)
n ·w = 0

n · (P − P0) = 0

for some scalar ζ. To determined ζ let vs and vr be the velocities of the source and receiver
paths respectively and θs and θr be the corresponding angles of incidence and reflection.
Then Snell’s Law says

sin θs

vs
=

sin θr

vr
.

By our definition of w, we also have the identities

|w| = tan θr

|ζw| = tan θs

which, using the identity,

sin θ =
tan θ√

1 + tan2 θ
,

gives the relation for ζ

1
ζ2

=
(

vr

vs

)2

+

((
vr

vs

)2

− 1

)
|w|2

which, combined with
(R− S) = (α− β)n + (α + ζβ)w ,

produces a fourth order equation for ζ.

The fourth order equation can be solved directly using algebraic formulas. Lanczos
(1956) provides a clean, efficient numerical approximation, reproduced in Appendix A, that
is about 10 times faster than using a general purpose numerical root finder. (Appendix B
shows how to make it free of floating point divisions.)

An interesting alternative to direct solution is to apply Newton iterations to the shooting
method wherein source ray parameters are repeatedly adjusted to return very near to the
target receiver. This approach applies to multiple layers and multiple reflections, not just
a single interface. In Appendix C, I demonstrate global convergence of that method when
applied to forward ray tracing through a stack of horizontal layers.
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OFFSET-VECTOR MAP DEMIGRATION

Another application of the coordinate neutral approach for 3D reflection point calculation
that arose at SEP recently is offset-vector map demigration. For this, the aim is to model
where a point, P , on a planar subsurface reflector will appear in a constant-offset, constant-
azimuth survey.

For this calculation, there is one fixed coordinate, the depth axis, with the sources and
receivers on the surface, described by an arbitrary point Q0 with (downward) normal z. We
are further given the source-to-receiver offset vector 2hx and the reflector inward normal n
from the point P on the reflector.

We know the ellipsoid of specular reflection has its major axis through the source and
receiver, and that the inward normal bisects the reflection angle between the source and
receiver. Therefore the normal line through the reflection point intersects the source-receiver
axis somewhere between the source and receiver. Let Q be the point on the surface where
the normal ray would reach. Then we may write

Q = P + γn

for some scalar γ. As before we calculate

z · (Q−Q0) = z · (P −Q0) + γz · n
0 = z · (P −Q0) + γz · n

γ =
z · (Q0 − P )

z · n

and the horizontal distance of Q from the vertical plane through P as

x · [(P − {z · (P −Q0)} z)− (P + γn)] = γ x · n

thereby fixing the source-receiver axis and the relative location of Q. What still remains is
to ascertain the source-receiver midpoint relative to P . This we can determine by means
of tedious algebra, the way I did it, or by a succinct bit of trigonometry provide by Daniel
Kane (pers. comm.) of the Stanford Department of Mathematics.

Figure 2: Diagram used to obtain-
ing a quadratic relation for calcu-
lating x from z, h, and θ0. [NR]
stew1/. KaneProof

q0 a 

q0 

b 

b 
(x,z) 

(h,0) (-h,0) 

A C B 

B’ 

Due to symmetry, we may rotate the reflection point around the source-receiver axis
until it is directly below that axis. This does not change the unknown distance to the
source-receiver midpoint, but does reduce the computation to one on a planar ellipse. Let
x0 and z0 denote the respective horizontal and vertical distances from the source-receiver
midpoint to the reflection point. The dip angle θ0 is implicitly determined by sin θ0 = −n · x
and cos θ0 =

√
1− sin2 θ0. Using this dip angle, z0 may be written as γ cos θ0. Referring to

Fig. 2, Fermat’s principle of extremal traveltime tells us that reflecting a focus of the ellipse
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around the tangent produces an image point on the straight line connecting the reflection
point and the other focus. Hence we know that AB′C forms a triangle. Denoting the three
angles α, β, and θ0 as illustrated in the figure, we have

α + β + 2θ0 = π

whence
tan 2θ0 = − tanα + tanβ

1− tanα tanβ
.

But
tanα =

z0

x0 + h

tanβ =
z0

x0 − h

hence
tan 2θ0 = −z0(x0 − h) + z0(x0 + h)

x2
0 − h2 − z2

0

=
−2x0z0

x2
0 − z2

0 − h2

and so we have the quadratic relation

x2
0 + 2x0z0 cot 2θ0 − (z2

0 + h2) = 0 .

Solving the quadratic equation we get

x0 = −z0 cot 2θ0 +
√

z2
0 cot2 2θ0 + z2

0 + h2

= −z0 cot 2θ0 +
√

z2
0 csc2 2θ0 + h2

= − z2
0(csc

2 2θ0 − cot2 2θ0) + h2

−z0 cot 2θ0 −
√

z2
0 csc2 2θ0 + h2

=
sin 2θ0(z2

0 + h2)

z0 cos 2θ0 +
√

z2
0 + h2 sin2 2θ0

in a form that does not exhibit a numerical singularity at θ0 = 0.

The relation α + β + 2θ0 = π is actually a special case of the more general proposition
attributed to Bošković (Boscovich) (1754):

From any point H outside an ellipse with foci F and f , with F being no farther from H
than f , draw two tangents, touching the ellipse at P and p respectively. Then the interior
angle PHp is half the difference of the interior angles PFp and Pfp.

A translation of his original Latin demonstration appears in Appendix D.

So, in summary, only the dot products z ·n and x ·n are needed to find the demigration
location of point P .

Reflection gradient

If we are interested in map migration, the information we have is not the reflector normal,
but the normal to the arrival time surface. To calculate this slope, we can conflate distance
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and time by choosing an arbitrary temporal unit, say a glorp equated to 1/V seconds. This
makes a traveltime of 1 glorp correspond to 1 meter of travel distance.

I make life simpler by observing that the traveltime gradient has the same azimuth as
the reflector’s dip azimuth. This must be so because translating the source-receiver pair
along strike does not change the reflection arrival time. I note that this does not say that
the reflection point moves along the dip azimuth when the surface arrival point moves along
the dip azimuth.

The next twist is that instead of translating the source-receiver pair along the dip
azimuth, I’ll translate the reflector plane along its normal direction. This implies that
derivatives with respect to the reflector normal direction need to be scaled by the sine of
the reflector dip, i.e. sin θ =

√
1− (n · z)2, as the surface intercept of the reflector moves a

distance inversely related to the sine of the dip. Fortunately, even the zero dip case, where
the reflector does not intersect the surface, is handled properly because the sine is zero in
that case.

If we translate the initial reflection point P by −εn, where my convention for θ implies
ε ≥ 0 corresponds to a positive time slope, we obtain a point on the displaced reflection
plane, though generally not the new reflection point P̂ . The relation of P̂ to P can be
ascertained as before by dotting with n:

n · (R− P̂ ) = n · ((R− P ) + εn)) = α + ε

n · (S − P̂ ) = n · ((S − P ) + εn)) = β + ε
.

Continuing as before,

R− S = (α− β)n + (α + β)w
R− S = ((α + ε)− (β + ε))n + ((α + ε) + (β + ε))ŵ

,

yielding

ŵ =
(

1− 2ε

α + β + 2ε

)
w

which says that w does not rotate.

To compute changes in lengths (traveltimes), we have the relations

R− P = α(n + w)
R− P̂ = (α + ε)(n + ŵ) = −(α + ε)(w − ŵ) + (α + ε)(n + w)

and
S − P = β(n−w)
S − P̂ = (β + ε)(n− ŵ) = (β + ε)(w − ŵ) + (β + ε)(n−w)

,

whence
P̂ − P = −(α + ε)(ŵ −w)− ε(n + w)

= (β + ε)(ŵ −w)− ε(n−w)
.

Taking first differences, we have

ŵ −w
ε

= − 2
α + β + 2ε

w



94 Levin SEP–148

and

P̂ − P

ε
= −(α + ε)

ŵ −w
ε

− (n + w)

= (β + ε)
ŵ −w

ε
− (n−w)

whence

dP

dε
=

(
−1 +

2α

α + β

)
w − n

=
(

1− 2β

α + β

)
w − n

or, averaging the two,

=
α− β

α + β
w − n .

With these in hand, we may differentiate the traveltime

T = TR + TS = |P −R|+ |P − S|

to get

dT

dε
=

(
P −R

|P −R|
+

P − S

|P − S|

)
· dP

dε

= −
(

α(n + w)
TR

+
β(n−w)

TS

)
·
(

α− β

α + β
w − n

)
=

α

TR

(
(1− |w|2)α + (1 + |w|2)β

α + β

)
+

β

TS

(
(1 + |w|2)α + (1− |w|2)β

α + β

)
which, as remarked earlier, is then multiplied by sin θ to obtain the surface time slope.

This last expression has a simple geometric meaning. As

P −R

|P −R|
and

P − S

|P − S|

are unit vectors pointing towards the reflection point from the receiver and source respec-
tively, their sum is necessarily parallel to their angle bisector, the normal. In particular,
they sum to −2 cos ξ n where ξ is the angle of incidence or reflection. Dotting this with
dP/dε and multiplying by sin θ we have that the time slope is simply 2 cos ξ sin θ. Chang-
ing units from glorps back to seconds, this agrees with the well-known zero-offset result
2 sin θ/V .

A Postscript

One of the references I allude to in the introduction was the classic posthumous publication
of Slotnick (1959). In that tome, I found the proposition, a consequence of Apollonius’
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Theorem (see, e.g., Godfrey and Siddons (1908) pages 20–21), that for a fixed source location
and with receivers placed diagonally opposite each other at equal distances from the source,
the sum of the squares of the two source to receiver traveltimes is independent of source-
receiver azimuth. This result, analogous on the face of it to the updip-downdip refraction
shooting method, appears to have been used fairly routinely to estimate moveout velocities
before the advent of the common midpoint gather but is no longer taught to students or
industry professionals. I think it, or some modern recasting of it, may well provide uplift
to both academia and industry seismic processing and analysis.

DISCUSSION AND CONCLUSIONS

As we have seen, while not a panacea, the power of vector notation really shines once we
leave the Euclidean plane and begin to work in 3D. It can allow us to reduce a problem
to its algebraic or geometric essentials and to subsequently cleanly code the solution using
any Cartesian coordinate system. In addition, the interests of academic scholarship have
brought me new insights into historical thinking about seismic acquisition, processing, and
imaging that offer tantalizing hints how more recent approaches may benefit from those
“old school” ideas. Stay tuned!

APPENDIX A

Lanczos solutions for cubics and quartics

From Lanczos (1956), pages 6–8, 19–22:

3. Cubic equations. Equations of third and fourth order are still solvable by algebraic
formulas. However, the numerical computations required by the formulas are usually so
involved and time-absorbing that we prefer less cumbersome methods which give the roots
in approximation only but still close enough for later refinement.

The solution of a cubic equation (with real coefficients) is particularly convenient since
one of the roots must be real. After finding this root, the other two roots follow immediately
by solving a quadratic equation.

A general cubic equation can be written in the form

f(ξ) = ξ3 + aξ2 + bξ − c = 0 .

The factor of ξ3 can always be normalized to 1 since we can divide through by the highest
coefficient. Moreover, the absolute term can always be made negative because, if it is
originally positive, we put ξ1 = −ξ and operate with ξ1.

Now it is convenient to introduce a new scale factor which will normalize the absolute
term to −1. We put

x = αξ, a1 = αa, b1 = α2b, c1 = α3c

and write the new equation

f(x) = x3 + a1x
2 + b1x− c1 = 0



96 Levin SEP–148

If we choose
α = 1/ 3

√
c

we obtain
c1 = 1.

Now, since f(0) is negative and f(∞) is positive, we know that there must be at least
one root between x = 0 and x = ∞. We put x = 1 and evaluate f(1). If f(1) is positive,
the root must be between 0 and 1; if f(1) is negative, the root must be between 1 and ∞.
Moreover, since

x1 · x2 · x3 = 1

we know in advance that we cannot have three roots between 0 and 1, or 1 and ∞. Hence
if f(1) > 0, we know that there must be one and only one real root in the interval [0, 1],
while if f(1) < 0, we know that there must be one and only one real root in the interval
[1,∞]. The latter interval can be changed to the interval [1, 0] by the transformation

x̄ =
1
x

which simply means that the coefficients of the equation change their sequence:

−c1x̄
3 + b1x̄

2 + a1x̄ + 1 = 0

Hence we have reduced our problem to the new problem: find the real root of a cubic
equation in the range [0, 1]. We solve this problem in good approximation by taking advan-
tage of the remarkable properties of the Chebyshev polynomials (cf. VII, 9) which enable
us to reduce a higher power to lower powers with a small error. In particular, the third
Chebyshev polynomial

T ∗
3 (x) = 32x3 − 48x2 + 18x− 1

normalized to the range [0, 1] gives

x3 =
48x2 − 18x + 1

32
= 1.5x2 − 0.5625x + 0.03125

with a maximum error of ± 1
32 . The original cubic is thus reducible to a quadratic with an

error not exceeding 3%.

We now solve this quadratic, retaining only the root between 0 and 1.

...

11. Equations of fourth order. Algebraic equations of fourth order with generally
complex roots occur frequently in the stability analysis of airplanes and in problems involv-
ing servomechanisms. The historical method of solving algebraic equations of fourth order
(also called biquadratic or quartic equations) involves the following steps. By a transfor-
mation of the form x + α the coefficient of the cubic term is annihilated. Then an auxiliary
cubic equation is solved. The roots of the original equation are constructed with the help of
the three roots of the auxiliary cubic. Numerically this method is lengthy and cumbersome.
The following modification of the traditional procedure yields the four roots of an arbitrary
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quartic equation with real coefficients on the basis of a quick and numerically convenient
scheme.

Every equation of the form

x4 + c1x
3 + c2x

2 + c3x + c4 = 0

can be rewritten as follows:

(x2 + αx + β)2 = (ax + b)2 .

If the original ci are real, the new coefficients are also real. Hence the original equation
becomes solvable in the form of the quadratic equation

x2 + αx + β ± (ax + b) = 0

which has four (generally complex) roots, obtainable by the standard formula. The new
coefficients can be determined as follows. We evaluate in succession the following numerical
constants:

α =
c1

2
, A = c2 − α2, B = c3 − αA

and form the cubic equation

ξ3 + (2A− α2)ξ2 + (A2 + 2Bα− 4c4)ξ −B2 = 0

Since the left side is negative at ξ = 0, a positive real root must exist. We determine this
root according to the method of § 3. In order to avoid later corrections, it is advisable
to add at this point Newton’s correction (cf. § 5), obtaining ξ with great accuracy. The
coefficients of the reduced equation are then determined as follows:

α =1
2c1, β =1

2(A + ξ)

a =
√

ξ, b =
a

2

(
α− B

ξ

) .

APPENDIX B

Division-free reciprocal cube roots

Sometime back in the ’90s, square roots started to be implemented as z × z−1/2 where the
reciprocal square root was implemented using one or two iterations of Newton’s method. As
the Newton formula for the reciprocal square root could be written with only multiplications
and additions, this was several times faster than computer division. Indeed, division was
often replaced by squaring the reciprocal square root.

For the Lanczos root-finding methods in the previous appendix, a reciprocal cube root
is needed. Fortunately, this, too, can be obtained using Newton’s method in a division-free
manner as follows:

Let
f(x) =

1
x3

− z
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be the function whose root we want to find. Taking its derivative,

f ′(x) =
−3
x4

,

produces the Newton step

xn+1 = xn −
f(xn)
f ′(xn)

= xn(4
3 −

1
3z x3

n) .

The remaining issue is choosing an appropriate first guess, x0, of the root in order to
start the iteration. For this I again look to the fast reciprocal square root for guidance.
McEniry (2007) reproduces a classic code (without the profane comment) containing a
“magic number” from which half the integer representation of the floating point input is
subtracted to produce an integer representation of the initial guess. This starting point was
good enough that a single Newton iteration resulted in a worst case relative error of less
than 0.175%. Mimicing McEniry’s development yields the following code for a reciprocal
cube root:

float InvCubeRoot ( float x ) {
const float onethird = 0.333333333333;
const float fourthirds = 1.333333333333;
float thirdx = x * onethird;
union {
int ix;
float fx;

} z;

z.fx = x;
z.ix = 0x54a21d2a - z.ix/3; /* magic */
x = z.fx;
x = x * ( fourthirds - thirdx * x*x*x ); /* max relerr < 2.34E-3 */
x = x * ( fourthirds - thirdx * x*x*x ); /* max relerr < 1.09E-5 */
return x;

}

There is still one hitch—the “magic” line is not division free. Fortunately, the hacker and
compiler community has worked out division-free integer division. For division by 3, this is
accomplished by multiplying the numerator by the binary expansion 0.010101010101. . . of
1
3 in fixed point arithmetic just like we were all taught in elementary school. For 32 bit
numerators, we multiply by the hexadecimal constant 55555556 and shift the (64 bit) result
down by 32 binary places. Therefore the “magic” line of code becomes

z.ix = 0x54a21d2a -
(int) ((z.ix * (int64_t) 0x55555556)>>32); /* magic */

where the tail end 6 instead of 5 in the multiplier handles the cases where the integer is not
an exact multiple of 3.
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Performing timing tests in C with random numbers, this algorithm ran 20 times faster
than calling powf(x,-1.0f/3.0f) from the C math runtime library and about 10 times faster
than my best previous effort to calculate a fast reciprocal cube root.

APPENDIX C
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Globally convergent Newton’s method for ray shooting

Quite some time ago, Bob Keyes at Mobil mentioned that Newton’s method applied to
shooting rays to solve the two-point problem in horizontally layered media is globally con-
vergent, assuming, of course, that there is a solution. Specifically, there must be a solution
if an initial guess at the ray parameter overshoots the target.

Formally, let the ray parameter p be in the open interval (0, 1/vmax). Starting from the
origin, Snell’s law pv = sin θ says that

x =
∫ z

0
tan θ dz =

∫ z

0

pv

(1− p2v2)1/2
dz

gives the horizontal displacement of the ray from the origin when it reaches depth z. Taking
two derivatives of this formula with respect to p, we have

dx

dp
=
∫ z

0

v

(1− p2v2)3/2
dz ,

d2x

dp2
=
∫ z

0

3pv3

(1− p2v2)5/2
dz .

At a glance one sees that the second derivative is a quantity guaranteed to be positive in
(0, 1/vmax). By Thorlund-Petersen (2004), Newton’s method applied to finding the p for a
ray that reaches a given x at given depth z is therefore globally convergent. (Technically,
we do need to ensure that the Newton update doesn’t overshoot the range (0, 1/vmax).)
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APPENDIX D

Translation of the geometric proof in Bošković (Boscovich) (1754).

P F 

M 
m 

n 

N 
f 

p 

H 

58. 

186. At Ellipsi in fig. 58 ductis HFN,
Hfn, bini FPH, FpH æquales erunt binis
fPM, fpm, sive quatuor internis, & op-
pofitis PfH, PHf, pfH, pHf, nimirum toti
PHp, & toti Pfp. Angulus autem PFp
æqualis binis PFN, pFN, sive quatuor in-
ternis FPH, FHP, FpH, FHp, vel binis il-
lis FPH, FpH cum angulo PHp, adeoque
angulo PHp bis, & toti Pfp semel. Quare
angulo Pfp dempto a PFp, remanet an-
gulus PHp bis.

186. In the ellipse in fig. 58, draw
HFN and Hfn. Then FPH and FpH are
equal to fPM and fpm respectively and
so the four internal opposite angles PfH,
PHf, pFH, and pfH evidently sum to PHp
with Pfp.† Now angle PFp is the sum of
PFN and pFN and so the sum of inter-
nal angles FPH, FHP, FpH, and FHp,
hence [the sum of] FPH, FpH and an-
gle PHp. [From above,] this is precisely
equal to PHp twice combined with Pfp
once. Therefore subtracting Pfp from
PFp leaves twice the angle PHp.
†The external angle is the sum of the two opposite
internal angles in a triangle.
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Interactive processing: Geometry manipulation

Robert G. Clapp

ABSTRACT

Header manipulation for regularization, registration and quality control is often a time-
consuming task with 3-D datasets. These manipulation tasks are often performed
multiple times before achieving the desired result, each requiring a large amount of
data to be read in with very few operations performed on each byte read. The problem
can be made more tractable by reading in a random subset of the headers. Operations
such as rotating, windowing, and gridding can then be performed interactively. With
each processing step a record is created. These records can then be used to process the
entire dataset, requiring only a single read and write of the volume.

INTRODUCTION

SEP has a long history of writing interactive viewers for regularly sampled multi-dimensional
volumes (Ottolini, 1982; Biondi and van Trier, 1993; Clapp et al., 2008; Clapp, 2010). It has
also dabbled in interactive processing using a range of platforms from Sunview (Claerbout,
1991) to Xtpanel (Cole and Nichols, 1992, 1993) to AVS (Clapp and Biondi, 1994). These
attempts have met with limited success because they often did not provide a significant
advantage over batch processing in terms of efficiency or ease of use.

The last 15 years have seen a significant change in the relative speeds of disk, memory,
and compute power, with the former lagging far behind. In addition the size of seismic data
volumes has grown by at least an order of magnitude. This brings into question the paradigm
of running a batch program, QC’ing with a viewer a small percentage of the volume, then
repeating with new parameters or proceeding to the next step. A different paradigm is
to put the viewer as the central player, minimizing the amount of disk IO in exchange for
redoing computations. This paradigm can be particularly effective in manipulating headers,
which generally involve a low number of operations for each byte read accessed.

In this paper I introduce a new tool, qthead, for interactive header manipulation. The
application allows the user to perform all of the basic header key functions in SEP3D (Biondi
et al., 1996). The user works on a random subset of the headers, rotating, windowing, and
gridding until a satisfactory result is achieved. The application stores all of the commands.
These commands can then be applied to the entire volume, greatly reducing the required
I/O.

DESIGN

In this section I will begin by describing the SEP3D tools that qthead replaces. I will then
move into a brief description of the various classes in qthead and their functionality.
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SEP3D tools

There are several SEP3D header manipulation applications in SEPlb that qthead attempts
to replace. Headermath allows the creation of keys based on mathematical expressions using
constants and other key values. This includes the ability to rotate the coordinate system
by entering a rotation matrix based on x and y values. Window key subsamples the dataset
based on ranges of values for different keys. Sort3d allows the user to overlay a regular grid
on irregular key locations. Finally, the programs Stack3d and Infill3d create a regular
dataset from an irregular volume using the grid created in Sort3d.

FUNCTIONALITY

There are three windows in qthead. The main window gives a graphical display of one or
more headers. The desired header can be selected from a pull down menu at the top of the
display (see Figure 1). In this display the user can window a range of headers by drawing a
box using the left mouse button. The right mouse button can be used to draw a line which
will be used to rotate the data. After rotation the selected line will be horizontal in the
display.

The second window (see Figure 2) displays all of the actions that have been performed
on the data such as rotating and windowing. The user can undo an action by selecting the
action above it in the list using the left mouse button. The application will then rerun all
of the processing steps above and including the selected action. The bottom portion of the
window is the gridding parameters that the user has selected for the dataset. These can be
set in the final window.

The first two rows of the final window (see Figure 3) allow the user to specify exact
windowing parameters for the data and an exact rotation angle (instead of using the mouse
approach used in the main window). In addition, the user can create new headers keys by
entering the new key name and its formula using constants and other key values. The final
row allows the user to add a gridding axis to the dataset. The minimum and maximum of
each key are provided by the program, the user adds the sampling then uses the go button
to create the axis. Once an axis has been created the user has the option of choosing to
change the main window display from a cross plot to a multi-dimensional histogram (see
Figure 4).

The main window panel provides additional functionality using drop-down menus. The
user can store all of the commands in the history buffer to a file. A history buffer can also
be read from disk, and the actions in it performed automatically. The user also has several
different output options. The user can output all of the SEP3D commands that will produce
a SEP3D dataset equivalent to the current display. The user can also directly create the
volume using the Create regular volume or Create irregular volume. The difference
between these two options is whether to create a regular cube (requires that gridding axes
have been created) or an irregular volume.
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Figure 1: An example of the cross-plot view. In this case we see the source locations
displayed. Note the ability to select the headers to be displayed at the top of the figure
along with the ability to switch between a cross-plot and histogram view. bob1/. cross-plot
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Figure 2: A view of the history
panel. Each command can be clicked
on, erasing all future processing
steps. The display is then recre-
ated by running all commands before
and including the selected command.
bob1/. history

Figure 3: The header manipulation panel. From this panel keys can be windowed and
rotated using the keyboard inputs. In addition new keys can be created by entering a
formula based on constants and other keys. The bottom row allows gridded axes to be
created from a selected key. bob1/. head-manip
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Figure 4: An example of the histogram view. In this case two offset keys have been cre-
ated and the data binned at 40m. Darker colors indicate more traces falling into a bin.
bob1/. histogram



106 Clapp SEP–148

Classes

The application, qthead is written in C++ using the QT1 toolkit. The most basic building
block for the application is the headers class. The headers is the basic storage mechanism
for the headers. It has the ability to return an array of floats, doubles, or integers for all the
headers currently stored in memory. The io class is the interface to read and write header
values to disk. Currently only the ability to read/write SEP3D volumes is implemented but
expansion to support SEG-Y, SU, etc. would require minimal effort. The my data replicates
most of the functionality of Headermath and Window key such as creating keys, rotating,
and windowing. It is the basic interface to the headers for all of the other components.

The fact that the entire header volume can not be assumed to fit into main memory re-
sulted into several design decisions. Reading in a random subset of the data to interactively
manipulate is an effective visualization strategy but is not sufficient to create an output
volume to use for further processing. The need to rerun all of the commands on the entire
dataset led to the creation of the action generic class. This class includes virtual functions
(that result in calls to the my data class) to perform desired actions.

The history class operates as the control unit for qthead. It keeps track of all the
actions that user has performed. It has the ability to run a series of actions on a given
my data object which is useful both for when the user wants to remove a processing step
and when the final output volume needs to be created. This ability to run a series of
processing steps on an arbitrary header volume allows the history class to replace the
functionality of Sort3d, Stack3d, and Infill3d. It can loop through a given dataset,
reading manageable subsets and performing a series of actions before writing out the final
dataset.

The most sophisticated class is the io thread class. This class, a separate thread created
when the application is started, is responsible for reading in random subsets of the headers.
It starts by reading random subsets of the headers in chunks of several MB. After each chunk
is read it applies all of the current actions using the functionality of the history class. Once
all of the allotted header memory is used it stays dormant until one of two conditions is
met. If the user requests that an action is undone. This results in the current data volume
is abandoned, random subsections are reread, and the remaining processing steps run on it.
The second reason for the thread to be awoken is when a windowing option is performed.
After a windowing operation the thread will read in more of the headers, applying all of the
current actions, until either the entire volume has been read or the maximum allotted space
is again reached. Disk I/O can be a significant bottleneck, particularly given the random
read approach used by qthead. To get around this problem we use Ecoram (Clapp, 2009),
a type of solid state memory with a read rate of around 2GB/s, which seems sufficient for
this application.

FUTURE WORK

A similar interactive approach can be used for many of the pre- and post-imaging steps now
done at SEP using batch processes. Instead of reading in and processing an entire volume,
only the portions of the dataset needed for the current view need reside in memory. This

1http://www.qt-proj.org
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is a subtle but important difference. Processes such as NMO operate on a single trace,
but doing a velocity scan requires all of the traces at a given CMP location. As a result
each routine must have an awareness of what range of data is required to display a given
subsection. As the number of processes increases the application must be able to keep track
of a potentially expanding tree of data required to read into main memory to produce a
given view.

CONCLUSIONS

I present an interactive 3-D geometry manipulation application, qthead. The application
allows the user to rotate, window, and grid 3-D data interactively. The user builds a
processing flow that is performed on a randomly subsampled portion of the data stored in
memory. This processing flow can then be performed on the entire dataset to produce a
final output volume or additional random subsets as more memory becomes available. This
approach cuts down substantially on 3-D geometry processing costs and is applicable to
other low-op pre- and post-imaging steps.
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Aligning microseismic reflections for imaging

Noha S. Farghal and Stewart A. Levin

ABSTRACT

Microseismic data are not created ready for imaging. They can be extremely noisy
and it is not a straightforward task identifying reflections. In a previous work, we
were able to use multiplets or events of the same waveform to identify some reflections.
However, realizing that reflections were weaker on the stack than they are on the
individual seismograms, we inferred we had a misalignment issue between the different
seismograms. In this work, we use fractional shifts and receiver-by-receiver shifting
to align seismograms more effectively. We also investigate some aspects of multiplets
and how they are related to each other in space and time, as well test the use of
cross correlations of P-direct arrivals with whole seismograms to identify the unfound
P-reflections.

INTRODUCTION

The ultimate goal of our research is to use reflections of hydraulically induced microseisms in
the Bonner sand of the Bossier play to image the subsurface. In our previous work (Farghal
and Levin, 2012), we successfully utilized a method adapted from earthquake seismology
to find events originating from closely related sources which produced almost identical
seismograms. This method involved cross-correlation of a particular event waveform (called
a master) consisting of a P and S direct arrival with the whole dataset to find replicas of this
waveform (the collection of which is known as a multiplet). Upon identification of similar
waveforms (sources), we aligned and stacked their seismograms together to decrease the data
size and increase the S/N ratio. Since we were only able to identify S reflections, we were
also hoping that by stacking similar seismograms we will boost companion P reflections as
well. However, for reasons discussed later in this report, this first attempt was not fruitful.

In SEP–147, we noticed that reflections are weaker on the stack than they are on the
individual seismograms. We proposed that this was due to misalignment of the reflections
after we aligned the direct arrivals. We attributed this to misalignment of the reflections
that may differ by a small amount due to small source location differences in cases of similar
rather than identical/coincidental sources. We have since realized that the fracturing and
pressure changes could have affected propagation velocities even if the source locations
happen to be the same.

In this report, we will show how we successfully address the misalignment problems and
enhance the stacked amplitude of reflections. Moreover, we attempt to find P-reflections by
cross-correlating P direct arrivals with the whole seismogram in which it lies. The faintest
P reflection may well be useful when we come to the migration stage.

Finally, in preparation for imaging, we apply the previously mentioned concepts (of
cross-correlations, alignment and stacking) to the whole Bonner dataset.
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WARPING OR RECEIVER-BY-RECEIVER VARIABLE SHIFTING

In a previous report, we used the general locations of “stacked” cross-correlation peaks of
the microseismic events to find a bulk shift to apply to the whole seismogram (Farghal and
Levin, 2012). In Figure 1, we show the stack of two aligned seismograms. Extracting the
reflection wavelet on the 30th channel, we can see that the highest positive magnitude is
around 0.03, as shown in Figure 3 (a).

Figure 1: Stack of two seismograms aligned by bulk shifting. [ER]
nfarghal/. stack209-before

We will now introduce receiver-by-receiver variable shifting, a limited form of warping,
to align seismogram reflections within a multiplet. Figure 2 shows the stack of two aligned
seismograms using this warping rather than bulk shifting. Figure 3(b) shows a closeup on
the 30th channel reflection wavelet, with almost three-fold improvement in peak magnitude,
confirming our better alignment of the individual seismogram reflections.

IN SEARCH OF P-REFLECTIONS

The reader will, of course, have observed that we have only shown a shear reflection in the
above. Looking at the direct arrivals, we can see that the direct P waves are weaker than
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Figure 2: Stack of two seismograms aligned by warping. [ER] nfarghal/. stack209-after

(a) (b)

Figure 3: a) Selected reflection (30th channel) in a stack of 2 seismograms aligned by bulk
shifting. b) Close up on the reflection (30th channel) in a stack of 2 seismograms aligned by
receiver-by-receiver shifting (warping). Observe the increased peak amplitude after warping.
[ER] nfarghal/. waveletbulk,waveletwarp
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the direct S waves, so it should not be surprising that the reflected P waves may be quite
weak.

We used our running window cross-correlation program to cross-correlate direct P ar-
rivals with whole seismograms with the hope of finding P-reflections. Results of such an
approach can be seen on Figure 4(b). We can see in this figure that on the original seismo-
gram, the P reflection seen at around 2.2s was not apparent and was actually brought up
by the cross-correlation of the direct P with the whole seismogram. It turns out that the
stronger the P arrival we use in cross correlations, the more likely we are to find an arrival
that can be a P-reflection.

(a) (b)

Figure 4: a) seismogram with P-reflection not strong enough to be seen b) cross-correlation
result with direct P-wave, with a possible reflection appearing at about 0.23s. [ER]
nfarghal/. Bonner0209,B0209-p

AN OBSERVATION ON “POPULAR” WAVEFORMS

Most microseismic sources in the Bonner sand are along the hydraulic fracture (Sharma
et al., 2008). Many of them are expected to be very close in location and to have the same
waveform (from the same fracking mechanism), while others further apart on the hydraulic
fracture have rather different waveforms. This is reflected in the tight clustering of source
locations of waveforms having high correlation with the master waveform. However, the
clustering of locations does not necessarily imply any fixed distribution of event times.
What we observe is a long-tailed distribution, with most appearing at the early stages of
the treatment. This we attributed to such events being due mostly to the initial opening of
the fracture, with some later slippage as pressures vary during later stages of the treatment.

Due to the high correlation values obtained in most cross-correlations, deciding what the
threshold for what constituted a match/multiplet was not possible without visual inspection.
We conservatively opted to only include in a given multiplet those records with nearly perfect
correlation to the multiplet master.
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DISCUSSION AND CONCLUSIONS

From our results, we see that receiver-by-receiver shifting is better than bulk shifting as
it produces larger signal amplitude and overlap as demonstrated by the higher amplitudes
of the stacked reflections. We note that fractional shifting did not help much to improve
alignment in these examples, that is, whole samples were sufficient, but we will continue to
use this method in order to develop and mature it for general application to microseismic
data that may well need fractional shifting for sufficient alignment.

Finally, although shear reflections are sufficient for imaging, that fact that we were able
to identify later P-arrivals that encourages us to not abandon our search for P-reflections.
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APPENDIX A

FRACTIONAL SHIFTS

By first taking the seismograms to the Fourier domain, padding with zeros with a certain
factor (interleaving), we obtain fractional shifting. This is because the sampling interval is
reduced by that factor, which we call super-sampling of data. Then, we apply the receiver-
by-receiver alignment program to align all multiplets with the master seismogram reflection,
as will be discussed in the coming section. Fractional shifting does not change a seismogram
visually, but it multiplies its sampling density.

APPENDIX B

TRAVEL TIMES AND GRADIENTS

Referring to Figure B-1, the direct arrival time, TD, is given by

TD =

√
x2 + (zs − zr)2

V

and the reflected arrival time, TR, is similarly

TR =

√
x2 + (zs + zr)2

V
.

To calculate the relative effect of small shifts in source or receiver location on these
arrival times, we compute the gradients ∇TD and ∇TR with respect to changes in source
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Figure B-1: Diagram showing source-receiver relative locations with respect to the reflector.
[NR] nfarghal/. useisfigurestew

location:

V
∂TD

∂x
=

x√
x2 + (zs − zr)2

V
∂TD

∂zs
=

zs − zr√
x2 + (zs − zr)2

V
∂TR

∂x
=

x√
x2 + (zs + zr)2

V
∂TR

∂zs
=

zs + zr√
x2 + (zs + zr)2

and with respect to changes in receiver location:

V
∂TD

∂zr
=

zr − zs√
x2 + (zs − zr)2

V
∂TR

∂zr
=

zs + zr√
x2 + (zs + zr)2

With these gradients in hand, let f be a unit vector aligned with the fracture and g
be a unit vector aligned with the receiver array. Then the directional derivatives ∇TD ·
f and ∇TR · f give the relative sensitivities of the direct and reflected arrival times to
source displacement along the fault that gave rise to some set of multiplets. Similarly, the
directional derivatives ∇TD · g and ∇TR · g provide the arrival slopes of the direct and
reflected arrivals respectively.

With the above, not only can we estimate where to look for weak reflections behind
a direct arrival (or, conversely, how far from the microseismic source a clear reflection
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arose), but we can also begin to understand how much or little reflections within multiplets
misalign when their associated direct arrivals are aligned. For example, the limiting case
of the receiver just above the reflector has the reflected and direct arrivals arriving at the
same time and changing at the same rate as the source is displaced whereas if zs = zr = x/2
the reflected arrival displaces

√
2 times further than the direct arrival. Both of these cases

are serendipitous in the sense that aligning the direct arrival across channels also aligns the
reflected arrival.

Let us apply these formulas to analyze the shear reflection we spotted in our Bonner
multiplet example.

In the example of Figure 1, the receivers are at about 12,800 ft depth and the micro-
seismic source was computed to be at about 13,100 ft depth and an offset of about 300 ft
from the monitor well. The dipole sonic log shows a compressional velocity of about 13,750
ft/sec and a shear velocity of about 8,000 ft per second in that depth range. The difference
between the direct P and the direct S arrivals would be 22 msec, in good agreement with
the actual record. The delay of about 220 msec to the later shear arrival corresponds to
a reflector depth of about 13,800, i.e., a thousand feet below the receivers and, sigh, well
below the reservoir depth.
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Earthquake extraction and correlation energy at Long
Beach, California seismic survey

Jason P. Chang and Sjoerd de Ridder

ABSTRACT

Seismic interferometry of passive data offers a potential solution to creating reservoir-
scale images in urban environments. A four-month, high station density passive seismic
dataset collected in Long Beach, California is ideal for testing this hypothesis. Prelimi-
nary work on these data is promising. We clearly capture waveforms from earthquakes
near (less than 15 km) and far (greater than 250 km). We successfully construct vir-
tual sources through cross-correlation of low-frequency energy (0.175 to 1.75 Hz). The
correlated energy is quite noisy and appears to be directed toward the northeast, sug-
gesting that longer correlation times are needed for land data and that the Pacific
Ocean is likely producing strong directed energy, respectively. Furthermore, the qual-
ity of correlation results differ depending on the time window. We argue that these
differences are attributed to weather conditions, with records during stormier periods
producing cleaner Green’s functions than records during calmer periods.

INTRODUCTION

The Long Beach oil field is a productive oil field located below the city of Long Beach. Due
to the urban environment, traditional techniques for collecting data for seismic imaging and
velocity analysis are disruptive and difficult to perform. One alternative is using passive
seismic data for this type of subsurface analysis. The effectiveness of such data for these
purposes at the reservoir scale and in the urban environment is relatively unknown, but
the recently deployed Long Beach seismic array provides a great opportunity to investigate
their potential. The array is unique given its station density, recording period, and location.
These parameters make this survey ideal for testing passive seismic imaging and tomography
techniques from earthquake and exploration seismology.

Earthquakes oftentimes have source location depths on the order of kilometers, thereby
producing waves that travel deep through the Earth’s interior prior to reaching the sur-
face. Depending on the amount of energy that a given event releases, the signal can be
recorded by seismometers around the world. These two characteristics make data recorded
from earthquakes ideal for resolving structures and velocities at the crustal/mantle scale,
whether using body waves (Aki et al., 1977; Kissling, 1988; Romanowicz, 2008; Schmandt
and Humphreys, 2010) or very low-frequency (less than 0.025 Hz) surface waves that can
sample these depths (Yang and Ritzwoller, 2007; Tanimoto and Sheldrake, 2002). When
dealing with these scales, what is considered dense station spacing can seem relatively
sparse. For instance, USArray is a transportable array of 400 broad-band seismometers
spaced ’densely’ at approximately 500 km (Meltzer et al., 1999). With this denser Long
Beach array, earthquake signal might be able to resolve structures and velocities at the
reservoir scale.
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A common drawback with using earthquake events for surface wave tomography is that
surface wave dispersion is difficult to measure at frequencies higher than 0.05 Hz (Yang
et al., 2008). Seismic interferometry with ambient noise can handle dispersion at these
frequencies. By cross-correlating recordings of ambient seismic noise at two receivers, the
traveltime between them can be recovered. This traveltime information can then be used for
purposes such as velocity modeling, particularly when using low-frequency signal. Shapiro
et al. (2005) and Lin et al. (2008) have been able to create velocity maps at the crustal
scale by performing ambient noise cross-correlations on data recorded by USArray. At the
reservoir scale, de Ridder and Dellinger (2011) showed that virtual low-frequency (0.35-
1.75 Hz), omnidirectional Scholte waves along the ocean floor could be generated from
ambient seismic noise. They were able to use the Scholte-wave traveltime information for
tomographic imaging of structures in the near-surface (0-150 m).

In this report, we will show data that have been extracted from the Long Beach dataset.
First, we will present snapshots of interpolated waveforms generated by earthquakes near
and far. Second, we will present cross-correlation results for the same station location at
various times of the survey. Both these results are viewed with an eye toward determining
the capability of such an array for continuous reservoir monitoring in an urban environment
using passive seismic data.

DATA

The Long Beach 3D seismic array was deployed by Nodal Seismic, Inc. for recording both
passive and active seismic surveys. The array consists of about 2400 vertical-component
geophones covering a region approximately 8.5 km north-south by 4 km east-west (Figure 1).
Average station spacing is 330 m, both inline and crossline. While battery life limitations
means stations are swapped out approximately every 8 days, station locations stay consistent
throughout the survey. Data were being continuously recorded (24 hours/day) over a span
of four months starting in January 2012, with a sampling rate of 500 Hz. This has provided
us with approximately 48 TB of data. While the data have been low-cut at 3 Hz, there is
still energy found in the suppressed lower frequencies.

EARTHQUAKE RECORDINGS

With the San Andreas Fault running through California, the Long Beach survey picks up
many events, both big and small. We present waveforms from a nearby (approximately
15 km east of the survey) M2.4 event in Yorba Linda, California, and a further away
(approximately 250 km southeast of the survey) M4.9 event in Mexicali, Mexico. Given the
spatial dimensions and duration of the Long Beach array, both events could potentially be
used for resolving structures and velocities at the reservoir scale.

Interpolation

To create these snapshots, we implemented a normalized inverse distance weighting inter-
polation scheme. First, we normalized the amplitudes of the recordings because we did
not want anomalously high amplitudes to dominate the interpolation results. Second, we
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Figure 1: Map of receivers compris-
ing the Long Beach 3D seismic array.
[NR] jasonpc1/. lbmap
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LB3D PhaseII Receivers
as of 04-19-2012

2473 Total

F

Legend
! Receivers

created a 40 by 80 grid of rectangular cells that overlapped with the 8.5 km north-south by
4 km east-west region containing the array. To determine which stations would be used for
interpolating the response at a given cell, we implemented nearest-neighbor binning.

Rather than average the recordings from each station for a given cell, we apply a weight
to the relevant recordings for a given cell and then sum the recordings. The weight is the
normalized inverse of the distance between the location of the recording and the center of
the cell, having the form

u(x) =
N∑

i=1

wi(x)ui

N∑
i=1

wi(x)
, (1)

where

wi(x) =
1

di(x,xi)
. (2)

u(x) is the interpolated recording at cell x, wi(x) is the weight applied to station i when
interpolating for cell x, ui is the recording at station i, and di(x,xi) is the distance between
the center of the cell x and the relevant station at location xi. This interpolation scheme
weights recordings that are closer to the center of the cell more so than those recordings
that are closer to the edges of the cell. The normalization of the weights by the sum of
the weights ensures that the amplitudes from cell to cell are relatively similar, particularly
because the amplitudes at each station were first normalized.
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Earthquake Snapshots

Figure 2 displays an unfiltered snapshot from the relatively nearby Yorba Linda event, while
Figure 3 displays the same snapshot after we applied a 8 Hz low-pass filter.

Figure 2: Snapshot of the in-
terpolated waveform generated
from the M2.4 Yorba Linda, CA
event, roughly 15 km east of
the Long Beach survey. [CR]
jasonpc1/. yorbalinda-snap

Figure 3: Same snapshot as
Figure 2 but after applying a
8 Hz low-cut filter. [CR]
jasonpc1/. yorbalinda-snap-bp

Figure 4 shows an unfiltered snapshot from the relatively far Mexicali event, while
Figure 5 shows the same snapshot after we applied a 6 Hz low-pass filter.

In both unfiltered snapshots (Figures 2 and 4), the incoming waveforms are distinguish-
able. However, when low-pass filtered (Figures 3 and 5) these waveforms are even easier to
identify. This suggests that we are seeing surface waves (and perhaps S-waves), which are
more prevalent at lower frequencies, rather than P-waves. Research by Yang and Ritzwoller
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Figure 4: Snapshot of the in-
terpolated waveform generated
from the M4.9 Mexicali, Mexico
event, roughly 250 km south-
east of the survey. [CR]
jasonpc1/. mexicali2-snap

Figure 5: Same snapshot as
Figure 4 but after applying a
6 Hz low-cut filter. [CR]
jasonpc1/. mexicali2-snap-bp
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(2007) and Tanimoto and Sheldrake (2002) have shown that surface waves can be used for
resolving velocity structure at the crustal scale. With the denser station spacing of the Long
Beach array, nearby and teleseismic events can potentially be useful for resolving structures
and velocities at the reservoir scale.

SEISMIC INTERFEROMETRY AT LONG BEACH

Theory

In passive seismic interferometry, receivers record data from passive sources such as ambient
seismic noise. Cross-correlating the two receiver recordings essentially turns the receivers
into a source-receiver pair, thereby synthesizing new seismic responses. Specifically, cross-
correlation recovers the Green’s function, or the impulse response, and its time-reversed
version between the two receivers, convolved with the autocorrelation of a source function
such as noise (Wapenaar et al., 2010). In equation form

[G(xB, xA, t) + G(xB, xA,−t)] ∗ SN (t) = 〈u(xB, t) ∗ u(xA,−t)〉 , (3)

where G is the Green’s function between two receiver locations (xA, xB), SN (t) is the
autocorrelation of the source function (here it is noise), and u is the observed wavefield at
a given receiver location. The result of cross-correlation is the traveltime difference of the
recorded waves between the two given receivers.

A single cross-correlation of two recordings from two stations will likely produce noisy
results. To improve signal-to-noise ratio, cross-correlations between multiple simultaneous
recordings from two stations are stacked (or averaged) in the time-lag space (Curtis et al.,
2006). This allows stationary signal phases to emerge, since these signals stack coherently
and non-stationary phases stack incoherently. Therefore, stacking a month’s worth of cor-
relations should produce a better result than stacking a day’s worth of correlations.

The method of passive seismic interferometry is effective only under certain conditions.
The most important is that the principle of energy equipartition is satisfied. This means
that noise must arrive at a receiver from all azimuths with the same amount of energy. If
this is not satisfied, then correlation results may be far from ideal.

The station density and recording length of the array at Long Beach makes this dataset
ideal for testing the limits of passive seismic interferometry in an urban environment. Higher
station density provides more high-frequency information and should therefore provide bet-
ter subsurface resolution. Longer recording times provide days to months of stacked corre-
lations, as opposed to hours of stacked correlations. With longer stacked correlations, the
convergence of the Green’s function will improve and perhaps overcome the negative effects
of cultural noise that is typically problematic in land data.

Method

Prior to performing any cross-correlations, we searched for time windows that were clear
of significant seismic events. This is because one of the primary conditions for seismic
interferometry to be effective is that the ambient seismic field satisfies the principle of
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equipartition. Because earthquakes produce high amounts of directed energy, they would
potentially compromise our correlation results.

Once clear of major seismic events, we formed our time windows. We chose three win-
dows spanning from 1: 30 pm, January 21 to 2: 00 am, January 22 (12.5 hours); 5 : 00 pm,
February 20 to 5: 00 am, February 21 (12 hours); and 2: 00 pm, February 27 to 4: 00 am,
February 28 (14 hours). We received each data file as a time series for a single station, which
meant that we had to re-sort our data according to recording time. We chose to synthesize
32.5-minute patches with 2.5-minute tapers at both ends, leading to a 2.5-minute overlap
from one window in time to the next.

Prior to cross-correlating, we bandpass all the traces. de Ridder and Dellinger (2011)
have had success generating virtual low-frequency (0.35-1.75 Hz), omnidirectional Scholte
waves along the ocean floor, so we examine signals that have been similarly bandpassed
between 0.175 Hz and 1.75 Hz. Because we want to compare correlation results over time,
for each time window we cross-correlate all stations with the same station location. Finally,
we stack each time patch within each time window to improve the signal-to-noise ratio of
the correlations.

Results

All figures show correlation results with the same virtual source location and at the same
acausal and causal time lags (−4 seconds and 4 seconds, respectively). Figure 6 and Figure 7
show the acausal and causal Green’s functions from the 12.5 hours of correlations from
January 21 to January 22. Figure 8 and Figure 9 show the acausal and causal Green’s
functions from the 12 hours of correlations from February 20 to February 21. Figure 10 and
Figure 11 show the acausal and acausal Green’s functions from the 14 hours of correlations
from February 27 to February 28. Gaps in the array overlap with parts of the CSU Long
Beach campus.

Discussion

A common observation is that the correlation energy is strongest in the southwest portion of
the array at acausal (negative) time lags and strongest in the northeast portion of the array
at causal (positive) time lags. This might be a consequence of the location of the array.
Based on results from research utilizing data from ocean-bottom cables, the correlating
energy is typically symmetric and circular about the virtual source location at both causal
and acausal times. This is because energy typically reaches a given receiver in equal amounts
from all azimuths in these deep-water environments, where the primary source of seismic
energy is generated from the interaction of ocean currents with the ocean bottom. In
other words, the principle of energy equipartition is more or less satisfied in deep-water
environments. However, these results from Long Beach suggest that this principle is not
being satisfied. The directionality of the Green’s function from southwest to northeast
suggests that the Pacific Ocean (which is south-southwest of the array) is a large source
of directed, low-frequency energy. This causes the Green’s function at causal and acausal
times to be asymmetric.

The primary difference between the Green’s function from each time window is the qual-
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Figure 6: Snapshot of the Green’s
function at −4 second (acausal)
time lag from the 12.5 hours
of correlations from January
21 to January 22. [CR]
jasonpc1/. corr-Jan22-acausal-snap

Figure 7: Snapshot of the Green’s
function at 4 second (causal)
time lag from the 12.5 hours
of correlations from January
21 to January 22. [CR]
jasonpc1/. corr-Jan22-causal-snap
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Figure 8: Snapshot of the Green’s
function at −4 second (acausal)
time lag from the 12 hours
of correlations from February
20 to February 21. [CR]
jasonpc1/. corr-Feb21-acausal-snap

Figure 9: Snapshot of the Green’s
function at 4 second (causal)
time lag from the 12 hours
of correlations from February
20 to February 21. [CR]
jasonpc1/. corr-Feb21-causal-snap
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Figure 10: Snapshot of the Green’s
function at −4 second (acausal)
time lag from the 14 hours
of correlations from February
27 to February 28. [ER]
jasonpc1/. corr-Feb28-acausal-snap

Figure 11: Snapshot of the Green’s
function at 4 second (causal)
time lag from the 14 hours
of correlations from February
27 to February 28. [ER]
jasonpc1/. corr-Feb28-causal-snap
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ity. The correlation energy from the January window is by far the most distinct, followed
by the result from late-February and the result from mid-February. A look at the weather
conditions in southern California may explain these results. At the time of the January
time window, there was a large rainstorm that hit the region (http://www.wrh.noaa.gov/).
During the late-February window, conditions were somewhat windy. In mid-February, con-
ditions were pretty mild. Therefore, it appears that correlation results are best during
stormy conditions, which happens to also be the case with seismic interferometry results
from ocean-bottom cable data (de Ridder and Dellinger, 2011). These conditions may be
best because during a storm the energy generated by the Pacific Ocean is much higher
relative to any other noise source. Because the ocean is likely the dominant source of
the directed, low-frequency energy that we see, then the more relative energy it has, the
cleaner the resulting Green’s function will be. With more correlation time, the results from
February may be able to match the result from January.

FUTURE WORK

Earthquake waveforms and cross-correlation results are promising enough that the next step
is to perform surface wave tomography for various time windows. For reservoir monitoring,
using surface waves generated by passive seismic interferometry appears to be a better op-
tion than using surface waves generated by earthquakes. We are interested in the relatively
higher frequencies, which seismic interferometry and ambient noise tomography is better
equipped to handle. Passive seismic interferometry is also better for reservoir monitoring
because signal is continuously available and is not dependent on random events like earth-
quakes. Therefore, time-lapse images at the reservoir scale may be possible with passive
seismic interferometry.

CONCLUSION

Because it is an urban environment, the city of Long Beach is a suitable location to inves-
tigate the use of passive seismic data for subsurface imaging and velocity analysis at the
reservoir scale. The dense, continuously recording Long Beach array is ideal for time-lapse
analysis. We captured a variety of earthquake waveforms, generated both near to and far
from the array, that could be used for tomographic imaging. We have also captured corre-
lating energy at low frequencies using seismic interferometry techniques, which can also be
used for tomographic imaging. Therefore, there are indications that seismic land data from
an urban environment has the potential to be used for subsurface monitoring.
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