next up previous [pdf]

Next: Examples Up: Shen : VTI FWI Previous: Introduction

Theory

Exact anisotropic wave equations are in the form of elastic wave equations. Acoustic anisotropic wave equations can be obtained by various approximations of the exact elastic equations. One way to do this is to set shear wave velocity to zero in the exact elastic wave equations. Detailed derivation can be found in several papers (Duveneck et al., 2008; Zhang and Zhang, 2009; Crawley et al., 2010). The resulting acoustic anisotropic wave equations are a system of second-order equations:
$\displaystyle \frac{\partial^2 p}{\partial t^2}$ $\displaystyle =$ $\displaystyle {v_p}^2\left(1+2\epsilon\right)\frac{\partial^2 p}{\partial x^2} \
+ {v_p}^2\sqrt{1+2\delta}\frac{\partial^2 r}{\partial z^2}$  
$\displaystyle \frac{\partial^2 r}{\partial t^2}$ $\displaystyle =$ $\displaystyle {v_p}^2\sqrt{1+2\delta}\frac{\partial^2 p}{\partial x^2} \
+ {v_p}^2\frac{\partial^2 r}{\partial z^2},$ (1)

where $ {p}$ and $ {r}$ are horizontal and vertical stress, respectively, $ {v_p}$ is vertical p-wave velocity, and $ \epsilon $ and $ {\delta}$ are anisotropic parameters (Thomsen, 1986).

The velocity parametrization defines the model space as follows:

$\displaystyle m_1$ $\displaystyle =$ $\displaystyle {v_p}^{2}$  
$\displaystyle m_2$ $\displaystyle =$ $\displaystyle {v_h}^{2} = {v_p}^2\left(1+2\epsilon\right).$ (2)

The logarithmic slowness parametrization defines the model space as follows:

$\displaystyle m_1$ $\displaystyle =$ $\displaystyle \ln\left({v_p}^{-2}\right)$  
$\displaystyle m_2$ $\displaystyle =$ $\displaystyle 1+2\epsilon.$ (3)

The non-linear conjugate gradient method is used for the inversion.


next up previous [pdf]

Next: Examples Up: Shen : VTI FWI Previous: Introduction

2012-05-10