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ABSTRACT

Bidirectional deconvolution in the Fourier domain is a new method of removing
the mixed phase wavelet from seismic data. I demonstrate that this is self-
preconditioned, therefore a scheme that has a preconditioner in the logarithmic
Fourier-domain deconvolution is not necessary. I show a simple synthetic test
case which incorporates a gain function into the deconvolution method.

INTRODUCTION

Usually, a seismic data trace d can be defined as a convolution of a wavelet w with a
reflectivity series r. This can be written as d = r ∗ w, where ∗ denotes convolution.
Blind deconvolution seeks to estimate the wavelet and reflectivity series using only
information contained in the data. Previously, seismic blind deconvolution has used
two assumptions, namely whiteness and minimum phase. The whiteness assumption
supposes that the reflectivity series r has a flat spectrum, while the minimum-phase
assumption supposes that the wavelet w is causal and has a stable inverse. Recently,
some new methods have been proposed to limit the effect of these two assumptions
in seismic blind deconvolution.

In Zhang and Claerbout (2010a), the authors proposed to use a hyperbolic penalty
function introduced in Claerbout (2009) instead of the conventional L2 norm penalty
function to solve the blind deconvolution problem. With this method, a sparseness
assumption replaces the traditional whiteness assumption. Furthermore, Zhang and
Claerbout (2010b) proposed a new method called “bidirectional deconvolution” in
order to overcome the minimum-phase assumption. Bidirectional deconvolution as-
sumes that any mixed-phase wavelet can be decomposed into a convolution of two
parts, w = wa ∗ wb, where wa is a minimum-phase wavelet and wb is a maximum-
phase wavelet. To solve this problem, they estimated two deconvolution filters, a
and b, which are the inverses of wavelets wa and wb, respectively. Since Zhang and
Claerbout (2010b) solved the two deconvolution filters a and b alternately, we call this
method the slalom method. Shen et al. (2011a) proposed another method to solve
the same problem. They used a linearized approximation to solve the two deconvo-
lution filters simultaneously. We call this method the symmetric method. Fu et al.
(2011a) proposed a way to choose an initial solution to overcome the local-minima
problem caused by the high nonlinearity of blind deconvolution. Shen et al. (2011b)
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discussed an important aspect of any inversion problem: preconditioning and how it
improves bidirectional deconvolution. All of the aforementioned methods solved the
problem in the time domain. Claerbout et al. (2011) proposed a new logarithmic,
Fourier-domain, bidirectional deconvolution to solve the same problem. Fu et al.
(2011b) showed that this new method converges faster than the above-mentioned
time-domain methods

In this paper, I will attempt to answer an important question: Should we use a
preconditioner with the logarithmic Fourier-domain bidirectional deconvolution? I
will then show an example of including a gain function in this method.

NO NEED FOR PRECONDITIONING

Previous time-domain implementations of bidirectional deconvolution (Shen et al.
(2011a) and Fu et al. (2011a)) have required preconditioning for both stabilizing the
deconvolution result and accelerating the convergence speed. For those methods, we
used a prediction error filter (PEF) as our preconditioner. However, using the PEF
introduced a polarity change and a time shift problem, because it caused a spike in
the first lobe of the Ricker wavelet. However, in the new Fourier-domain method,

rnew = FT−1(DeUnew)

= FT−1(DeU+α∆U)

= r ∗ FT−1(eα∆U),

(1)

where r is the residual, D is the data (the uppercase letter indicates a Fourier-domain
variable), and U is the logarithmic parameterization of the deconvolution filter.

I find that within the iterations, the problem is self-preconditioned. The new up-
date of the u parameter is convolved with the previous residual, so we do not need the
PEF preconditioner. Figures 1 through 3 show the comparison between the deconvo-
lution results on a common-offset gather of marine data with and without the PEF
preconditioner. In this comparison, I use the 99.5 percentile of all residuals as the
threshold for the hyperbolic penalty function. Figure 1 shows the common-offset data
gather. Figure 2 shows the deconvolution results with and without the PEF precon-
ditioner. Figure 3 shows the estimated wavelets with and without preconditioning.
From this comparison, we can see clearly that the quality of the result without the
PEF preconditioner is not inferior to the result with the PEF preconditioner. In
addition, the result without the preconditioning avoids the polarity change and time
shift. This is caused when the PEF preconditioning introduces an unwelcome initial
solution into the deconvolution scheme. This is most obvious in the comparison of
the estimated wavelets in Figure 3.

We found that with slightly different initial solutions or parameters of the de-
convolution scheme, we could get quite significantly different results. This could be
caused either by the nonlinearity or by the null space of the inversion problem; can
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Figure 1: A common-offset section of a Gulf of Mexico data set. [ER]

(a) (b)

Figure 2: Deconvolution results (a) with and (b) without PEF preconditioning. [ER]

(a) (b)

Figure 3: Estimated wavelets (a) with and (b) without PEF preconditioning. [ER]
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not comfirm which is the reason for this phenomenon. Claerbout et al. (2012) claim
that the null space may be the major reason, and that therefore a regularization is
helpful and may be necessary to solve this problem. However it is still early to draw
this conclusion, and more tests are still needed to answer this question.

SYNTHETIC DATA EXAMPLE FOR GAIN FUNCTION

In real field data, there usually is an amplitude decay with time. This can be caused
by geometric divergence and other factors. The larger the amplitude in the data, the
larger the residual. Therefore, the deconvolution will honor early data more than later
data. Hence we need a gain function in the deconvolution to boost the contribution
of later data.

Claerbout et al. (2012) provide the complete, step-by-step derivation of the gain
function in the Fourier-domain bidirectional deconvolution approach. I test the this
gain method on a simple synthetic data example. I use a five-trace simple spiky
reflectivity model convolved with a zero-phase synthetic wavelet to make the synthetic
data. In particular, I put a dipole at the beginning of the fifth trace of the model.
If the deconvolution honors the beginning more than the end of the traces, it will
tend to make one spike rather then a dipole at that location in the output. On the
other hand, if the deconvolution does not incorrectly emphasize the beginning of the
traces, we will get a dipole back. Figure 4 shows the synthetic model and wavelet,
and Figure 5 shows the synthetic data without and with decay. Figure 6 shows the
recovered wavelet and model by deconvolution without gain. Because there is no
decay in the data, the result is nearly perfect. Then I add a decay to the model,
proportional to the time squared. Figure 7 shows the recovered wavelet and model
by deconvolution of this decaying data without gain. So that the decayed end of the
traces would be evident, I applied a time-squared scale on the time axis in Figure
7(b). The results are poor; there is only a spike rather than a dipole at the beginning
of the fifth trace in the output. However, when I include the gain function in the
deconvolution following the implementation discussed above, I get the results shown
in figure 8. I also applied a time-squared scale on the time axis in Figure 7(b). By
including the gain function in the deconvolution to correctly balance the amplitudes,
I can get nearly perfect results again.

CONCLUSIONS

I showed that the logarithmic Fourier-domain bidirectional deconvolution is self-
preconditioned, so that no extra perconditioner is needed. Also I showed a synthetic
example of including gain function in this deconvolution scheme. These work improve
our understanding and implementation of Fourier-domain bidirectional deconvolution.
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(a) (b)

Figure 4: Wavelet (a) and five-trace model (b) used for synthetic example. [ER]

(a) (b)

Figure 5: Five-trace synthetic data set without (a) and with decay proportional to
the time squared (b). [ER]

(a) (b)

Figure 6: Estimated wavelet (a) and recovered result (b). [ER]
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(a) (b)

Figure 7: Estimated wavelet (a) and recovered result (b) of decay data without gain.
For easily see the decayed end of the traces, a time squared scale are applied on the
time axis in the result (b). [ER]

(a) (b)

Figure 8: Estimated wavelet (a) and recovered result (b) of decay data with gain. For
easily see the decayed end of the traces, a time squared scale are applied on the time
axis in the result (b). [ER]
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