next up previous [pdf]

Next: Appendix B Up: Maharramov: Reservoir depletion with Previous: Acknowledgements

Appendix A

The elastostatic Green's tensor $ g^k_i(x,y,z,\xi,\eta,\zeta)$ has the meaning of the displacement along axis $ i$ at point $ (x,y,z)$ due to a concentrated force along axis $ k$ at point $ (\xi,\eta,\zeta)$ . The analytical expression for the components of the Green's tensor in the elastic half-space with a free-surface boundary condition are given by the following equations (Mindlin, 1936):

$\displaystyle g^1_1=$ $\displaystyle w \left( \frac{3-4\nu}{r_1}+\frac{1}{r_2}+ \frac{(x-\xi)}{r^3_1}+\frac{(3-4\nu)(x-\xi)^2}{r^3_2}\right)+$    
$\displaystyle +$ $\displaystyle w\left(\frac{2(r^2_2-3(x-\xi)^2)z\zeta}{r^5_2}+\frac{4(1-\nu)(1-2\nu)(r^2_2-(x-\xi)^2-r_2(z+\zeta))}{r_2(r_2-z-\zeta)^2} \right)$    
$\displaystyle g^1_2=$ $\displaystyle (x-\xi)(y-\eta)w\left(\frac{1}{r^3_1}+ \frac{3-4\nu}{r^3_2}- \frac{6z\zeta}{r^5_2}-\frac{4(1-\nu)(1-2\nu)}{r_2(r_2-z-\zeta)^2} \right)$    
$\displaystyle g^1_3=$ $\displaystyle (x-\xi)w\left( \frac{z-\zeta}{r^3_1}+\frac{(3-4\nu)(z-\zeta)}{r^3...
...{4(1-\nu)(1-2\nu)}{r_2(r_2-z-\zeta)}- \frac{6 z \zeta (z+\zeta)}{r^5_2} \right)$    

$\displaystyle g^2_1=$ $\displaystyle g^1_2$    
$\displaystyle g^2_2=$ $\displaystyle w \left( \frac{3-4\nu}{r_1}+\frac{1}{r_2}+ \frac{(y-\eta)}{r^3_1}+\frac{(3-4\nu)(y-\eta)^2}{r^3_2}\right)+$    
$\displaystyle +$ $\displaystyle w\left(\frac{2(r^2_2-3(y-\eta)^2)z\zeta}{r^5_2}+\frac{4(1-\nu)(1-2\nu)(r^2_2-(y-\eta)^2-r_2(z+\zeta))}{r_2(r_2-z-\zeta)^2} \right)$    
$\displaystyle g^2_3=$ $\displaystyle (y-\eta)w\left( \frac{z-\zeta}{r^3_1}+ \frac{(3-4\nu)(z-\zeta)}{r...
...{4(1-\nu)(1-2\nu)}{r_2(r_2-z-\zeta)}- \frac{6 z \zeta (z+\zeta)}{r^5_2} \right)$    

$\displaystyle g^3_1=$ $\displaystyle (x-\xi)w \left( \frac{z-\zeta}{r^3_1}+ \frac{(3-4\nu)(z-\zeta)}{r...
...rac{4(1-\nu)(1-2\nu)}{r_2(r_2-z-\zeta)}+ \frac{6z\zeta(z+\zeta)}{r^5_2} \right)$    
$\displaystyle g^3_2=$ $\displaystyle (y-\eta) w \left( \frac{z-\zeta}{r^3_1}+ \frac{(3-4\nu)(z-\zeta)}...
...rac{4(1-\nu)(1-2\nu)}{r_2(r_2-z-\zeta)}+ \frac{6z\zeta(z+\zeta)}{r^5_2} \right)$    
$\displaystyle g^3_3=$ $\displaystyle w\left( \frac{3-4 \nu}{r_1}+\frac{5-12\nu+8\nu^2}{r_2}+ \frac{(z-...
...-4\nu)(z+\zeta)^2-2z \zeta}{r^3_2}+ \frac{6 z \zeta (z+\zeta)^2}{r^5_2} \right)$    

$\displaystyle w=$ $\displaystyle \frac{1}{16 \pi \mu (1-\nu)}$    
$\displaystyle r_1=$ $\displaystyle \sqrt{(x-\xi)^2+(y-\eta)^2+(z-\zeta)^2}$    
$\displaystyle r_2=$ $\displaystyle \sqrt{(x-\xi)^2+(y-\eta)^2+(z+\zeta)^2}$    


next up previous [pdf]

Next: Appendix B Up: Maharramov: Reservoir depletion with Previous: Acknowledgements

2012-05-10