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ABSTRACT

We base deconvolution on the concept of output model sparsity. We improve our
method of log spectral parameterization by including time-variable gain. Since
filtering does not commute with time variable gain, gain is now done after decon
(not before). Results at two survey locations confirm the utility. We resolve a
stability issue with a long-needed regularization. An intriguing theoretical aspect
shows that log spectral parameterization links penalty functions to crosscorrela-
tion (not autocorrelation) statistics of outputs.

LOG SPACE, SPARSITY, AND GAIN

Because predictive decon fails on the Ricker wavelet, Zhang and Claerbout (2010)
devised an extension to non-minimum phase wavelets (Zhang et al., 2011). Then
(Claerbout et al. (2011)) replaced the traditional unknown filter coefficients by lag
coefficients u; in the log spectrum of the deconvolution filter. Given data D(w), the
deconvolved output is

ry = FT™! (1)

D(w) exp (Z utZt>

where Z = ™. The log variables u; transform the linear least squares (£5) problem
to a non-linear one that requires iteration. Losing the linearity is potentially a big
loss, but we lost that at the outset when we first realized we needed to deal with the
non-minimum phase Ricker wavelet. We find convergence is typically quite rapid.

The source wavelet, inverse to the decon filter above, corresponds to —u;. The
positive lag coefficients in u; correspond to a causal minimum phase wavelet. The
negative lag coefficients correspond to an anticausal filter.

Here for the first time we introduce the complication that seismic data is non-
stationary requiring a time variable gain g;. The deconvolved data is the residual r;.
The gained residual ¢, = g7 is “sparsified” (Li et al., 2012) by minimizing ", H(q;)
where

G = Gt Tt (2)
H(g) = \/qf—l—l—l (3)
dH = H'(q) = _4  _ softclip(q) (4)

N
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Claerbout et al. 2 Log decon with gain

Traditional decon approaches are equivalent to chosing a white spectral output. Here
we opt for a sparse output. In practice they might be much the same, but they do
differ. Consider low frequencies. A goal is integrating reflectivity to yield impedance.
We wish to restore low frequencies where they enhance sparsity, but not where they
merely amplify noise.

Our prefered penalty function H (¢) used for finding u; is the hyperbolic (or hybrid)
penalty function (equation (3)). The output ¢; best senses sparsity when gain is such
that the typical penalty H(g;) value is found near the transition level between ¢; and
¢y norms, namely, when typical |¢;| ~ 1.

MINIMUM PHASE EXTENSION

A minimum phase wavelet can be made from any causal wavelet by taking it to Fourier
space, and exponentiating. The proof is straightforward: Let U(Z) = 1+u Z +us Z%+
-+ be the Z transform (Z = ¢*) of any causal function u,. Consider (%), Although
we would always do this calculation in the Fourier domain, the easy proof is in the
time domain. The power series for an exponential eV = 1+U+U?/2!+U3/3!+- - has
no powers of 1/Z (because U has no such powers), and it always converges because
of the powerful influence of the denominator factorials. Likewise eV, the inverse of
eV, always converges and is causal. Thus both the filter and its inverse are causal.
This is the essense of minimum phase.

We seek to find two functions, one strictly causal the other strictly anticausal.
Ut = wZ+uZ*+--- (5)
U = u/Z+uy)Z%+-- (6)

Notice U, U?, etc do not contain Z°. Thus the coefficient of Z° in eV = 1+ U +
U?/2! + - -+ is unity. Thus ag = by = 1.

VT = A = 1+aZ+aZ A+ (7)

V" =B = 14+b/Z+by)7% +--- (8)
Define U = U~ + U™T. The decon filter is AB = ¢V and the source waveform is its
inverse e V.

Consider U(w) = In AB the log spectrum of the filter. We will be adjusting the
various u,, all of them but not ug which is the average of the log spectrum. The other
u; cannot change the average; they merely cause the log spectrum to oscillate.

THE GRADIENT

Having data d;, having chosen gain g;, and having a starting log filter, say u; = 0, let
us see how to update u; to find a gained output ¢, = ¢g;r; with better hyperbolicity.
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Claerbout et al. 3 Log decon with gain

Our forward modeling operation with model parameters u; acting upon data d; (in
the Fourier domain D(Z) where Z = ¢™) produces deconvolved data r; (the residual).

ry = FT*I D(Z) 6"'+U2Z2+U323+u424+... (9)
dry — FT! D(Z) ZTG"'+UQZ2+U3Z3+U4Z4+... (10)
du.,
dr
T, = e (11)

This follows because Z7 shifts the data D(Z) by 7 units which shifts the residual
the same amount. Output formerly at time £ moves to time ¢ + 7. This is not the
familiar result that the derivative of an output with respect to a filter coefficient at
lag 7 is the shifted input d;,,. Here we have the output ry,,. This difference leads to
remarkable consequences below.

It is the gained residual ¢; = ¢;r; that we are trying to sparsify. So we need its
derivative by the model parameters ..

@ = GtTt = Tt Gt (12)
dq dr
dutT = dui 9t = Titr Gt (13)

Recall ug = 0 and hence Aug = 0. To find the update direction at nonzero lags
Au = (Au,) take the derivative of the hyperbolic penalty function ), H(q;) by u..

Au = Z dzlu% T£0 (14)
Z Cclizi dlZC]t <15)
Au = Z (resr)  (9:H'(qr)) T#0 (16)

t

This says to crosscorrelate the physical residual r, with the statistical residual g, H'(g;).
Notice in reflection seismology the physical residual r; generally decreases with time
while the gain ¢; generally increases to keep the statistical variable ¢; roughly con-
stant, so g;H'(q;) grows in time(!)

In the frequency domain the crosscorrelation (16) is:

AU = FT(r,) FT(gsoftclip(q;)) (17)

Equation (17) is wrong at ¢ = 0. It should be brought into the time domain and
have Aug set to zero. More simply, the mean can be removed in the Fourier domain.

Causal least squares theory in a stationary world says the signal output r, is white
(Claerbout, 2009); the autocorrelation of the signal output is a delta function. Non-
causal sparseness theory (other penalty functions) in a world of echoes (nonstationary
gain) says the crosscorrelation of the signal output with its gained softclip is also a
delta function (equation (16), upon convergence).
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TAKING THE STEP

We adopt the convention that components of a vector u range over the values of
(ut), likewise for other vectors. Given the gradient direction Au we need to know the
residual change Ar and a distance o to go: aAr and aAu.

A two-term example demonstrates a required linearization.

(AU a(Au Z+AusZ?) (18)
A = 1+ (A Z + AupZ?) 4 o2(-- ) (19)
FT ' eV = (1,0Au;, aluy) + a?(--+) (20)
FT™! eV = (1,aAu) +a?(---) (21)

With that background, neglecting o, and knowing the gradient Au, let us work out
the forward operator to find Aq. Let “x” denote convolution.

r+aAr = FT!(Del*eal) (22)
= FT ' (DeVea) (23)

= FT'(DeY) « FT 1 (e*2Y) (24)

= rx*(1,aAu) (25)

= r+arxAu (26)

Ar = r x Au (27)

Ag = g Ary (28)

It is pleasing that Ar is proportional to r. This might mean we can deal with a
wide dynamic range within r;. The convolution, a physical process, occurs in the
physical domain which is only later gained to the statistical domain ¢;. Naturally,
the convolution may be done as a product in the frequency domain.

To minimize H(q+ «aAq) express it as a Taylor series approximation to quadratic
order. Minimizing yields

¢ = - ZAthé / Z(AQt)zHél (29)

Update ¢, = ¢ + aAq; and U = U + oAU, optionally (Newton method) iterate
(because the locations of the many Taylor series have changed slightly with the change

in q).

ALGORITHM

Pseudo code below finds the best single filter for a group of seismograms. Notice
g(t,x) could contain mute patterns, etc.

Lower case letters are used for variables in time and space like d = d(t,z), r =
r(t,x), g = g(t,x), 9 = q(t,x), dg = Aq(t,x). while upper case for functions of
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frequency D = D(w,x), R = R(w,z), dR = AR(w,z), U = U(w), dU = AU (w).
Asterisk * means multiply within an implied loop on ¢ or w.

D FT(d)

U= 0. # or other initializations
Remove the mean from U(omega) .

Iteration {

du = 0

For all x
r = IFT( D * exp(U))
qQq=g*r

dU = dU + conjg(FT(r)) * FT(g*softclip(q))
Remove the mean from dU(omega)

For all x
dR = FT(r) * dU
dq = g * IFT(dR)
Newton iteration for finding alfa {
H> = softclip( q )
H? = 1/(1+q"2)"1.5

alfa= - Sum( dq * H’ ) / Sum( dq"2 * H’’)
q = q + alfa * dg

U=1U+ alfa *x dU

}

UNIQUENESS

As the figures show, our results are excellent, amazing even, but we’ve had a con-
tinuing problem with uniqueness. We find the pseudo-code presented here can spike
any of the three lobes of the Ricker wavelet defining the sea floor. This is particu-
larly annoying as it amounts to apparent time shifts and polarity changes. For about
a year we ascribed this difficulty to nonlinear problems having many solutions, so
we concentrated on controlling the descent. Now it looks like the problem is much
simpler.

We now ascribe our uniqueness problem to a familiar problem in linear optimiza-
tion. We believe we have what amounts to a null space. Tiny changes in initialization
or other conditions lead to a wide variety of solutions.

For example, we often found by the third iteration we could see the spiking, and
we could see the bubble estimation was well underway. By the tenth iteration it was
pretty much settled down, and we would begin to be happy. But the computation was
quick, so we were tempted to continue iterating. Maybe about the 150th iteration we
would notice that spiking on the center of the Ricker wavelet would begin transition
to spiking the first or third lobes of the Ricker wavelet (including the accompanying
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Claerbout et al. 6 Log decon with gain

apparant polarity change). To make matters worse, only slight changes in the gain
function g; would determine the selection of which final lobe.

We wasted a lot of time believing nonlinearity was responsible for multiple so-
lutions. Our early primative attempts at regularization had failed. With the pseu-
docode above you can have results like in this paper in a dozen iterations, however,
the theory below explains the missing regularization that should allow you all the
iterations you like.

REGULARIZATION

Regularization is where we impose our prior knowledge to account for the inadequacy
of the data to completely define a solution. With years of experience we would look
at the standard formulation 0 = €Y _w,(u, — 4,)* and theory would guide us to
statistical averages to give us €, w, and u,. We have recently understood that the
weighting function w, should be a matrix W, and we now know what that matrix
should be. First, our goals:

1. The shot waveform should resemble a Ricker wavelet near zero lag.

2. The shot waveform should be small or vanishing at larger negative lags. The
decon wavelet should not have a long low frequency precursor.

Theoretically, the even part of u, controls the amplitude spectrum of the shot
waveform. (A parallel analysis is found elsewhere in this report (Claerbout (2012)).)
We will not touch that. The phase spectrum is determined by the odd part of wu..
The near zero lags in u, control the near zero lags in the shot waveform and decon
filter. We want the odd near-zero lags to be symmetric because the Ricker wavelet
is symmetric. Thus the regularization is to minimize the antisymmetric part of the
near-zero lags in u,.

The larger positive lags in u, deal with marine bubble and soil layer reverberation.
That is good stuff. Bad are the larger anticausal lags. They should be zero because
they are non-physical. They can be handled as an additional regularization, or more
simply by windowing A .

Code modifications required by regularization

Consider regularization of the form 0 ~ u, —u_,. In matrix form thisis 0 ~ r,, = Ju
where the matrix J is defined below with six vector components in the ordering
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required by the fast Fourier transform program.

rm(1) O 0 00 0 O u(1)

rm(2) 0O +1 00 0 -1 u(2)

| ™(3) 10 0 +1 0 -1 O u(3)
0~ @) | |0 0 00 0 0 u(4) (30)

Tm(5) 0O 0 -1 0 41 0 u(5)

| 7 (6) |0 -1 00 0 +1] [ u®) ]
Note that J* = J. The gradient search direction is
or* Wr or*

A — m m — m — * 1
u —8u;"n o Wr,, J*Wr,, (31)

where W is a diagonal matrix of weights. Again for six components, the diagonal
contains (1, wy, ws, 0, ws, wy).

Here are the modifications needed to incorporate ¢, regularization on w.:

: € Tk
argmin,, ; H(q) + Ju J'WJu (32)
Au; = as before +e¢J*"Wr,, (33)
Ar, = as before (34)
AqH)) + € (r,, - Ar,,
(B + ¢ (e Ary) .

Qe i(Aq)?HY) + €(Ary, - Ary,)

In a least squares problem we compute a step size o as minus a ratio r - Ar over
Ar - Ar. Adding a least squares regularization to any convex fitting problem we
simply add € (r,, - Ar,,) to the numerator and € (Ar,, - Ar,,) to the denominator.

Actually, another regularization is desireable. We should also request u, to be
small for large anticausal lags, lags more negative than the range we are considering for
the antisymmetry regularization. This might be handled by truncating the gradient
rather than as a regularization.

A third regularization can be added to weaken u, at its large positive lags in
circumstances where we feel we have insufficient data to estimate trace-long filters.

GOALS

A long range goal is to successfully integrate the reflectivity to get the log impedance.
This requires good low frequency handling. Recording equipment often suppresses low
frequencies for various practical reasons whose validity is likely location dependent.
Our decon is pulling back some of these low frequencies but should know to stop
before pulling up noise. Figure 2 demonstrates doing gain after non-minimum phase
decon makes a valuable first step. To find impedance may require the additional
statistical assumption of sparseness, but by solving the physical problem correctly,
we have reduced the need for that.
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[nput data Gained input deconed data (ained output deconed data

Time (s)
Time (s)
Time (s)

0 10000 20000 30000 40000 0 10000 20000 30000 40000 0 10000 20000 30000 40000

X (m) X (m) X (m)

Figure 1: Gulf of Mexico. Decon produces plain white reflections from hard bound-
aries, and plain black boundaries from soft ones. WB= Water Bottom (white), TS=
Top Salt (white), BS= Bottom Salt (black), ME= Mystery Event (black), soft reflec-
tor could be rugose salt solution of a former salt layer. [ER]
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Figure 2: Wavelet from Cabo data. Although causality is not imposed, the estimated
shot waveform is near causal (discounting the leading lobe of the Ricker wavelet).
The importance of gain (here t?) after deconvolution instead of before is shown by
the lower two traces. There is much less noise when we gain AFTER decon, not
BEFORE. Notice also that gain before decon estimates a slightly larger bubble (which
is wrong). [ER]

Estimated shot waveform [\

Same (scaled up 5x, clipped) Whenﬂ‘(% d
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Same (same scale and clip) where||data gained BEFORE decon
A
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Figure 3: The Gulf of Mexico data produces a very different bubble but the same
conclusions as Figure 2. The lack of symmetry in the Ricker wavelet may be related
to the unresolved uniqueness issue. (Awaits better regularization.) [ER]
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[nput data Gained input deconed data (ained output deconed data

Time (s)
Time (s)
Time (s)

-24000 -16000 -8000 0 -24000 -16000 -8000 0 -24000 -16000 -8000 0

X (m) X (m) X (m)

Figure 4: Cabo data. One filter on all traces. Bubble (at about 0.9s) removed.
Enhanced high frequency at 1.1s. Gained-input method gave low frequency event
precursors especially clear above the event at 1.2s but also visible above the water
bottom. The problem is overcome by the gained-output method. (Guitton) [ER]
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