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ABSTRACT

Anisotropic wave-equation migration velocity analysis (WEMVA) requires fast
and accurate wave modeling at all angles. I use an optimized implicit finite
difference one-way propagation engine to improve both the efficiency and accuracy
of this process. In this implicit finite difference scheme, anisotropic parameters η
and δ are mapped into two finite difference coefficients, α and β. When computing
the perturbed wavefields from model perturbation, I apply a chain rule to link
the wave equation with the actual anisotropic parameters via the finite difference
coefficients. I test the implementation by impulse responses in both 2D and
3D. The sensitivity kernels for wave-equation reflection tomography confirm the
theoretical understanding that waves have a higher sensitivity for η at large angles
and a higher sensitivity for vertical velocity at small angles.

INTRODUCTION

Building an anisotropic model requires accurate wave field descriptions at all angles,
both in simple and complex geological settings. Therefore, instead of using travel
times and ray paths, we use the wave fields as the carrier of the model information (Li
and Biondi, 2011a; Li et al., 2012; Li, 2012). Many choices for wavefield propagators
may be considered. On one hand, the one-way wave propagators (Li, 2012) excel
in speed but lose their accuracy rapidly with the increasing propagation angle. On
the other hand, the two-way wave propagators (Li et al., 2012) are more accurate in
modeling waves at large angles but their computational costs are less affordable.

Therefore, I use an optimized implicit finite difference propagator first developed
by Shan (2006). In this optimized implicit finite difference scheme, the anisotropic
parameters η and δ contribute to the wave-equation implicitly via two finite difference
parameters α and β. Tables of α and β with respect to sets of discrete η and δ values
are precomputed before propagation by minimizing the difference between the true
dispersion relationship and its rational series approximation at different wavenumbers.
This table-driven, implicit finite difference method handles lateral variations and is
accurate up to 60◦ in a vertical transverse isotropic (VTI) medium.

When perturbing the wave-equation around its current state, the finite difference
coefficients α and β are perturbed. These perturbations are then translated into the
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anisotropic parameters η and δ using the chain rule. Tables of numerical derivatives
of the finite difference coefficients α and β with respect to the anisotropic parameter
η are also precomputed from the previous coefficients tables.

Finally, I test this implicit finite difference implementation by 2D and 3D impulse
responses for vertical velocity vv and η. The results verify the theoretical understand-
ing of the WEMVA operator for anisotropic models.

OPTIMIZED IMPLICIT FINITE DIFFERENCE FOR VTI
MEDIA

Assuming the S-wave velocity is much slower than the P-wave velocity, we can ap-
proximate the dispersion relationship for VTI media as follows (Shan, 2009):

Sz =

√
1− (1 + 2δ)S2

r

1− 2η(2δ + 1)S2
r

, (1)

where Sz = kz

w/vv
, Sr = kr

w/vv
and kr =

√
k2

x + k2
y. Anisotropic parameter δ relates

the vertical P-wave velocity vv with the NMO velocity vn, while the anellipticity
parameter η relates the horizontal velocity vh with the NMO velocity vn. Shan (2009)
suggests that the exact dispersion relationship 1 can be approximated by a rational
function Rn,m(Sr):

Rn,m(Sr) =
Pn(Sr)

Qm(Sr)
, (2)

where

Pn(Sr) =
n∑

i=0

aiS
i
r (3)

and

Qm(Sr) =
m∑

i=0

biS
i
r. (4)

Moreover, when the polynomials in equations 3 and 4 are of the same degree, namely
m = n, dispersion relationship 2 can be further split as follows:

Sz = 1−
n∑

i=1

αiS
2
r

1− βiS2
r

. (5)

The coefficients αi and βi can be obtained by solving the least-square problem below:

min
∑
Sr

(√
1− (1 + 2δ)S2

r

1− 2η(2δ + 1)S2
r

−

(
1−

n∑
i=1

αiS
2
r

1− βiS2
r

))2

. (6)

For second-order coefficients the exact and approximated dispersion curves are shown
in Figure 1(a), given η = 0.14 and δ = 0.2. Curve A is the exact dispersion relation
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from Equation 1. Curve B is obtained from a previous estimation by Ristow and
Ruhl (1997), and curve C is obtained using the optimized coefficients. Apparently,
the dispersion relation using the optimized coefficients is a better approximation
compared with the previous method which uses Taylor expansion and assumes weak
anisotropy. The relative errors between these two approximated curves and the exact
dispersion curve are plotted in Figure 1(b). Within a tolerance of 1% relative error
in the dispersion relation, the optimized dispersion is accurate up to 60◦, while the
Taylor approximation is only accurate up to 30◦.

(a) (b)

Figure 1: (a) Dispersion relation curves: A, exact dispersion relation curve from equa-
tion 1; B, approximated dispersion curve from weak anisotropy and Taylor expansion;
C, approximated dispersion curve from optimization. (b) Relative dispersion error:
D, relative error between B and A; E, relative error between C and A. [ER]

The tables for coefficients α and β for η ranging from 0 to 0.15 and δ ranging from
−0.004 to 0.2 are shown in Figure 2. In general, parameter α is more sensitive to the
change in δ than to the change in η. Parameter β has similar sensitivities to both η
and δ.

Figure 2: (a) Table for α and (b) table for β at discrete η and δ locations. [ER]
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IMPULSE RESPONSE OF THE IMAGE-SPACE
WAVE-EQUATION TOMOGRAPHY OPERATOR

The core of anisotropic image-space wave-equation migration velocity analysis is the
tomography operator T, which relates the perturbation in the anisotropic models
(∆m) to to the perturbation in the image (∆I) and vice versa. Namely,

∆I = T∆m, (7)

∆m = T′∆I, (8)

where m = [vv η].

I refer the readers to Li and Biondi (2010) for a detailed derivation for the tomo-
graphic operator.

A different approximation to the exact dispersion relation leads to a different
perturbed wave fields due to a perturbation in the model parameters. When the only
available data come from surface seismic surveys, parameter δ is the least constrained
(Plessix and Rynja, 2010; Li and Biondi, 2011b). Therefore, I assume the δ model
is perfectly obtained from other sources of data and keep it fixed throughout the
inversion. I will invert for vv and η in this study.

In the downward extrapolation, the wavefield at the next depth (Pz+1) can be
computed from the wavefield at the current depth (Pz) according to the following
equation:

Pz+1 = Pze
ikzdz, (9)

where i =
√
−1, dz is the extrapolation distance in depth and kz can be obtained

from the first-order approximation of the dispersion relation 5:

kz =
w

vv

1−
α k2

r

(w/vv)2

1− β k2
r

(w/vv)2

 . (10)

Dispersion relation 10 can be further simplified to polynomials using Taylor expansion:

kz =
w

vv

(
1− α

k2
r

(w/vv)2

(
1 + β

k2
r

(w/vv)2

))
(11)

=
w

vv

(
1− α

k2
r

(w/vv)2
− αβ

k4
r

(w/vv)4

)
.

Therefore, the perturbed wavefield is

∆Pz+1 = eikzdzidzPz∆kz, (12)

with

∆kz =
∂kz

∂vv

∆vv +
∂kz

∂η
∆η, (13)
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∂kz

∂vv
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v2
v

(
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k2
r

(w/vv)2
+ 3αβ

k4
r

(w/vv)4

)
, (14)

and
∂kz

∂η
= −w

vv

(
∂α

∂η

k2
r

(w/vv)2
+

(
∂α

∂η
β + α

∂β

∂η

)
k4

r

(w/vv)4

)
. (15)

Since the finite difference parameters α and β are obtained by optimization, the
derivatives in Equation 15 are obtained numerically by taking derivatives along the
η axis in Figure 2. The tables of the derivatives of the coefficients with respect to η
are shown in Figure 3.

Figure 3: (a) Table for ∂α
∂η

and (b) table for ∂β
∂η

at background η and δ locations.

[ER]

I test the implementation of the adjoint tomographic operator using this optimized
implicit finite difference scheme in a homogeneous background VTI medium with
vv = 2000 km, η = 0.09 and δ = 0.05. The synthetic data is produced by Born
modeling with a horizontal reflector at the depth of 1500 km. The input of the
adjoint tomographic operator is a spike in the image space ∆I = δ(x, y, z = 1500).
The dominant frequency of the source wavelet is 20 Hz, and the samplings in all
directions are 10 m.

I first test the adjoint operator in 2D. A source and receiver pair is collocated at
x = y = z = 0. The top row in Figure 4 shows the back-projected vertical velocity vv

gradient and η gradient when source-receiver offset is zero. These back projections are
often referred as banana-donut kernels in the literature when transmission waves are
under study (eg. Marquering et al. (1998, 1999); Rickett (2000)). Similar reflection
tomography sensitivity kernel analysis for isotropic WEMVA operator can be found
in Sava (2004) and Xie and Yang (2009).

Compared with the η gradient, the vv gradient has a nearly uniform strength with
depth, while the η gradient fades away as the wavepath moves away from the source
and the receiver location. Also, the dominant energy of the η gradient points to the
opposite direction of the vv gradient points. In fact, the η gradient is not reliable
and should be ignored because the wave that travels in the vertical direction is not
sensitive to η.
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Figure 4: 2D impulse responses for vertical velocity (left column) and η (right col-
umn). Top row: zero offset impulse responses; middle row: impulse responses when
source-receiver offset is 4 km; bottom row: summation of the two rows above. [ER]
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When the source-receiver offset is 4 km, the gradients are shown in the middle
row in Figure 4. Clearly, the back projections are spread along the wavepaths from
the source to the perturbed image point and from the perturbed image point to the
receiver. In this case, the gradients in both vv and η point in the same direction.
Comparing the gradients in the cases of zero and nonzero offset, one can see that the
vertical waves are more sensitive to vv, and the waves traveling at a large angle (36◦

to the vertical in this case) are more sensitive to η. The bottom row in Figure 4 shows
the summation of the gradients in these two cases, and confirms these observations.

The 3D extension of this method is straightforward. The sensitivity kernels for
vv and η in 3D are shown in Figures 5 and 6. A source and receiver pair with 4 km
offset are located at y = 0. The 3D sensitivity kernels carry the same characteristics
as the 2D kernels, only expanding to the crossline direction.
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Figure 5: 3D vv kernel. [CR]

CONCLUSIONS AND DISCUSSIONS

In this paper, I use an optimized implicit finite difference one-way propagation engine
to improve both the efficiency and accuracy for anisotropic WEMVA. By precomput-
ing the tables for the finite difference coefficients, the cost of this VTI extrapolation
is similar to an isotropic implicit finite difference scheme. With the optimized co-
efficients, the dispersion relation is accurate up to 60◦. To compute the disturbed
wave fields due to the perturbation in the models, the numerical derivatives of the
optimized coefficients with respect to η are also precomputed.

I test the VTI implicit finite difference scheme by impulse responses in both 2D
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Figure 6: 3D η kernel. [CR]

and 3D. These impulse responses of the adjoint anisotropic WEMVA operator from a
spike perturbation in the image space have a familiar banana-donut sensitivity kernel
shape for both vv and η. The amplitudes in these impulse responses show different
sensitivities for different parameters with different source-receiver geometries. The
waves traveling vertically have higher sensitivity to vv and the waves traveling at
large angles have higher sensitivity to η. Therefore, the 3D sensitivity kernels can
also be used for acquisition design before exploration when specific parameters are
under consideration.
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