next up previous [pdf]

Next: About this document ... Up: Tang and Biondi: 3-D Previous: Acknowledgements

Bibliography

Ayeni, G., Y. Tang, and B. Biondi, 2009, Joint preconditioned least-squares inversion of simultaneous source time-lapse seismic data sets: SEG Technical Program Expanded Abstracts, 28, 3914-3918.

Biondi, B., S. Fomel, and N. Chemingui, 1998, Azimuth moveout for 3-d prestack imaging: Geophysics, 63, 574-588.

Claerbout, J., 1998, Multidimensional recursive filters via a helix: Geophysics, 63, 1532-1541.

Claerbout, J. F., 1985, Imaging the earth's interior: Blackwell Scientific Publication.

----, 1992, Earth soundings analysis: Processing versus inversion: Blackwell Scientific Publication.

----, 2008, Image Estimation By Example: Geophysical Sounding Image Construction: Multidimensional Autoregression: Stanford University.

Clapp, M. L., 2005, Imaging Under Salt: Illumination Compensation by Regularized Inversion: PhD thesis, Stanford University.

Clapp, R., 2003, Geologically Constrained Migration Velocity Analysis: PhD thesis, Stanford University.

Duquet, B., P. Lailly, and A. Ehinger, 2001, 3d plane wave migration of streamer data: SEG Technical Program Expanded Abstracts, 20, 1033-1036.

Fomel, S., P. Sava, J. Rickett, and J. F. Claerbout, 2003, The wilson–burg method of spectral factorization with application to helical filtering: Geophysical Prospecting, 51, 409-420.

Gray, R. and L. D. Davisson, 2003, Introduction to Statistical Signal Processing: Cambridge University Press.

Hale, D., 2007, Local dip filtering with directional laplacians: CWP Project Review, 567, 91-102.

Kühl, H. and M. D. Sacchi, 2003, Least-squares wave-equation migration for avp/ava inversion: Geophysics, 68, 262-273.

Lailly, P., 1983, The seismic inverse problem as a sequence of before stack migration: Proc. Conf. on Inverse Scattering, Theory and Applications, Expanded Abstracts, Philadelphia, SIAM.

Lecomte, I., 2008, Resolution and illumination analyses in PSDM: A ray-based approach: The Leading Edge, 27, no. 5, 650-663.

Liu, F., D. W. Hanson, N. D. Whitmore, R. S. Day, and R. H. Stolt, 2006, Toward a unified analysis for source plane-wave migration: Geophysics, 71, no. 4, S129-S139.

Nemeth, T., C. Wu, and G. T. Schuster, 1999, Least-squares migration of incomplete reflection data: Geophysics, 64, 208-221.

Stolt, R. H. and A. Benson, 1986, Seismic Migration: Theory and Practice: Geophysical Press.

Tang, Y., 2009, Target-oriented wave-equation least-squares migration/inversion with phase-encoded Hessian: Geophysics, 74, WCA95-WCA107.

Tang, Y. and B. Biondi, 2011, Subsalt velocity analysis by target-oriented wavefield tomography: A 3-D field-data example: SEP-143, xxx-xxx.

Tang, Y. and S. Lee, 2010, Preconditioning full waveform inversion with phase-encoded hessian: SEG Technical Program Expanded Abstracts, 29, 1034-1038.

Valenciano, A., 2008, Imaging by Wave-equation Inversion: PhD thesis, Stanford University.

van Vliet, L. J. and P. W. Verbeek, 1995, Estimators for orientation and anisotropy in digitized images: ASCI’95, Proc. First Annual Conference of the Advanced School for Computing and Imaging (Heijen, NL, May 16-18), ASCI, 442-450.

Whitmore, N. D., 1995, An Imaging Hierarchy for Common Angle Plane Wave Seismogram: PhD thesis, University of Tulsa.

Zhang, Y., J. Sun, C. Notfors, S. H. Gray, L. Chernis, and J. Young, 2005, Delayed-shot 3d depth migration: Geophysics, 70, E21-E28.

Appendix A

3-D conical-wave domain Hessian

In general, a 3-D surface seismic data set can be represented by a 5-D object $d({\bf x}_r,{\bf x}_s,\omega)$, with ${\bf x}_r=(x_r,y_r,z_r=0)$ and ${\bf x}_s=(x_s,y_s,z_s=0)$ being the receiver and source position, respectively, and $\omega$ being the angular frequency. Under the Born approximation (Stolt and Benson, 1986), the data can be modeled by a linear operator as follows:
$\displaystyle d({\bf x}_r,{\bf x}_s,\omega) = \sum_{{\bf x}}{\omega}^2f_s(\omega)
G({\bf x},{\bf x}_s,\omega) G({\bf x},{\bf x}_r,\omega) m({\bf x}),$     (17)

where $f_s(\omega)$ is the source function; $G({\bf x},{\bf x}_s,\omega)$ and $G({\bf x},{\bf x}_r,\omega)$ are the Green's functions connecting the source and receiver position to the image point ${\bf x}=(x,y,z)$, respectively. We can transform data into the conical-wave domain by slant-stacking along the inline source axis ${x_s}$ as follows:
$\displaystyle d({\bf x}_r,p_{s_x},y_s,\omega) = \sum_{x_s}W({\bf x}_r,x_s,y_s)d({\bf x}_r,x_s,y_s,\omega) {\rm e}^{i\omega p_{s_x}x_s},$     (18)

where $W({\bf x}_r,x_s,y_s)$ is the acquisition mask operator, which contains ones where we record data, and zeros where we do not; $p_{s_x}$ is the surface ray parameter in the inline direction. The inverse transform is
$\displaystyle W({\bf x}_r,x_s,y_s)d({\bf x}_r,x_s,y_s,\omega) = \vert\omega\vert \sum_{p_{s_x}} d({\bf x}_r,p_{s_x},y_s,\omega) {\rm e}^{-i\omega p_{s_x}x_s},$     (19)

where $\vert\omega\vert$ on the right hand side of the equation is also known as the ``rho'' filter (Claerbout, 1985).

To find a reflectivity model ${\bf m}$ that best fits the observed data for a given background velocity, we can minimize a data-misfit function that measures the differences between the observed data and the synthesized data in a least-squares sense. In the point-source case, the data-misfit function is

$\displaystyle F({\bf m}) = \frac{1}{2}\sum_{\omega}\sum_{{\bf x}_s}\sum_{{\bf x...
...[d({\bf x}_r,{\bf x}_s,\omega)-d_{\rm obs}({\bf x}_r,{\bf x}_s,\omega)]\vert^2,$     (20)

where $d_{\rm obs}$ is the observed data. Substituting equation A-3 into A-4 yields
$\displaystyle F({\bf m})$ $\textstyle =$ $\displaystyle \frac{1}{2}\sum_{\omega}\sum_{y_s}\sum_{{\bf x}_r}\sum_{p_{s_x}}\sum_{p_{s_x}'}\vert\omega\vert^2$  
    $\displaystyle \times [d({\bf x}_r,p_{s_x} ,y_s,\omega)-d_{\rm obs}({\bf x}_r,p_{s_x} ,y_s,\omega)]^{*}$  
    $\displaystyle \times [d({\bf x}_r,p_{s_x}',y_s,\omega)-d_{\rm obs}({\bf x}_r,p_{s_x}',y_s,\omega)]
\sum_{x_s}e^{-i\omega(p_{s_x}'-p_{s_x})x_s}.$ (21)

If the inline source axis $x_s$ is reasonably well sampled, we have $\sum_{x_s}e^{-i\omega(p_{s_x}'-p_{s_x})x_s}\approx\frac{1}{\vert\omega\vert}\delta(p_{s_x}'-p_{s_x})$, where $\delta(\cdot)$ is the Dirac delta function. Therefore, an objective function equivalent to equation A-4 in the 3-D conical-wave domain takes the following form:
$\displaystyle F({\bf m}) \approx \frac{1}{2}\sum_{\omega}\vert\omega\vert\sum_{...
...bf x}_r,p_{s_x},y_s,\omega) - d_{\rm obs}({\bf x}_r,p_{s_x},y_s,\omega)\vert^2.$     (22)

The Hessian operator in the 3-D conical-wave domain can be obtained by taking the second-order derivatives of $F({\bf m})$ (equation A-6) with respect to the model parameters:

$\displaystyle H({\bf x},{\bf x}') = \sum_{\omega} \vert\omega\vert^5\sum_{y_s} ...
...rac{\partial d({\bf x}_r,p_{s_x},y_s,\omega)}{\partial m({\bf x}')}\right)^{*}.$     (23)

When ${\bf x}={\bf x}'$, we obtain the diagonal components of the Hessian, which are also known as the subsurface illumination; otherwise, we obtain the off-diagonal components of the Hessian, which are also known as the resolution function for a given acquisition setup.

With equations A-1 and A-2, we obtain the expression of the derivative of $d$ with respect to $m$ as follows:

$\displaystyle \frac{\partial d({\bf x}_r,p_{s_x},y_s,\omega)}{\partial m({\bf x})}$ $\textstyle =$ $\displaystyle \sum_{x_s} {\omega}^2 W({\bf x}_r,x_s,y_s)
f_s(\omega)G({\bf x},x_s,y_s,\omega)$  
    $\displaystyle \times G({\bf x},{\bf x}_r,\omega) {\rm e}^{i\omega p_{s_x}x_s}.$ (24)

Substituting equation A-8 into equation A-7 yields the expression for each component of the Hessian matrix in the 3-D conical-wave domain:
$\displaystyle H({\bf x},{\bf x}')$ $\textstyle =$ $\displaystyle \sum_{\omega} \vert\omega\vert^5\sum_{y_s} \sum_{p_{s_x}}
\sum_{{\bf x}_r} G({\bf x},{\bf x}_r,\omega) G^{*}({\bf x}',{\bf x}_r,\omega)$  
    $\displaystyle \sum_{x_s} W({\bf x}_r,x_s ,y_s) f_s (\omega) G ({\bf x} ,x_s ,y_s,\omega) {\rm e}^{ i\omega p_{s_x} x_s }$  
    $\displaystyle \sum_{x_s'} W({\bf x}_r,x_s',y_s) f_s^{*}(\omega) G^{*}({\bf x}',x_s',y_s,\omega) {\rm e}^{-i\omega p_{s_x} x_s'}.$ (25)


next up previous [pdf]

Next: About this document ... Up: Tang and Biondi: 3-D Previous: Acknowledgements

2011-05-24