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ABSTRACT

We propose a linearized wave-equation inversion formulation for time-lapse seis-
mic data sets. Our method poses time-lapse imaging as a joint least-squares prob-
lem that utilizes target-oriented approximations to the Hessian of the objective
function. Because our method accounts for illumination mismatches —caused
by differences in acquisition geometries— and for band-limited wave-propagation
effects, it provides better estimates of production-related changes in reservoir
acoustic properties than conventional time-lapse processing methods. Using data
sets from a North Sea field, we demonstrate how our method can be used to image
differences between time-lapse data sets. Furthermore, we show that obstruction
artifacts may be attenuated by wave-equation inversion.

INTRODUCTION

Reservoir rock and fluid property changes can be obtained from seismic amplitude
and/or travel-time changes (Lumley, 1995; Calvert, 2005). Several successful appli-
cations of time-lapse seismic imaging to reservoir monitoring have been published by
previous authors (Lefeuvre et al., 2003; Whitcombe et al., 2004; Ebaid et al., 2009).

However, in practice, production-related changes in time-lapse seismic images can
be masked by non-repeatability artifacts (e.g., changes in geometry, ambient noise).
To correctly interpret time-lapse seismic differences, such artifacts must be attenuated
—a prerequisite conventionally achieved through image cross-equalization methods
(Rickett and Lumley, 2001). Although cross-equalization methods are well devel-
oped and provide reliable results in many practical applications, they are inadequate
where large inconsistencies exist between time-lapse data sets or where the reservoir
overburden is complex. Where these conventional methods fail, wave-equation inver-
sion provides a way to attenuate unwanted artifacts in time-lapse images, thereby
enhancing production-related changes.

The proposed method is based on linear least-squares migration/inversion of seis-
mic data sets (Nemeth et al., 1999; Kühl and Sacchi, 2003; Clapp, 2005). Because
each iteration of a data space implementation of least-squares migration/inversion
is approximately twice the migration cost, this approach is expensive. However, by
posing this problem in the image space, it can be efficiently solved in a target-oriented
way (Valenciano et al., 2006; Tang, 2008). For the time-lapse imaging problem, we
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can either invert for the complete baseline and monitor images or we can invert for
a static baseline and time-lapse images between surveys. The input vectors in the
resulting formulations contain the migrated images (or combinations thereof) and
the output vector contains the inverted images. The operators are a concatenations
of target-oriented approximations to the Hessian of the least-squares objective func-
tion (Ayeni and Biondi, 2010). We regularize the inversion using spatial (dip) and
temporal (difference) constraints.

Because we assume that the data contain only primaries, robust multiple/noise
attenuation is required prior to inversion. Furthermore, we assume compaction and
velocity changes between surveys are small, therefore these can be removed by warping
of the monitor images to the baseline.

First, we discuss linearized wave-equation inversion of time-lapse data sets. Then,
we apply this method to a North Sea field time-lapse data set. We show that even with
the presence of a gap (caused by a simulated obstruction) in the monitor data-set,
wave-equation inversion give improved results over conventional methods.

METHODOLOGY

Given a linearized modeling operator L, the seismic data d for survey i due to a
reflectivity model m is

di = Limi. (1)

Assuming we have two data sets (baseline d0 and monitor d1) acquired at differ-
ent times over an evolving reservoir, joint least-squares migration/inversion involves
solving the regression 

L0 0
0 L1

ε0R0 0
0 ε1R1

−ζ0Λ0 ζ1Λ1


[

m0

m1

]
≈


d0

d1

0
0
0

 , (2)

where Ri and Λi are the spatial and temporal regularization operators respectively,
and εi and ζi are the corresponding regularization parameters. Although we can
directly solve equation 2 by minimizing the quadratic-norm of the regression (Ajo-
Franklin et al., 2005), we choose to transform it to an image space problem of the
form (Appendix A) 
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Λ00 −Λ01

−Λ10 Λ11
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m̂1

]
≈


m̃0

m̃1

0
0
0
0

 , (3)
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where Hi = L
T

i Li is the wave-equation Hessian, and Rii = ε2
i R

T

i Ri and Λij = ζiΛi
T

ζjΛj

are the spatial and temporal constraints. Note that L
T
, the migration operator, is

the adjoint of the modeling operator L. The inverted time-lapse image ∆m̂ is then
the difference between the inverted baseline and monitor images (m̂0 and m̂1). Al-
ternatively, we can re-write equation 3 to invert directly for the time-lapse image and
a static baseline image (Appendix A). Furthermore, equation 3 can be extended to
multiple seismic data sets (Ayeni and Biondi, 2010).

As shown in Appendix A, if there are physical movements of reflectors and velocity
changes (e.g., due to reservoir depletion and compaction) between surveys, the base-
line and monitor images will not be aligned. Such misalignments must be accounted
for before or during inversion. As is the case in many practical time-lapse monitoring
problems, we assume that the monitor data are migrated with the baseline velocity.
The updated inversion problem is then given by (Appendix A)
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]
≈


m̃0

m̃b
1

0
0
0
0

 , (4)

where m̃b
1 and m̂b

1 are respectively the migrated and inverted monitor images repo-
sitioned (warped) to the baseline image. The superscript b on the operators denotes
that they are referenced to the baseline image. For example, Hb

1 is the Hessian ma-
trix with the monitor geometry but with the baseline velocity. Note that whereas the
conventional time-lapse image ∆m̃b estimated at the baseline position is given by

∆m̃b = m̃b
1 − m̃0, (5)

the inverted time-lapse image ∆m̂b is given by

∆m̂b = m̂b
1 − m̂0. (6)

The wave-equation Hessian at image point x is defined as (Plessix and Mulder,
2004; Valenciano et al., 2006)

H (x,x′) =
∑

ω

ω4
∑
xs

|fs (ω)|2G(xs,x, ω)Ḡ(xs,x
′, ω)∑

xr

G(x,xr, ω)Ḡ(x′,xr, ω), (7)

where x′ denotes all image points, Ḡ is the complex conjugate of Green’s function G
at frequency ω, fs is the source function, and xs and xr are the source and receiver
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positions, respectively. For any practical application, it is infeasible (and unnecessary)
to compute the full Hessian matrix. Because the problem is posed in the image
space, we only need to compute the Hessian for a target region of interest around the
reservoir. In addition, we only compute off-diagonal elements sufficient to capture
the dominant structure of the Hessian. This target-oriented approximation of the
Hessian is given by (Valenciano et al., 2006)

H (xT,xT+ax) =
∑

ω

ω4
∑
xs

|f (s)|2G(xs,xT, ω)Ḡ(xs,xT+ax , ω)∑
xr

G(xT,xr, ω)Ḡ(xT+ax ,xr, ω), (8)

where xT is an image point within the target area, and xT+ax represents points within
a small region around xT. For any image point, elements of H (xT,xT+ax) represents
a row of a sparse Hessian matrix H whose non-zero components are defined by ax.
Therefore, ax defines the how many off-diagonal elements of the Hessian are computed
— which represents the size of the point spread function (PSF) around each image
point. Note that because of symmetry, only one half of the approximate Hessian is
required. The target-oriented Hessian and computational savings are discussed in
further detail by Valenciano et al. (2006) and Tang (2008).

In this paper, the spatial regularization operators are non-stationary dip filters.
First, we estimate the local dips on the migrated baseline image using a plane-wave
destruction method (Fomel, 2002). Then we construct the operator based on factor-
ization of directional Laplacian representations of the local dip filters (Hale, 2007).
The temporal constraint is implemented as a difference between the aligned images.
To attenuate multiples and other unwanted artifacts in the data, we perform a high-
resolution Radon demultiple on the data. In order to align the baseline and monitor
images prior to inversion, we perform pre-stack warping using a cyclic local cross-
correlation method (Ayeni, 2010).

In the next section, we apply the proposed method to a field time-lapse data set.
We show applications to complete and incomplete monitor data sets.

EXAMPLE

We apply the proposed method to a North Sea time-lapse data set with two years
of production between the baseline and the monitor. The shots and receivers are
spaced at 25 m, and the maximum offset is 3200 m. First, we show how wave-
equation inversion can improve time-lapse amplitude information on complete data
sets. In this example, the baseline and monitor data sets have similar geometries.
Secondly, we simulate an obstruction in the monitor data with a gap 400 m wide. In
this example, except at the obstruction where no sources or receivers are present in
the monitor, the baseline and monitor data sets have similar geometries. Figure 1
shows the full migrated baseline stacked section. After preliminary processing of the
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data, we identified the reservoir location around which the target area for inversion
is defined. Henceforth, we show the results only for the target area. All inversion
results are obtained using the RJMI formulation.

Figure 1: Raw baseline stacked image. [CR]

Example 1: Complete baseline and monitor data

Figure 2 shows the migrated pre-stack image obtained from the raw baseline data set.
Note in Figure 2 that multiples show significant curvature relative to the correctly-
migrated flat primaries. The same image after multiple attenuation is shown in
Figure 3. In order to remove small velocities errors, we applied a residual moveout
correction to the image gathers. The pre-processed pre-stack monitor image is shown
in Figure 4. To obtain this image, in addition to the pre-processing applied to the
baseline, we also applied a bulk amplitude correction to the monitor data. We esti-
mate the amplitude correction as the ratio between the root-mean-square energy in
the baseline versus the monitor. In addition, we perform pre-stack warping of the
monitor to the baseline image. Apparent vertical displacements between the base-
line and monitor are shown in Figure 5. Figure 6 shows the Hessian diagonal for
the target area. Local dip estimates obtained from the stacked baseline image (not
shown) are shown in Figure 7. Figure 8 shows the time-lapse images after different
processing steps. Note the incremental improvements in the time-lapse image quality
after processing and after inversion.

Example 2: Complete baseline and Incomplete monitor data

Figure 9 shows that gapped monitor data. Here, we simulate an obstruction in the
geometry such that neither sources nor receivers are present between 2500 and 2900

SEP–143



Ayeni and Biondi 6 4D WE inversion

Figure 2: Raw pre-stack baseline image for the target area. Note the presence of
several multiples and other undesired artifacts. [CR]

Figure 3: Preprocessed pre-stack baseline image of the target area. Note that the
artifacts in the raw image (Figure 2) have been attenuated. [CR]

Figure 4: Preprocessed pre-stack monitor image of the target area obtained using the
same parameters as in the baseline (Figure 3). Note that this image has been warped
(using apparent displacements in Figures 5) to the baseline image. [CR]
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Figure 5: Apparent vertical displacements between the baseline and monitor images
(Figures 3 and 4). Red, blue and green denote positive, negative and zero displace-
ments respectively. Note that the maximum apparent displacements correspond to
the reservoir location between position 2000 m to 3000 m. Also, note that the appar-
ent displacement varies with opening angle. [CR]

Figure 6: Illumination (Hessian diagonal) for the target area. Red indicates high
illumination whereas blue indicates low illumination. [CR]

Figure 7: Dip estimates obtained from the stacked baseline image. Red indicates
positive dips whereas blue indicates negative dips. These dip estimates are used to
construct the spatial regularization operator. [CR]
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(a)

(b)

(c)

Figure 8: Time-lapse images (a) from the raw data, (b) after time-lapse processing
and (c) after wave-equation inversion. Note the incremental improvements in the
time-lapse image from (a) to (c). [CR]
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m. This gap in the the data coincides with the reservoir location. We image gapped
monitor data using the same parameters and in the previous example. However,
in order to warp this incomplete monitor to the complete baseline, we first perform
Radon interpolation to fill in the monitor gap. The interpolated monitor data are then
imaged and processed using the same parameters as in the complete monitor case.
The resulting pre-stack image is then used to estimate the apparent displacement
vectors (Figure 10) used to warp the incomplete monitor image to the baseline. The
ratio of the Hessian diagonal (illumination ratio) between the baseline and monitor
is shown Figure 11. Note that the region with low illumination ratios correspond
to the location of the simulated obstruction. Figures 12 and 13 show the spatial
and wavenumber domain point-spread-functions (PSFs) at point x = 2600 m and
z = 2600 m, respectively. Note that there is significant differences in the PSFs away
from the diagonal (center of the spatial PSF) and at various wavenumbers. Figure 14
shows the time-lapse images after different processing steps. Note the incremental
improvements in the time-lapse image quality after processing and after inversion.
Furthermore, note that compared to the complete data example (Figure 8(b)), the
time-lapse image from conventional processing (Figure 14(b)) is of poorer quality.

Figure 9: Gapped monitor data. Note that we have sources and receivers are missing
around within the simulated obstruction. [CR]
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Figure 10: Apparent vertical displacements between images from the baseline and
interpolated monitor data sets. Comparing this to Figure 5, note that estimates of
the apparent displacements are similar to those from the complete data case. [CR]

Figure 11: Illumination ratio between the baseline and monitor. Red indicates re-
gions with equal illumination (i.e., ratio equals unity) whereas blue indicates unequal
illumination (i.e., ratio less than unity). [CR]

(a) (b) (c)

Figure 12: Point-spread-functions at point x = 2600 m and z = 2600 m for the (a)
baseline and (b) monitor. Note in the difference PSF (c), that there is significant
energy away from the center of the PSF (i.e. in the off-diagonal parts of the Hessian).
[CR]
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(a) (b) (c)

Figure 13: Wavenumber domain point-spread-functions at point x = 2600 m and
z = 2600 m for the (a) baseline and (b) monitor. Note in the difference PSF (c), that
there is significant illumination differences at various wavenumbers. [CR]

DISCUSSION

Data preprocessing sufficiently attenuates multiples and other artifacts in the data
(Figures 2 and 3). This is required to ensure that the data satisfy sufficiently the
primaries-only assumption in our inversion formulation. By warping the images before
stacking, we ensure that defocusing effects due to velocity and compaction effects
are minimized. Because the overburden geology along the studied section is fairly
simple, the monitor image (Figure 4) is sufficiently aligned to the baseline using only
vertical components of the prestack apparent displacement vectors (Figure 5). In
practice, even with good repeatability between surveys, it is difficult to interpret an
unprocessed time-lapse image (Figure 8(a)). However, after careful processing, it is
possible to make meaningful interpretation of amplitude information in the time-lapse
image (Figure8(b)). Although in many cases, results from a conventional processing
workflow may suffice, the quality of the time-lapse image can be improved by wave-
equation inversion (Figure 8(c)). In the second example, because the monitor data
is incomplete, the effective geometries differ for the two surveys, thereby leading to
illumination mismatch (i.e., illumination ratios not equal to unity) in parts of the
target area (Figure 11). However, the Hessian diagonal gives only a partial measure
of the illumination mismatch between time-lapse surveys (Figure 11). Large geometry
differences (e.g., an obstruction in the monitor acquisition) can cause large differences
in the off-diagonal terms of the Hessian (Figure 12). Such geometry differences lead
to differences in wavenumber illumination between surveys (Figure 13). Therefore, a
point-by-point amplitude compensation using only the Hessian diagonal is inadequate.
Where there is significant geometry difference between surveys, conventional time-
lapse processing is insufficient (Figure 14(b)). In this case, wave-equation inversion
provides a significant improvement to the time-lapse image (Figure 14(c)). Although
the amplitude information derivable from the interpolated monitor data (not shown)
are of poor quality the kinematics are similar to those of the complete baseline image.
Therefore these provide adequate estimates of the warping parameters (Figure 10)
comparable to those from the complete data case (Figure 5).
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(a)

(b)

(c)

Figure 14: Time-lapse images (a) from the raw data, (b) after time-lapse processing
and (c) after wave-equation inversion. Also, because of artifacts introduced by the
incomplete monitor data, conventional methods fail to provide results of comparable
quality to the complete data example (Figure 8(b)). Note that inversion provides
satisfactory results. [CR]
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CONCLUSIONS

We have proposed a wave-equation inversion scheme for time-lapse seismic data sets.
Applying the proposed method to a North sea field data set shows that it can im-
prove production-related time-lapse seismic responses. This method can improve
time-lapse amplitude information and can be used to attenuate artifacts caused by
geometry/illumination differences between surveys.
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APPENDIX A

Assuming we have two data sets (baseline d0 and monitor d1) acquired at different
times, the following sections shows derivations of the the joint inversion formulations
for image differences and for multiple images.

Joint Inversion for Image Differences (JID)

We can formulate baseline and monitor data modeling as follows:[
L0 0
L1 L1

] [
m0

∆m

]
=

[
d0

d1

]
, (A-1)

which can be divided into the following two parts:

L0m0 = d0, (A-2)

L1m0 + L1∆m = d1, (A-3)

where the time-lapse reflectivity image ∆m is given by

∆m = m1 −m0. (A-4)

Note that Equation A-1 assumes that both m0 and m1 are collocated. This
means that there is no physical movement of the reflector between the baseline and
the monitor images. In addition, equation A-1 assumes that there are no overburden
velocity changes. If stress changes cause any physical movement of a point from
baseline position (x0, y0, z0) in m0 to monitor position (x1, y1, z1) in m1, we can update
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equation A-3 such that the point in m0 is repositioned at (x1, y1, z1). The updated
modeling equation for the monitor data then becomes

L1S
m−

m0 + (L1m1 − L1S
m−

m0) = L1S
m−

m0 + L1∆mm = d1, (A-5)

where Sm− is an orthogonal warping operator that aligns m0 to m1, and

∆mm = m1 − S
m−

m0 (A-6)

is the time-lapse image estimated at the monitor position (x1, y1, z1). And the com-
bined modeling equation becomes[

L0 0

L1S
m−

L1

] [
m0

∆mm

]
≈

[
d0

d1

]
. (A-7)

However, note that equation A-7 requires that we know the true reflector position in
the monitor which we may obtain from a geomechanical model. Furthermore, any
regularization on the time-lapse image must be applied at the monitor position, or
by first repositioning the time-lapse image to the baseline position as follows:

∆m = ∆mb = S
m+

∆mm, (A-8)

where ∆mb is the time-lapse image at the baseline position and S
m+

= (S
m−

)−1 is an
operator that repositions events from the monitor position to the baseline position.

Assuming we migrate the monitor data with the true monitor velocity, we arrive
at the image-space inversion problem by minimizing the quadratic-norm∣∣∣∣∣∣∣∣[ L0 0

L1S
m−

L1

] [
m0

∆mm

]
−

[
d0

d1

]∣∣∣∣∣∣∣∣ ≈ 0 (A-9)

for which the solutions m̂0 and ∆m̂m satisfy the solution[
LT

0 L0 + S
m+

LT
1 L1S

m−
S

m+
LT

1 L1

LT
1 L1S

m−
LT

1 L1

] [
m̂0

∆m̂m

]
≈

[
LT

0 S
m+

LT
1

0 LT
1

] [
d0

d1

]
,

(A-10)
or simply[

H0 + S
m+

H1S
m−

S
m+

H1

H1S
m−

H1

] [
m̂0

∆m̂m

]
≈

[
m̃0 + S

m+
m̃1

m̃1

]
. (A-11)

Note that the time-lapse image we obtain is ∆m̂m at the monitor position and not
∆m̂ = ∆m̂b at the baseline position. Although what is most interesting is ∆m̂m, as
shown later in this section, we may choose to re-write the formulation as a function
of ∆m̂b.

Assuming we migrate the monitor data with the wrong (e.g. baseline) velocity,
then equation A-10 becomes[

LT
0 L0 + S

α+
ĽT

1 L1S
m−

S
m+

ĽT
1 L1

ĽT
1 L1S

m−
ĽT

1 L1

] [
m̂0

∆m̂m

]
≈

[
LT

0 S
α+

ĽT
1

0 ĽT
1

] [
d0

d1

]
,

(A-12)

SEP–143



Ayeni and Biondi 15 4D WE inversion

where ĽT
1 , the migration operator with the monitor geometry but with baseline ve-

locity migrates the monitor data to apparent position (x′
1, y

′
1, z

′
1), and S

α+
repositions

the migrated data from (x′
1, y

′
1, z

′
1) to (x0, y0, z0). However, because the operator L1

is a function of the true monitor velocity, if the true monitor velocity is known, we
should solve equation A-11 instead of equation A-12. Note that in the case where the
monitor migration velocity is the correct one, equation A-12 becomes equation A-11.
If we have neither the true monitor velocity nor a geomechanical model, we may mod-
ify the Hessian in equation A-12 using the apparent displacements between (x′

1, y
′
1, z

′
1)

and (x0, y0, z0) so we can approximate equation A-12 as[
LT

0 L0 + S
α+

ĽT
1 Ľ1S

α−
S

α+
ĽT

1 Ľ1

ĽT
1 Ľ1S

α−
ĽT

1 Ľ1

] [
m̂0

∆m̂a

]
≈

[
LT

0 S
α+

ĽT
1

0 ĽT
1

] [
d0

d1

]
, (A-13)

Then equation A-11 becomes[
H0 + S

α+
Ȟ1S

α−
S

α+
Ȟ1

Ȟ1S
α−

Ȟ1

] [
m̂0

∆m̂a

]
≈

[
m̃0 + S

α+
m̃1

m̃a
1

]
, (A-14)

where Ȟ1 is the modified Hessian in which we account for the mis-positioning due to
compaction and velocity change. To account for such mis-positioning, we compute
the updated Hessian using perturbed Green’s functions:

Ȟ (yT,yT+ax) =
∑

ω

ω4
∑
ys

|f (s)|2Gα(ys,yT, ω)Ḡα(ys,yT+ay , ω)∑
yr

Gα(yT,yr, ω)Ḡα(yT+ay ,yr, ω), (A-15)

where y denotes an apparent point in the monitor image that corresponds to baseline
point x. The modified Green’s function Gα is given by

Gα = G(x) exp−iω∆tα ≈ G(x) exp−iω
|xα|
vo , (A-16)

where ∆tα is the time-delay corresponding to the absolute apparent displacement |xα|
and vo is the baseline velocity.

Instead of inverting for the time-lapse image at the monitor position, another
approach is to directly invert for ∆m̂b = ∆m̂ at the baseline position by making the
substitution

∆mm = S
m−

∆m (A-17)

into equation A-9 to obtain[
L0 0

L1S
m−

L1S
m−

] [
m0

∆m

]
≈

[
d0

d1

]
(A-18)

which leads to the image-space problem[
H0 + S

m+
H1S

m−
S

m+
H1S

m−

S
m+

H1S
m−

S
m+

H1S
m−

] [
m̂0

∆m̂

]
≈

[
m̃0 + S

m+
m̃1

S
m+

m̃1

]
=

[
m̃0 + m̃b

1

m̃b
1

]
.

(A-19)
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where m̃b
1, the migrated monitor image repositioned to the baseline position (x0, y0, z0),

is defined as
m̃b

1 = S
m+

m̃1. (A-20)

If we migrate the monitor data with the baseline velocity, equation A-19 becomes[
H0 + S

α+
Ȟ1S

α−
S

α+
Ȟ1S

α−

S
α+

Ȟ1S
α−

S
α+

Ȟ1S
α−

] [
m̂0

∆m̂

]
≈

[
m̃0 + S

α+
m̃a

1

S
α+

m̃a
1

]
=

[
m̃0 + m̃b

1

m̃b
1

]
,

(A-21)
where,

S
α+

m̃a
1 ≈ m̃b

1 = S
m+

m̃1. (A-22)

However, provided the velocity change is isotropic, compaction effects are small, dif-
ferences in kinematics are small, and the velocity change is small, we can make the
following approximation:

L1S
m−

mb
1 ≈ U

m−
Lb

1m
b
1 = d1, (A-23)

where the operator L1 is a function of both the monitor velocity and geometry,
whereas Lb

1 is a function of the baseline velocity but the monitor geometry. U
m−

is an orthogonal operator that translates a data due to a reflectivity spike at baseline
position (x0, y0, z0) and baseline background velocity v0, to data due to a spike at
(x1, y1, z1) and monitor background velocity v1. Note that in equation A-23, we have
made the following approximation

U
m− ≈ L1S

m−
[[

(Lb
1)

TLb
1

]−1
(Lb

1)
T
]
. (A-24)

Provided equation A-23 holds, we can write

(Lb
1)

T (U
m−

)TU
m−

Lb
1m

b
1 ≈ (Lb

1)
T (U

m−
)Td1, (A-25)

where,
(U

m−
)TU

m−
= (U

m−
)−1U

m−
= U

m+
U

m−
= I,

(Lb
1)

T (U
m−

)T = S
m+

LT
1 .

(A-26)

Therefore, we can write

(Lb
1)

TLb
1m

b
1 ≈ S

m+

LT
1 L1S

m−
mb

1 ≈ S
m+

LT
1 d1 ≈ m̃b

1, (A-27)

where, (Lb
1)

TLb
1 = Hb

1 is the Hessian computed using the baseline velocity but with
the monitor geometry. Making these substitutions into equation A-19, we have[

H0 + Hb
1 Hb

1

Hb
1 Hb

1

] [
m̂0

∆m̂

]
≈

[
m̃0 + m̃b

1

m̃b
1

]
. (A-28)

An important advantage of the formulation in equation A-28 is that it allows us
to readily regularize the time-lapse image. However, it may be desirable to invert
directly for the individual seismic images, as shown in the following sections.
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Joint Inversion of Multiple Images (JMI)

We can pose the problem as an inversion for the individual (baseline and monitor)
images. Then, the modeling equation becomes[

L0 0
0 L1

] [
m0

m1

]
=

[
d0

d1

]
. (A-29)

Using the same assumptions and procedure as in the previous section, we arrive at
the following formulation: [

H0 0
0 H1

] [
m̂0

m̂1

]
≈

[
m̃0

m̃1

]
, (A-30)

where the baseline and monitor velocities are known. Where the monitor has been
aligned with baseline, we have[

H0 0
0 Hb

1

] [
m̂0

m̂b
1

]
≈

[
m̃0

m̃b
1

]
, (A-31)

which holds approximately whether or not we migrate the monitor data with the
baseline or monitor velocity.

Regularized Joint inversion of Multiple Images (RJMI)

Because in the JMI formulation, the models are completely decoupled, they can be
regularized by minimizing the norm∣∣∣∣∣∣∣∣[ ε0R0 0

0 ε1R1

] [
m̂0

m̂1

]∣∣∣∣∣∣∣∣ ≈ 0 , (A-32)

where Ri is the spatial regularization operator and εi the spatial regularization pa-
rameter for survey i. To add any temporal regularization, we need to warp the
inverted monitor images to the baseline and then apply temporal constraints or we
can regularize the time-lapse image directly by minimizing the norm:∣∣∣∣∣∣∣∣[ −ζ0Λ0 ζ1Λ1

] [
m̂0

m̂1

]∣∣∣∣∣∣∣∣ ≈ 0 , (A-33)

where Λi is the temporal regularization operator and ζi is the regularization param-
eter. Therefore the full regularized inversion requires a minimization of the norm:∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣


L0 0
0 L1

ε0R0 0
0 ε1R1

−ζ0Λ0 ζ1Λ1


[

m̂0

m̂1

]
−


d0

d1

0
0
0


∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
≈ 0 , (A-34)
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which leads to the image-space problem
H0 0
0 H1

R00 0
0 R11

Λ00 −Λ01

−Λ10 Λ11


[

m̂0

m̂1

]
≈


m̃0

m̃1

0
0
0
0

 , (A-35)

where Rii = ε2
i R

T

i Ri and Λij = ζiΛ
T

i ζjΛj are the spatial and temporal constraints,
respectively.

If the monitor has been aligned to the baseline, then we can impose the spatial
regularization by minimizing∣∣∣∣∣∣∣∣[ ε0R0 0

0 ε1R
b
1

] [
m̂0

m̂b
1

]∣∣∣∣∣∣∣∣ ≈ 0 , (A-36)

and the temporal regularization by minimizing∣∣∣∣∣∣∣∣[ −ζ0Λ0 ζ1Λ
b
1

] [
m̂0

m̂b
1

]∣∣∣∣∣∣∣∣ ≈ 0 , (A-37)

where Rb
1 and Λb

1 are defined with respect to the baseline-aligned monitor image. If
the time-lapse image at the baseline position, the regularized image-space inversion
problem is given by 

H0 0
0 Hb

1

R00 0
0 Rb

11

Λ00 −Λb
01

−Λb
10 Λb

11


[

m̂0

m̂b
1

]
≈


m̃0

m̃b
1

0
0
0
0

 , (A-38)

where the superscript (b) denotes that the operators and images are referenced to the
baseline position. Note that in the simplest case, where the temporal regularization
is a difference operator equation A-33 becomes∣∣∣∣∣∣∣∣ζ [

−I S
m+ ] [

m̂0

m̂1

]∣∣∣∣∣∣∣∣ ≈ 0 , (A-39)

and for the baseline-aligned images, the temporal constraint in equation A-37 becomes∣∣∣∣∣∣∣∣ζ [
−I I

] [
m̂0

m̂b
1

]∣∣∣∣∣∣∣∣ ≈ 0 . (A-40)
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