
Correlation-based wave-equation migration

velocity analysis

Ali Almomin

ABSTRACT

Wave-equation migration velocity analysis (WEMVA) is a family of techniques
that aim to improve the subsurface velocity model by minimizing the residual in
the image space. Since the true image is unknown, measuring the residual in the
image space is a challenge for WEMVA techniques. In this paper, I present a new
method of measuring the image perturbation that is based on the cross-correlation
of the observed image with a reference image in reflection angle gathers. I derive
the gradient of this technique and show some synthetic examples that compare
it to the optimum WEMVA gradient. I then modify the gradient in order to
handle multiple events and show that it becomes immune to the problem of cycle
skipping. I finally show a synthetic example of the modified gradient and compare
it to the optimum gradient.

INTRODUCTION

Seismic velocity-analysis methods can be divided into two major groups. First, there
are techniques that aim to minimize the misfit in the data domain, such as full
waveform inversion (Tarantola, 1984; Luo and Schuster, 1991). Second, there are other
techniques that aim to improve the quality in the image domain such as migration
velocity analysis (MVA)(Symes and Carazzone, 1991; Biondi and Sava, 1999; Shen,
2004). These techniques try to measure the quality of the image and then invert the
estimated image perturbation using a linearized wave-equation operator.

There are several advantages to minimizing the residual in the image space, such as
increasing the signal-to-noise ratio and decreasing the complexity of the data (Tang
et al., 2008). However, the biggest challenge in WEMVA techniques is that the
true image is unknown. Therefore, each technique uses a certain attribute of the
background image and tries to estimate the residual using that attribute. The stack-
power-maximization technique maximizes the angle stack, and differential semblance
optimization (DSO) minimizes the difference between neighboring traces in angle
gathers. However, these assumptions can cause some problems, such as cycle-skipping
in stack power maximization and edge effects in DSO.

In this paper, I present a new method of measuring the image residual that is based
on the cross-correlation of the observed image with a reference image in reflection
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angle gathers. The reference image can be any image with the desired kinematics, i.e.
flat angle gathers. Therefore, it is possible to choose an angle stack as the reference
image. However, angle stacks do not take into account the limited acquisition, which
can result in anomalies in the gradient if the angle gathers are not muted properly.
In order to take acquision into account, I create my reference image by computing
Born-modeling data with the background slowness and a reference reflectivity. This
reference reflectivity could come from the angle-stack image or from non-seismic data
such as well-logs or geologic models. Therefore, modeling and migrating a dataset
gives us more flexibility than just using the angle stack. The derivation of this method
is based on traveltime inversion by Luo and Schuster (1991) but in the image domain
instead of the data domain. After deriving the objective function and the gradient
of this method, I provide some synthetic examples and compare the gradient to the
optimum WEMVA gradient.

This technique is similar to differential residual migration (DRM) (Sava, 2004)
in the sense that it uses the kinematics of a reference image. However, there are a
few advantages in using correlation over DRM. First, the correlation method gives us
more flexibility in choosing the reference image. Second, picking correlation lags could
be automated more easily than picking DRM panels. Finally, the objective function
of the correlation method could include the full correlation function as opposed to
just maximum lags, which will eliminate picking and fully automate the inversion.

METHOD

The first step in evaluating a tomographic operator is to linearize the image I around
the background slowness s0, as follows:

I = I0 +
∂I

∂s
|s0(s− s0) + ..., (1)

where I0 is the background image and s is the slowness model. By neglecting the
higher order terms in the image series, we can define the tomographic operator as
follows:

∆I =
∂I

∂s
|s0∆s = T∆s, (2)

where T is the tomographic operator. Now, we use the conventional imaging condition
as follows:

I(x,h) =
∑

ω,xs,xr

G∗(x− h,xs, ω)G∗(x + h,xr, ω)d(xr,xs, ω), (3)

where I is the image, G is the Green’s function, d is the surface data, ω is frequency,
xs and xs are the source and receiver coordinates, and h is the subsurface offset. To
evaluate the tomographic operator T, I take the derivative of the imaging condition
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as follows:

∆I(x,h) =
∑
y

∂I(x,h)

∂s(y)
∆s(y)

=
∑

ω,xs,xr,y

{
−2ω2s0(y)G∗

0(y,xs, ω)G∗
0(x− h,y, ω)

}
G∗

0(x + h,xr, ω)d(xr,xs, ω)∆s(y)

+
∑

ω,xs,xr,y

{
−2ω2s0(y)G∗

0(x− h,xs, ω)G∗
0(x + h,y, ω)

}
G∗

0(y,xr, ω)d(xr,xs, ω)∆s(y),

(4)

where y is the slowness coordinate. The full derivation of the tomographic operator
is presented in Almomin and Tang (2010).

After defining the tomographic operator, I use a cross-correlation function to
estimate image perturbations:

f(ζ, γ;x) =
∑

z

Iobs(z, γ;x)Ical(z + ζ, γ;x), (5)

where ζ is the lag, γ is the reflection angle, x is the surface coordinates, z is depth,
Iobs is the angle-domain image using the observed data, and Ical is the angle-domain
image using the calculated data, which is modeled with the background slowness. Ical

is always going to be flat, since I create Born-modeled data using a reference model
as the reflectivity and the background slowness and then migrate that data using
the same background slowness. Next, I define ξ to be the lag that maximizes the
correlation function. Therefore, the derivative of the correlation function vanishes at
that lag, as follows:

g =
∂f

∂ζ
|ξ =

∑
z

∂

∂z
Iobs(z, γ;x)Ical(z + ξ, γ;x) = 0. (6)

We can now use ξ as our measure of the residual to minimize, casted as the following
objective function:

J(s) =
1

2
‖ξ(γ,x)‖2. (7)

Then, we take the derivative of the objective function with respect to slowness as
follows:

∇J =

(
∂ξ

∂s

)∗

ξ, (8)

where ∗ indicates an adjoint. By using the chain rule of differentiation, I relate the
derivative of the maximum lag ξ with respect to s to the derivative of the correlation
function with respect to s as follows:(

∂ξ

∂s

)∗

=

(
∂g

∂s

∂ξ

∂g

)∗

. (9)
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The second partial derivative in equation (9) is just a scalar that balances the energy
between surface locations. The first partial derivative with respect to slowness can
be calculated using equation (6) as follows:(

∂g

∂s

)∗

=
∑

z

(
∂Iobs(z, γ;x)

∂s

)∗
∂

∂z
Ical(z + ξ, γ;x)

+
∑

z

(
∂Ical(z + ξ, γ;x)

∂s

)∗
∂

∂z
Iobs(z, γ;x). (10)

The first tomographic operator in equation (10) can be computed as I described
in equation (4). However, the second tomographic operator depends on how Ical

is computed. If a fixed-reflectivity model is used, such as well data, and only the
background slowness is updated, then this derivative will be very small and could be
ignored, since changing the slowness updates does not change the reflectivity estimate.
On the other hand, if we allow the modeling reflectivity to change location, i.e. we
update the reflectivity model as we iterate, then this operator could have a significant
component. However, evaluating this operator is much more expensive than the first
tomographic operator, since it is a cascade of three operators. Therefore, I will assume
that the first tomographic operator is sufficient and ignore the second term.

SYNTHETIC EXAMPLES

The background model has a constant velocity of 2500 m/s. The model is 4000 m wide
and 2800 m deep. The spatial sampling is 20 m, and the temporal sampling is 3 ms.
A Ricker wavelet with a fundamental frequency of 15 Hz is used to model the data.
The receiver spacing is 20 m, and the shot spacing is 80 m. The reflector is at a depth
of 2200 m. Born modeling was used in both the observed and the calculated data.
There are three anomalies that I will estimate: first, a negative Gaussian anomaly at
a depth of 1300 m with a maximum velocity of 800 m/s, second, a constant velocity
decrease of 250 m/s, and third, a constant velocity increase of 250 m/s. First, I will
compute the optimum WEMVA gradient by applying the forward and adjoint of these
slowness perturbations. The results are shown in figures 1(a), 1(c) and 1(e). Then, I
compute the angle-domain common-image gathers using the background velocity of
the data with the three anomalies, which are shown in figures 1(b), 1(d) and 1(f).

Next I show the results of applying the first term of the tomographic operator
in equation (10). First, I use the true reflector depth to create the reference image
and use it in our method to generate the gradients for the three anomalies, as shown
in figures 2(a), 2(c) and 2(e). Finally, I use the apparent reflector depth, i.e. the
depth extracted from the zero-subsurface-offset image, to create the reference image
and generate the gradients shown in figures 2(b), 2(d) and 2(f). The correlation lags
were picked automatically by choosing the maximum value of the cross-correlation
function.
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(a) (b)

(c) (d)

(e) (f)

Figure 1: The left column shows the optimum WEMVA gradient of (a) a negative
Gaussian anomaly, (c) a negative bulk shift and (e) a positive bulk shift. The right
column shows the corresponding ADCIGs. [CR]

SEP–143



Almomin 6 WEMVA

(a) (b)

(c) (d)

(e) (f)

Figure 2: The left column shows the correlation-based WEMVA gradients using the
true depth for the reference image. The right column shows the correlation-based
WEMVA gradients using the apparent depth for the reference image. [CR]
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Modified correlation-based WEMVA

There were two disadvantages to the original correlation-based WEMVA gradient.
First, it assumes a single correlation lag per trace. Second, it is sensitive to the
actual values of the picked correlation lags. If these lags are not correct, the gradient
might have a cycle-skipping problem. In order to overcome these disadvantages, I
approximate the shifted flat image by the observed image to get the following modified
gradient:

∇J =
∑

z

(
∂Iobs(z, γ;x)

∂s

)∗
∂

∂z
Iobs(z, γ;x)

ξ

E
(11)

This modified gradient is immune to cycle-skipping since the residual and operator
match by design. In addition, it is not as sensitive to the values of the picked lags.
Finally, multiple picked lags could be used in this formulation.

Figures 3(a) and 3(b) show the true and background velocities of a salt model.
ADCIGs using these two velocities on the observed data are shown in figures 4(a)
and 4(b). Next, I used a sliding Gaussian window to compute and pick local cross-
correlation panels between the observed image and the stacked image. Then, I picked
the maximum correlation lag at each depth level. The picked lags are shown in figure
5.

(a) (b)

Figure 3: The true velocity salt model (a) and the background velocity model (b).
[ER]

As in the previous example, I computed the optimum gradient using the true ve-
locity anomaly and the modified correlation-based WEMVA gradient using the picked
correlation lags. These two gradients are shown in figure 6(a) and 6(b). Although
we used the apparent depth of the stacked image, the modified gradient shows very
good results that are very similar to the optimum gradient. In this case, the velocity
information in large reflection angles was more dominant than those in zero reflection
angle.
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(a) (b)

Figure 4: ADCIGs using the true velocity salt model (a) and using the background
salt model (b). [CR]

Figure 5: Lag estimation of the maximum local correlation. [CR]
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(a) (b)

Figure 6: The optimum WEMVA gradient of the salt model (a) and the modified
correlation-based WEMVA gradient of the salt model (b). [CR]

DISCUSSION AND CONCLUSIONS

By examining the results, we see that, when provided with the true depth, the
correlation-based WEMVA produces excellent results with no cycle-skipping or edge
effects. When the apparent depth was provided, the results start to have some er-
rors. However, these errors are to be expected due to the velocity-depth ambiguity.
Therefore, the gradients will flatten the gathers but not necessarily resolve the correct
depth (Zhang and Biondi, 2011). However, the results are still satisfactory, since the
gradient is pointing toward the right direction.

Using the modified gradient has several advantages, such as handling multiple
events. However, I need to further test the approximations made in the modified
gradient. Leeuwen (2010) showed that it is possible to further improve the objec-
tive function by multiplying with the proper weights and minimizing the correlation
function instead of the lags, which will eliminate any picking. Finally, using correla-
tion functions over extended images (Yang and Sava, 2009) could help provide better
results.
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